National Library of Energy BETA

Sample records for 1-10 phone number

  1. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  2. Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER NNSA HQ, NA-63, Deputy Director, Office of Acquisition and Supply Management Barbara H. Stearrett > $25M 202-586-7439 NNSA Service Center, Associate Director, Office of Business Services, Albuquerque, NM Donald J. Garcia < or equal to $25M 505-845-5878 Site offices do not have any HCA authority. NNSA SITE OFFICE CO NAME PHONE M&O CONTRACTOR NAME Bettis/Knolls Atomic Power Laboratory Mark Dickinson 202-781-6237 Bechtel

  3. MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: Why are you interested in the mentoring program? (This information will be included with the invitation to your potential mentor.) What goals do you want to work on during your participation in the mentoring program? Is there someone you would like to be your mentor? Yes No If yes, please list their name and any other possible mentors in order of preference: Expectations of the Mentoring Program How long? 6-months

  4. MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: is interested in this program because: Are you willing to act as a mentor for ? Yes No Expectations of the Mentoring Program How long? 6-months minimum commitment. Are you willing to commit to the 6-months minimum timeframe? Yes No How much time? You decide with your mentee; 1-4 hours/month is recommended. Please return completed form to Ames Lab Human Resources, 105 TASF. Are you willing to commit 1-4 hours per month

  5. ORISE: Contact Us - phone numbers, email addresses, shipping...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Contact Us Employee Phone Directory Enter the name of the person you are looking for: To use this directory, you must know the full last...

  6. Lab Phone Numbers - Center for Plasma in the Laboratory and Astrophysics -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UW Madison Physics Department Lab Phone Numbers UW Madison Center for Plasma in the Laboratory and Astrophysics Lab Phone Numbers CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum

  7. ORISE: Contact information for REAC/TS - phone numbers, e-mail

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Radiation Emergency Assistance CenterTraining Site staff contact information Emergency Number 865.576.1005 (Ask for REACTS) Nicholas Dainiak, M.D., FACP Medical and...

  8. Mobile Devices (phones and tablets)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mobile Devices (phones and tablets)

  9. Addresses and Phone Numbers | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications Federal Energy Management Program 303-384-7534 Innovation and Entrepreneurship Center 303-275-3038 International Activities 303-384-7537 Joint Institute for...

  10. SGMT V. 1.0

    Energy Science and Technology Software Center (OSTI)

    002485MLTPL00 Sandia Generated Matrix Tool (SGMT) v. 1.0 http://cognitivescience.sandia.gov/Software/matrixtool.ht

  11. BECCAV1.0 BETA

    Energy Science and Technology Software Center (OSTI)

    002318WKSTN00 Brain-Emulating Cognition and Control Architecture (BECCA) V1.0 beta http://sourceforge.net/projects/becca

  12. FWAVE V1.0

    Energy Science and Technology Software Center (OSTI)

    001684MLTPL00 FWAVE V1.0 a framework for finite difference wave equation modeling http://seesar.lbl.gov/CCSE/Software/FWave/

  13. COOPR V1.0

    Energy Science and Technology Software Center (OSTI)

    002406MLTPL00 COOPR: A COmmon Optimization Python Repository v. 1.0 https://software.sandia.gov/svn/public.coopr

  14. Phone Book | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search PHONE BOOK - STAFF SEARCH Search by : Name GO (partial accepted

  15. CCAIN, Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2005-05-26

    CCAIN, Version 1.0 Date: 06/15/2005 This software is an instantiation of Common Component Architecture (CCA) framework written in C. The framework is used to compose (create, register, destroy) C, C++, and Fortran components into a running CCA application. Language bindings are provided for F90 and F03 to allow codes in these languages to interface with the framework.

  16. Number

    Office of Legacy Management (LM)

    ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the

  17. TAHOE Ver 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-10-03

    Tahoe is a research-oriented platform for the development of numerical methods and material models. The goal of the work surrounding Tahoe is the simulation of stresses and deformations for situations that cannot be treated by standard continuum simulation techniques. These situations include material fracture or failure, interfacial adhesion and debonding, shear banding, length-scale dependent eleasticity and plasticity, and deformation in small-scale structures. Aside from a collection of standard finite elements. Tahoe includes a number ofmore » "cohesive" approaches for modeling fracture. These incude both surface and bulk constitutive models that incorporate cohesive behavior. Tahoe is capable of performing static and transient dynamic coupled-physics analysis in two and three dimensions. Tahoe is parallelized since even research class problems in corporating material microstructure-based models require considerable computational power, especially in treating three-dimensional geometries.« less

  18. Property:PhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    + 757-787-9750 800-431-2632 + A.J. Rose Manufacturing Company + 440-934-2859 + A.O. Smith + 414-359-4000 + A1 Sun, Inc. + (510) 526-5715 + A10 Power + 415-729-4A10 or...

  19. DIVA V1.0

    Energy Science and Technology Software Center (OSTI)

    2013-09-16

    The DIVA software interfaces a process in which researchers design their DNA with a web-based graphical user interface, submit their designs to a central queue, and a few weeks later receive their sequence-verified clonal constructs. Each researcher independently designs the DNA to be constructed with a web-based BioCAD tool, and presses a button to submit their designs to a central queue. Researchers have web-based access to their DNA design queues, and can track the progressmore » of their submitted designs as they progress from "evaluation", to "waiting for reagents", to "in progress", to "complete". Researchers access their completed constructs through the central DNA repository. Along the way, all DNA construction success/failure rates are captured in a central database. Once a design has been submitted to the queue, a small number of dedicated staff evaluate the design for feasibility and provide feedback to the responsible researcher if the design is either unreasonable (e.g., encompasses a combinatorial library of a billion constructs) or small design changes could significantly facilitate the downstream implementation process. The dedicated staff then use DNA assembly design automation software to optimize the DNA construction process for the design, leveraging existing parts from the DNA repository where possible and ordering synthetic DNA where necessary. SynTrack software manages the physical locations and availability of the various requisite reagents and process inputs (e.g., DNA templates). Once all requisite process inputs are available, the design progresses from "waiting for reagents" to "in progress" in the design queue. Human-readable and machine-parseable DNA construction protocols output by the DNA assembly design automation software are then executed by the dedicated staff exploiting lab automation devices wherever possible. Since the all employed DNA construction methods are sequence-agnostic, standardized (utilize the same enzymatic master mixes and reaction conditions), completely independent DNA construction tasks can be aggregated into the same multi-well plates and pursued in parallel. The resulting sets of cloned constructs can then be screened by high-throughput next-gen sequencing platforms for sequence correctness. A combination of long read-length (e.g., PacBio) and paired-end read platforms (e.g., Illumina) would be exploited depending the particular task at hand (e.g., PacBio might be sufficient to screen a set of pooled constructs with significant gene divergence). Post sequence verification, designs for which at least one correct clone was identified will progress to a "complete" status, while designs for which no correct clones wereidentified will progress to a "failure" status. Depending on the failure mode (e.g., no transformants), and how many prior attempts/variations of assembly protocol have been already made for a given design, subsequent attempts may be made or the design can progress to a "permanent failure" state. All success and failure rate information will be captured during the process, including at which stage a given clonal construction procedure failed (e.g., no PCR product) and what the exact failure was (e.g. assembly piece 2 missing). This success/failure rate data can be leveraged to refine the DNA assembly design process.« less

  20. Cell Phone Detection Techniques

    SciTech Connect (OSTI)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phones electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  1. MeGAMerge, Version 1.0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MeGAMerge, Version 1.0 MeGAMerge, Version 1.0 A novel method of merging of multiple genomic assembly or long read data sources for assembly September 3, 2015 software MetaGenomic...

  2. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  3. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  4. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0 http://www.openfabrics.org/git?p=sashak/management.git;a=sum

  5. Insider Alert 1.0 Beta Version

    Energy Science and Technology Software Center (OSTI)

    2004-02-01

    Insider Alert 1.0 Beta Version supports interactive selection and graphical display of data generated by the Sandia Cognitive Framework, which simulates the examination of security data by experts of various specialties. Insider Alert also encompasses the configuration and data files input to the Cognitive Framework for this application. Insider Alert 1.0 Beta Version is a computer program for analyzing data indicative of possible espionage or improper handling of data by employees at Sandia National Laboratoriesmore » (or other facilities with comparable policies and procedures for managing sensitive information) It prioritizes and displays information for review by security analysts.« less

  6. V.1.0 U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2016 V.1.0 U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY PROGRAMMATIC NEPA DETERMINATION NATIONAL RENEWABLE ENERGY LABORATORY PND Number: ...

  7. TSA RPM Simulator 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-02

    The software listed here is a simulator for TSA Radiation Portal Monitors with version 1.10.1A firmware. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed that simulate the TSA Radiation Portal Monitor that Second Line of Defense communications software systems must interface with. The primary use ofmore » this simulator is for testing of both Sandia developed and DOE contractor developed software.« less

  8. TSA RPM Simulator 1.0

    SciTech Connect (OSTI)

    2009-12-02

    The software listed here is a simulator for TSA Radiation Portal Monitors with version 1.10.1A firmware. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed that simulate the TSA Radiation Portal Monitor that Second Line of Defense communications software systems must interface with. The primary use of this simulator is for testing of both Sandia developed and DOE contractor developed software.

  9. PolyApps - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-08-05

    The polyApps software is an Umbra add-on C++ library that provides a polyhedral mesh library. Geometric shapes are defined by vertices, planes, edges, and faces. The library has a number of unique features that are useful for working with live scanners such as the SwissRanger. It includes a PolvApps multiple image texture casting capability that is compatible with the Umbra "Camera", and Umbra "lmageApps" class image connectors. The meshes are designed to be dynamic, allowingmore » constant changing of their characteristics. Using these objects, live robot camera data can be cast onto arbitrary polygon meshes.« less

  10. Mobile phone and my health

    SciTech Connect (OSTI)

    Surducan, Aneta [Nicolae Balcescu High School, 6 Constanta St., 400158 Cluj-Napoca (Romania)] [Nicolae Balcescu High School, 6 Constanta St., 400158 Cluj-Napoca (Romania); Dabala, Dana [National Railways Medical Clinic,, Occupational Medicine Department, 16-20 Republicii St., 400015 Cluj-Napoca (Romania)] [National Railways Medical Clinic,, Occupational Medicine Department, 16-20 Republicii St., 400015 Cluj-Napoca (Romania); Neamtu, Camelia, E-mail: emanoil.surducan@itim-cj.ro; Surducan, Vasile, E-mail: emanoil.surducan@itim-cj.ro; Surducan, Emanoil, E-mail: emanoil.surducan@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath St., 400293 Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath St., 400293 Cluj-Napoca (Romania)

    2013-11-13

    The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. The aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.

  11. OpenMPI Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2004-10-30

    A large number of MPI implementations are currently available, each of which emphasize different aspects of high-performance computing or are intended to solve a specific research problem. The result is a myriad of incompatible MPI implementations, all of which require separate installation, and the combination of which present significant logistical challenges for end users. Building upon prior research, and influenced by experience gained from the code bases of the LAMIMPI. LA-MPI, and FT-MPI projects, OpenMPImore »is an all-new, production-quality MPI-2 implementation that is fundamentally centered around component concepts. OpenMPI provides a unique combination of novel features previously unavailable in an open-source, production-quality implementation of MPI. Its component architecture provides both a stable platform for third-party research as well as enabling the run-time composition of independent software add-ons.« less

  12. Bill Calculator V1.0

    Energy Science and Technology Software Center (OSTI)

    2002-08-19

    Utitlity tariffs vary significantly from utility to utility. Each utility has its own rates and sets of rules by which bills are calculated. The Bill Calculator reconstructs the tariff based on these rules, stored in data tables, and access the appropriate charges for a given energy consumption and demand. The software reconstructs the tariff logic from the rules stored in data tables. Changes are tallied as the logic is reconstructed. This is essentially an accountingmore » program. The main limitation is on the time to search for each tariff element. It is currently on O(N) search. Also, since the Bill calculator first stores all tariffs in an array and then reads the array to reconstruct a specific tariff, the memory limitatins of a particular system would limit the number of tariffs that could be handled. This tool allows a user to calculate a bill from any sampled utility without prior knowledge of the tariff logic or structure. The peculiarities of the tariff logic are stored in data tables and manged by the Bill Calculator software. This version of the software is implemented as a VB module that operates within Microsoft Excel. Input data tables are stored in Excel worksheets. In this version the Bill Calculator functions can be assessed through Excel as user defined worksheet functions. Bill Calculator can calculate approximately 50,000 bills in less than 30 minutes.« less

  13. Hydrogen File Capture v1.0.DLL

    Energy Science and Technology Software Center (OSTI)

    2006-03-28

    Postprocessor for the use with GoldSim commercial software. The program is intended as a DLL for use with a GoldSim model simulation to copy input/output files created during the simulation to a central location on a local LAN. The software is used as part of a modeling package that consists of GoldSim.exe and other external codes linked and executed during a GoldSim model simulation. The FileCapture_v1.0.DLL is used to run Monte Carlo analyses with amoreGoldSim simulation that is executed using the distributed processing module. When distributed processing (i.e., multi-processor run) is used for a GoldSim Model simulation that is comprised of one or more codes linked with the GoldSim.exe, it is sometimes necessary to capture the default input and/or output files generated by the external codes linked with the GoldSim.exe program. Using the input file "FileCapture.In' to list the filenames and path, FileCapture_v1.0.DLL copies the files listed in 'FileCapture.in' from each node on the LAN to a folder called 'FCAP Files' created in the location gie as the path. The DLL will execute for each realization and append 00xxx a number indication which realization the file was generated from.less

  14. BEDES Dictionary 1.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BEDES Dictionary 1.0 BEDES Dictionary 1.0 An Excel version of the BEDES Dictionary 1.0. Updated November 2014. File Excel version of the BEDES Dictionary 1.o.Updated 11/2014 More Documents & Publications BEDES_Webinar_11-13 BEDES Strategic Working Group Recommendations Buildings Performance Database Recommended Data Fields

  15. Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8650 11-3 8656 12-2 5212 13-1 5131 13-2 5132 13-3 5133 User LabsServices Building LabService Extension 120 Control Room 3707 120 User Reception Lobby 4039 120 Mail Room 4941...

  16. CB-EMIS CELL PHONE CLIENT

    Energy Science and Technology Software Center (OSTI)

    2007-01-02

    The cell phone software allows any Java enabled cell phone to view sensor and meteorological data via an internet connection using a secure connection to the CB-EMIS Web Service. Users with appropriate privileges can monitor the state of the sensors and perform simple maintenance tasks remotely. All sensitive data is downloaded from the web service, thus protecting sensitive data in the event a cell phone is lost.

  17. TTO Phone List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File TTO Phone List Revised 04-02-14.docx More Documents & Publications Technology Transfer Reporting Form DOE Hoisting and Rigging Technical Advisory Committee - Membership...

  18. Property:Incentive/Cont3Phone | Open Energy Information

    Open Energy Info (EERE)

    Cont3Phone Jump to: navigation, search Property Name IncentiveCont3Phone Property Type String Pages using the property "IncentiveCont3Phone" Showing 25 pages using this property....

  19. Categorical Exclusion Determinations: B1.10 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Categorical Exclusion Determinations: B1.10 Existing Regulations B1.10: Onsite storage of activated material Routine, onsite storage at an existing facility of activated equipment and material (including, but not limited to, lead) used at that facility, to allow reuse after decay of radioisotopes with short half-lives. Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final Rulemaking

  20. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  1. Austin Energy Dials Down Home Energy Use With Smart Phones |...

    Energy Savers [EERE]

    Phones Austin Energy Dials Down Home Energy Use With Smart Phones bbrnstoriesaustinenergy9-2-14.jpg Better Buildings Residential Network member Austin Energy used summer's...

  2. Microsoft Word - XML Data Services 1.10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XML Product Data Services Manual version 1.10 1 of 8 XML Product Data Services Query Parameters and Options Topics About Getting Started Using the XML Data Services 1.0: Wildcards 1.1: Multiple Search Terms 1.2: Exact Phrase Search 1.3: Search Options 1.4: Sorting 1.5: Session Management 1.6: Requesting Additional Pages 1.7: Additional Search Options 1.8: Additional Formats 1.9: Helpful Tips About Several XML data services are currently available from OSTI collections. These services search

  3. Open Government Plan 1.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.0 Open Government Plan 1.0 The Department of Energy's first Open Government plan, published in 2010, in both text and e-reader format (.mobi). File FINAL_DOE_OGPVer1-2b_07July2010.mobi.mobi Microsoft Office document icon FINAL_DOE_OGPVer1-2b_07July2010 (1).doc More Documents & Publications FINAL_DOE_OGPVer1-2b_07July2010.pdf FINAL_DOE_OGPVer1_2_24Jun2010.pdf DOE_OGI_Plan_07Apr2010.pdf

  4. IDC Use Case Model Survey Version 1.0.

    SciTech Connect (OSTI)

    Carr, Dorthe B.; Harris, James M.

    2014-12-01

    This document contains the brief descriptions for the actors and use cases contained in the IDC Use Case Model Survey. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  5. Acquisition Guide Chapter 1.0 - Acquisition Regulations System | Department

    Energy Savers [EERE]

    of Energy 0 - Acquisition Regulations System Acquisition Guide Chapter 1.0 - Acquisition Regulations System PDF icon 1.1_Acquisition_Regulation_System_0.pdf PDF icon 1.2_Head_of_Contracting_Activity_(HCA)_Authority,_Functions,_and_Responsibilities_0.pdf PDF icon 1.2_Attachment_Tables_I-IV_0.pdf PDF icon 1.3_Balanced_Scorecard_Assessment_Program_0.pdf PDF icon 1.4_Establishing_the_Position_of_Source_Evaluation_Board_(SEB)_Secretariat_and_Knowledge_Manager More Documents & Publications

  6. Tendril RFI Comments - 11.1.10 - DRAFT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Residential Feedback Programs: A Meta-Review for Household Electricity-Saving Opportunities," American Council for an Energy-Efficient Economy, Report Number E105 (June 2010). ...

  7. The new phone books are here! | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The new phone books are here In the days of Google search, you may not get as excited as Navin R. Johnson (Steve Martin's character in "The Jerk") that the new phone books are...

  8. Phone List | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    A A A FeedbackShare Page Name Office Phone Other Phone Bazzell, Kevin (650) 926-2513 C: (510) 292-0586 Burke, Patrick (650) 926-8573 C:(510) 459-3184 BSO: (510) 486-7203...

  9. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  10. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/5/2002 Originator Phone P. M. Knollmeyer, RL Assistant Manager Central Plateau 376-7435 Class of Change [ I - Signatories [X ] II - Executive Manager [ ] III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in Accordance with the Central Plateau Agreement In Principle Description/Justification of Change The Hanford Federal Facility

  11. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  12. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, RL Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in Accordance with the Central Plateau Agreement In Principle Description/Justification of Change The Hanford Federal Facility

  13. VIPAR - Vortex Inflation PARachute Code Ver. 1.0

    Energy Science and Technology Software Center (OSTI)

    2001-11-01

    VIPAR is a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the code contains several first order algorithms, which we are already in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator, which can be used to producemore »large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an Exodusll data base file for subsequent input into VIPAR. Surface and wake variable information is output into two Exodusll files which can be processed and viewed using software such as EnSight.« less

  14. EOS7C-ECBM Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-11-14

    EOS7C is an equation of state module for the TOUGH2 program for CO2 or N2 in Methane (CH4) Reservoirs. In the present work, additions have been made to the EOS7C Version 1.0 module to include the Enhanced Coal Bed Methane (ECBM) modifications developed by Webb (2003). In addition, the Dusty Gas Model for gas-phase diffusion (Webb 2001) has been included. The ECBM modification to the EOS7C equation of state incorporate the extended Langmuir isothem formore » sorbing gases, including the change in porosity associated with the sorbed gas mass. Comparison to hand calculations for pure gas and binary mixture shows very good agreement. Application to a CO2 well injection problem by Law et al. (2002). The Dusty Model modification add options to calculate gas diffusion using the Dusty-Gas Model including separate and coupled approaches. Comparison to low-permeability pure gas diffusion data shows excellent agreement. The results from the DGM are compared to the Fick's Law behavior for diffusion across a capillary fringe. The differences between the models are small due to the relatively high permeability (10-11 m2) of the problem.« less

  15. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Registration Number Assignments (Active) Project Registration Number Assignments (Active) As of: October 2015 Provides a table of Project Registration Number Assignments (Active) PDF icon Project Registration Number Assignment (Active) More Documents & Publications Project Registration Number Assignments (Completed) All Active DOE Technical Standards Document Active Project Justification Statement For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail:

  16. Project Registration Number Assignments (Completed) | Department of Energy

    Energy Savers [EERE]

    Registration Number Assignments (Completed) Project Registration Number Assignments (Completed) As of: March 2016 Provides a table of Project Registration Number Assignments (Completed) PDF icon Project Registration Number Assignments (Completed) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active) The Proposed Reaffirmations and Cancellations For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail:

  17. Sandia Generated Matrix Tool (SGMT) v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-03-24

    Provides a tool with which create and characterize a very large set of matrix-based visual analogy problems that have properties that are similar to Raven™s Progressive Matrices (RPMs). The software uses the same underlying patterns found in RPMs to generate large numbers of unique matrix problems using parameters chosen by the researcher. Specifically, the software is designed so that researchers can choose the type, direction, and number of relations in a problem and then createmore » any number of unique matrices that share the same underlying structure (e.g. changes in numerosity in a diagonal pattern) but have different surface features (e.g. shapes, colors).Raven™s Progressive Matrices (RPMs) are a widely-used test for assessing intelligence and reasoning ability. Since the test is non-verbal, it can be applied to many different populations and has been used all over the world. However, there are relatively few matrices in the sets developed by Raven, which limits their use in experiments requiring large numbers of stimuli. This tool creates a matrix set in a systematic way that allows researchers to have a great deal of control over the underlying structure, surface features, and difficulty of the matrix problems while providing a large set of novel matrices with which to conduct experiments.« less

  18. Lightweight File System (LWFS) v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2008-11-19

    The Lightweight File System (LWFS) is a storage system that provides a minimal set of I/O-system functionality required by file system and/or I/O library implementations for massively parallel machines. In particular, the LWFS-core consists of a scalable security model, an efficient data-movement protocol, and a direct interface to object-based storage devices. Higher-level services such as namespace management, consistency semantics, reliability, and so forth are layered on top of the core services to provide application-specific functionalitymore » as needed. The LWFS code contains implementations of the core services and reference implementations of a number of supplemental services for namespace management and transaction support.« less

  19. Prosthesis Socket Pressure Tools v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-04-28

    Renders, saves, and analyzes pressure from several sensors in a prosthesis™ socket. The program receives pressure data from 64 manometers and parses the pressure for each individual sensor. The program can then display those pressures as number in a table. The program also interpolates pressures between manometers to create a larger set of data. This larger set of data is displayed as a simple contour plot. That same contour plot can also be placed onmore » a three-dimensional surface in the shape of a prosthesis.This program allows for easy identification of high pressure areas in a prosthesis to reduce the user™s discomfort. The program parses the sensor pressures into a human-readable numeric format. The data may also be used to actively adjust bladders within the prosthesis to spread out pressure in real time, according to changing demands placed on the prosthesis. Interpolation of the pressures to create a larger data set makes it even easier for a human to identify particular areas of the prosthesis that are under high pressure. After identifying pressure points, a prosthetician can then redesign the prosthesis and/or command the bladders in the prosthesis to attempt to maintain constant pressures.« less

  20. Prosthesis Socket Pressure Tools v. 1.0

    SciTech Connect (OSTI)

    2010-04-28

    Renders, saves, and analyzes pressure from several sensors in a prosthesis? socket. The program receives pressure data from 64 manometers and parses the pressure for each individual sensor. The program can then display those pressures as number in a table. The program also interpolates pressures between manometers to create a larger set of data. This larger set of data is displayed as a simple contour plot. That same contour plot can also be placed on a three-dimensional surface in the shape of a prosthesis.This program allows for easy identification of high pressure areas in a prosthesis to reduce the user?s discomfort. The program parses the sensor pressures into a human-readable numeric format. The data may also be used to actively adjust bladders within the prosthesis to spread out pressure in real time, according to changing demands placed on the prosthesis. Interpolation of the pressures to create a larger data set makes it even easier for a human to identify particular areas of the prosthesis that are under high pressure. After identifying pressure points, a prosthetician can then redesign the prosthesis and/or command the bladders in the prosthesis to attempt to maintain constant pressures.

  1. Forensic analysis of the microbiome of phones and shoes (Journal...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 59 BASIC BIOLOGICAL SCIENCES forensic microbiology; source-sink dynamics; shoe microbiome; phone microbiome; ...

  2. Forensic analysis of the microbiome of phones and shoes

    Office of Scientific and Technical Information (OSTI)

    Keywords: Forensic microbiology, Source-sink dynamics, Shoe microbiome, Phone microbiome, ... Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor ...

  3. Phone List | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Phone List Fermi Site Office (FSO) FSO Home About Organization Chart .pdf file (66KB) Phone List FSO Brochure .pdf file (320KB) Jobs Projects Contract Management NEPA Documents Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 About Phone List Print Text Size: A A A FeedbackShare Page Name Position Phone Ade, Karen Business/Contract (630) 840-4288 Arnold, Sally ES&H

  4. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  5. MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project...

    Office of Scientific and Technical Information (OSTI)

    MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Citation Details In-Document Search Title: MaRIE 1.0...

  6. MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project...

    Office of Scientific and Technical Information (OSTI)

    MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Citation Details In-Document Search Title: MaRIE 1.0 ...

  7. Residential Lighting Usage Estimate Tool, v1.0, MacOS version | Department

    Energy Savers [EERE]

    of Energy MacOS version Residential Lighting Usage Estimate Tool, v1.0, MacOS version MacOS version of the Residential Lighting Usage Estimate Tool, v1.0. File Spreadsheet More Documents & Publications Residential Lighting Usage Estimate Tool, v1.0, Windows

  8. Residential Lighting Usage Estimate Tool, v1.0, Windows version |

    Energy Savers [EERE]

    Department of Energy Windows version Residential Lighting Usage Estimate Tool, v1.0, Windows version Windows version of the Residential Lighting Usage Estimate Tool, v1.0. File Spreadsheet More Documents & Publications Residential Lighting Usage Estimate Tool, v1.0, MacOS

  9. Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Phone Technologies Reduce Risks to Eagles from Wind Turbines Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines January 10, 2013 - 2:12pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. A DOE Success Story A team of researchers led by Dr. Todd Katzner at the West Virginia University (WVU) is using a global positioning system (GPS) similar to that found in a smart phone to track movements of golden

  10. Microsoft PowerPoint - FY11 budget rollout 2-1-10 final | Department of

    Office of Environmental Management (EM)

    Energy FY11 budget rollout 2-1-10 final Microsoft PowerPoint - FY11 budget rollout 2-1-10 final PDF icon Microsoft PowerPoint - FY11 budget rollout 2-1-10 final More Documents & Publications Department of Energy FY 2007 Budget Microsoft PowerPoint - FY 2007 DOE Budget Rollout--Printer Version.ppt FY 2007 Budget Justification

  11. MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot...

    Open Energy Info (EERE)

    Neptune Renewable Energy 1 10 Scale Prototype Pilot Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappings...

  12. MHK Projects/Wave Star Energy 1 10 Scale Model Test | Open Energy...

    Open Energy Info (EERE)

    Star Energy 1 10 Scale Model Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  13. Property:Incentive/ContPhone | Open Energy Information

    Open Energy Info (EERE)

    Type String Pages using the property "IncentiveContPhone" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + (802)...

  14. New Find-a-Car App Brings Fuel Economy Right to Your Phone | Department of

    Office of Environmental Management (EM)

    Energy Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone February 12, 2016 - 2:45pm Addthis New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right

  15. V.1.0 U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    laboratory equipment 2 | P a g e March 2016 V.1.0 Activities Not Covered: The following may be proposed at the ReFUEL site but are not considered rountine operational actions. ...

  16. V.1.0 U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gathering, analysis, and dissemination 2 | P a g e March 2016 V.1.0 8. Procurement actions that would support ongoing business, operational, and research activities, such as: a. ...

  17. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project...

    Office of Scientific and Technical Information (OSTI)

    An x-ray free electron laser at up to 42-keV fundamental energy and with photon pulses down to sub-nanosecond spacing, MaRIE 1.0 is designed to meet the challenges of ...

  18. MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project:

    Office of Scientific and Technical Information (OSTI)

    Accelerating Qualification, Certification, and Assessment (Technical Report) | SciTech Connect MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Citation Details In-Document Search Title: MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Authors: Barnes, Cris William [1] + Show Author Affiliations Los Alamos National Laboratory Publication

  19. JOBS FC 1.0 (JOBS and Economic Impacts of Fuel Cells) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy JOBS FC 1.0 (JOBS and Economic Impacts of Fuel Cells) JOBS FC 1.0 (JOBS and Economic Impacts of Fuel Cells) Download presentation slides from the May 22, 2012, Fuel Cell Technologies Program webinar, "DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model." PDF icon DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model Webinar Slides More Documents & Publications DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS

  20. Microsoft Word - Compendium of Modern Grid Technologies V1.0Final_updated201.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    v1.0 NETL Modern Grid Initiative Powering our 21st-Century Economy A COMPENDIUM OF MODERN GRID TECHNOLOGIES Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability June 2007 Office of Electricity Delivery and Energy Reliability v1.0 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  1. Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage Citation Details In-Document Search Title: Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage No abstract prepared. Authors: Aspuru-Guzik, Alan ; Salomon-Ferrer, Romelia ; Austin, Brian ; Perusquia-Flores, Raul ; Griffin, Mary A. ; Oliva, Ricardo A. ; Skinner,David ; Dominik,Domin ; Lester Jr., William A. Publication Date:

  2. HyRAM V1.0 User's Manual Hannah R. Zumwalt, Katrina M. Groth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HyRAM V1.0 User's Manual Hannah R. Zumwalt, Katrina M. Groth 1 Sandia National Laboratories SAND2015-7380R, August, 2015 Contents 1. Introduction ........................................................................................................................................... 3 1.1. What is HyRAM? ......................................................................................................................... 3 1.2. Purpose of this guide

  3. RealGasBrine v1.0 option of TOUGH+ v1.5

    SciTech Connect (OSTI)

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.

  4. Table HC1-10a. Housing Unit Characteristics by Midwest Census Region,

    Gasoline and Diesel Fuel Update (EIA)

    0a. Housing Unit Characteristics by Midwest Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.8 Total .............................................................. 107.0 24.5 17.1 7.4 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- NF New England

  5. RealGasBrine v1.0 option of TOUGH+ v1.5

    Energy Science and Technology Software Center (OSTI)

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRANmore95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.less

  6. Microsoft Word - Barriers to Achieving the Modern Grid_Final_v1_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE NETL Modern Grid Initiative Powering our 21st-Century Economy BARRIERS TO ACHIEVING THE MODERN GRID Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability July 2007 Office of Electricity Delivery and Energy Reliability V1.0 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

  7. Microsoft Word - Modern Grid Benefits_Final_v1_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL Modern Grid Initiative Powering our 21st-Century Economy MODERN GRID BENEFITS Conducted by National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability August 2007 Office of Electricity Delivery and Energy Reliability V1.0 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees,

  8. RealGasBrine v1.0 option of TOUGH+ v1.5

    Energy Science and Technology Software Center (OSTI)

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRANmore » 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.« less

  9. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  10. DOE Headquarters Contact Information: Employee Concerns Program Patricia Zarate Phone:

    Broader source: Energy.gov (indexed) [DOE]

    DOE Headquarters Contact Information: Employee Concerns Program Patricia Zarate Phone: 202-586-2248 Fax: 202-586-3075 E-mail: patricia.zarate@hq.doe.gov Mailing Address: U.S. Department of Energy Employee Concerns Program 1000 Independence AVE, SW Room 5B-168, ED-4 Washington, DC 20585 Contractor Whistleblower Protection Program (Part 708) Janet Freimuth 202-287-1439 janet.freimuth@hq.doe.gov Office of Conflict Prevention and Resolution Pam Pontillo 202-586-4002 pamela.pontillo@hq.doe.gov Office

  11. DOE Headquarters Contact Information: Employee Concerns Program Patricia Zarate Phone:

    Office of Environmental Management (EM)

    Employee Concerns Program http://energy.gov/diversity 1 DOE Headquarters Contact Information: Employee Concerns Program Patricia Zarate Phone: 202-586-2248 Fax: 202-586-3075 E-mail: patricia.zarate@hq.doe.gov Mailing Address: U.S. Department of Energy Employee Concerns Program 1000 Independence AVE, SW Room 5B-168, ED-4 Washington, DC 20585 Contractor Whistleblower Protection Program (Part 708) Janet Freimuth 202-287-1439 janet.freimuth@hq.doe.gov Office of Conflict Prevention and Resolution

  12. Special Workshop: Building Location Aware Apps on the iPhone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Workshop: Building Location Aware Apps on the iPhone Special Workshop: Building Location Aware Apps on the iPhone WHEN: Jul 17, 2015 11:00 AM - 2:00 PM WHERE: Time Out Pizzeria 1350 Central Ave, Los Alamos, USA SPEAKER: Mike Ham CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login iPhone App Development Class Event Description Learn to build an iPhone app that uses U.S. Global Positioning System (GPS) data! This three-hour course will cover how to build an

  13. Global Deployment of Geothermal Energy Using a New Characterization in GCAM 1.0

    SciTech Connect (OSTI)

    Hannam, Phil; Kyle, G. Page; Smith, Steven J.

    2009-09-01

    This report documents modeling of geothermal energy in GCAM 1.0 (formerly MiniCAM) from FY2008 to FY2009, from the inputs to the U.S. Climate Change Technology Program report (Clarke et al., 2008a) to the present representation, which will be used in future work. To demonstrate the newest representation, we describe the procedure and outcome of six model runs that illustrate the potential role of geothermal energy in the U.S. and global regions through different futures climate policy, development and deployment of engineered, or enhanced, geothermal systems (EGS), and availability of other low-cost, low-carbon electricity generation technologies such as nuclear energy and carbon capture and storage (CCS).

  14. Transition-metal and metalloid substitutions in L1(0)-ordered FeNi

    SciTech Connect (OSTI)

    Manchanda, P; Skomski, R; Bordeaux, N; Lewis, LH; Kashyap, A

    2014-05-07

    The effect of atomic substitutions on the magnetization, exchange, and magnetocrystalline anisotropy energy of L1(0)-ordered FeNi (tetrataenite) is computationally investigated. The compound naturally occurs in meteorites but has attracted renewed attention as a potential material for permanent magnets, and elemental additives will likely be necessary to facilitate the phase formation. Our density functional theory calculations use the Vienna ab-initio simulation package, applied to 4-atom unit cells of Fe2XNi and 32-atom supercells (X = Al, P, S, Ti, V, Cr, Mn, Fe, Co). While it is found that most additives deteriorate the magnetic properties, there are exceptions: excess substitutional Fe and Co additions improve the magnetization, whereas Cr, S, and interstitial B additions improve the magnetocrystalline anisotropy. (C) 2014 AIP Publishing LLC.

  15. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: Water heater Lights Dishwasher Range Microwave Refrigerator Internal gains (plug loads) House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  16. MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff...

    Office of Scientific and Technical Information (OSTI)

    What it would be, the mission need motivation, the scientific challenge, and the current ... DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los ...

  17. CaveMan Enterprise version 1.0 Software Validation and Verification.

    SciTech Connect (OSTI)

    Hart, David

    2014-10-01

    The U.S. Department of Energy Strategic Petroleum Reserve stores crude oil in caverns solution-mined in salt domes along the Gulf Coast of Louisiana and Texas. The CaveMan software program has been used since the late 1990s as one tool to analyze pressure mea- surements monitored at each cavern. The purpose of this monitoring is to catch potential cavern integrity issues as soon as possible. The CaveMan software was written in Microsoft Visual Basic, and embedded in a Microsoft Excel workbook; this method of running the CaveMan software is no longer sustainable. As such, a new version called CaveMan Enter- prise has been developed. CaveMan Enterprise version 1.0 does not have any changes to the CaveMan numerical models. CaveMan Enterprise represents, instead, a change from desktop-managed work- books to an enterprise framework, moving data management into coordinated databases and porting the numerical modeling codes into the Python programming language. This document provides a report of the code validation and verification testing.

  18. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  19. Motivation and Design of the Sirocco Storage System Version 1.0.

    SciTech Connect (OSTI)

    Curry, Matthew Leon; Ward, H. Lee; Danielson, Geoffrey Charles

    2015-07-01

    Sirocco is a massively parallel, high performance storage system for the exascale era. It emphasizes client-to-client coordination, low server-side coupling, and free data movement to improve resilience and performance. Its architecture is inspired by peer-to-peer and victim- cache architectures. By leveraging these ideas, Sirocco natively supports several media types, including RAM, flash, disk, and archival storage, with automatic migration between levels. Sirocco also includes storage interfaces and support that are more advanced than typical block storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with the same interface. It also provides several levels of transactional data updates within a single storage command, including full ACID-compliant updates. This transaction support extends to updating several objects within a single transaction. Further support is provided for con- currency control, enabling greater performance for workloads while providing safe concurrent modification. By pioneering these and other technologies and techniques in the storage system, Sirocco is poised to fulfill a need for a massively scalable, write-optimized storage system for exascale systems. This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/ sirocco .

  20. Delta Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Delta Energy Group Address: 21 Omega Drive, Delta Campus Place: Brattleboro, Vermont Zip: 05301 Sector: Efficiency Number of Employees: 1-10 Year Founded: 2008 Phone Number:...

  1. General Biomass Company | Open Energy Information

    Open Energy Info (EERE)

    Address: 2906 Central Street, 134 Place: Evanston, Illinois Zip: 60201 Sector: Biofuels Product: Cellulase enzymes Number of Employees: 1-10 Year Founded: 1998 Phone Number:...

  2. Czero, Inc | Open Energy Information

    Open Energy Info (EERE)

    United States Zip: 80524 Region: Rockies Area Sector: Services Product: Engineering Services Number of Employees: 1-10 Year Founded: 2007 Phone Number: (719) 331-9662...

  3. Pfhotonika | Open Energy Information

    Open Energy Info (EERE)

    Pfhotonika Address: 9149 N. 109th Place Place: Scottsdale, Arizona Zip: 85259 Sector: Hydrogen Product: Pfhotonika Number of Employees: 1-10 Year Founded: 2002 Phone Number:...

  4. Appro-Tec Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Siloam Springs, Arkansas Zip: 72761 Sector: Renewable energy Product: Solar, Wind Feasibility Studies Number of Employees: 1-10 Year Founded: 2009 Phone Number: (858) 8-SOLAR-8...

  5. Solar Maid Ventura County | Open Energy Information

    Open Energy Info (EERE)

    California Region: Southern CA Area Sector: Solar Product: Solar Operations and Maintenance Number of Employees: 1-10 Year Founded: 2012 Phone Number: 661-575-5212 Website:...

  6. PRV PERFORMANCE | Open Energy Information

    Open Energy Info (EERE)

    Golden, CO Zip: 80403-2183 Region: Rockies Area Sector: Vehicles Product: Venturi Induction for Automobiles Number of Employees: 1-10 Year Founded: 2003 Phone Number:...

  7. Heliotricity | Open Energy Information

    Open Energy Info (EERE)

    TN12 7NB Sector: Renewable Energy Product: Solar PV Installations - Commercial, Agricultural & Domestic Number of Employees: 1-10 Year Founded: 2011 Phone Number: +441892 882...

  8. Deerpath Energy | Open Energy Information

    Open Energy Info (EERE)

    owns and operates commercial-scale, community-integrated, clean power projects using small wind technology Number of Employees: 1-10 Year Founded: 2008 Phone Number: 7816314700...

  9. MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff Member for U.

    Office of Scientific and Technical Information (OSTI)

    S. Senator Martin Heinrich (D-NM) (Technical Report) | SciTech Connect MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff Member for U. S. Senator Martin Heinrich (D-NM) Citation Details In-Document Search Title: MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff Member for U. S. Senator Martin Heinrich (D-NM) At the request of Katherine Richardson-McDaniel, Staff Member to U.S. Senator Martin Heinrich (D-NM), a high-level briefing was requested about MaRIE 1.0, the

  10. U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addresses | Department of Energy 39: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses August 20, 2012 - 7:00am Addthis PROBLEM: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses PLATFORM: Version(s): 6 beta 4 and prior versions ABSTRACT: A remote user can spoof SMS source addresses. Reference LINKS: SecurityTracker Alert ID: 1027410 Apple.com PCMag.com

  11. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  12. U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A remote user can send an SMS message with a specially crafted User Data Header (UDH) value that specifies an alternate reply address. The recipient's iPhone will display the...

  13. Special Workshop: Building Location Aware Apps on the iPhone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and run an app: 1. A modern Apple computer with wifi running the xCode program (free download), 2. An iPhone with a charging cable. However, these items are not required....

  14. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  15. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  16. updated_supplemental_lists_1k-2k-3j-_1-10-2012.xlsx | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    k-2k-3j-_1-10-2012.xlsx More Documents & Publications updated_supplemental_lists_1l-2l-3k-_02-10-2012.xlsx updated_supplemental_lists_1n-2n-3m_07-06-2012.xlsx updated_supplemental_lists_1j-2j-3i_12-22-2011

  17. SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-15

    "SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combinemore » modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combined with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less

  18. NC Sustainable Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: NC Sustainable Energy Association Address: PO Box 6465 Place: Raleigh Zip: 27628 Number of Employees: 1-10 Year Founded: 1978 Phone...

  19. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel

  20. T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input.

  1. MAUIV1.0

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    MAUI is a software system that allows design analysts to access computational services through a graphical user interface. Services that may be made accessible through MAUI could include tools for design space exploration and optimization. Additionally, existing simulation codes may be integrated into the MAUI system such that input to the simulation code would be entered through the graphical user interface, and the input data would be propagated to the simulation code on a localmore » or remote machine. MAUI automatically produces a graphical user interface from an XML description of both the graphical user interface formatting, and the input data objects required by the underlying software service. This allows for simple generation of a common look-and-feel interface to a variety of simulation and analysis software. The graphical user interface is generated from Java Swing components.« less

  2. GOSOV1.0

    Energy Science and Technology Software Center (OSTI)

    2000-08-16

    The Genetic Optimization Software Object is a 32-bit object. It is delivered as a Dynamic Link Library (DLL) and runs under all 32-bit versions of Microsoft Windows. Genetic Optimization refers to an optimization scheme used to solve large combinatorial problems using "genetic" algorithms. The DLL is a software object, which means that it must be instantiated by a host application before it's properties and methods can be used. to perform an optimization analysis, the hostmore » application must also include a user-supplied process model.« less

  3. BABELV1.0

    Energy Science and Technology Software Center (OSTI)

    2001-11-26

    Babel reads binary data representing a wave-propagation signal in a drill pipe generated by the Sandia National Laboratories, Acoustic Telemetry Tool. Babel then processes that data to extract, display, and store the information modulated on that signal.

  4. CABRAKAN1.0

    Energy Science and Technology Software Center (OSTI)

    2007-05-15

    Cabrakan is a software framework designed for cognitive modeling, machine learning, and pattern recognition. This software has a graphical user interface that can be used to visualize graphical structures and build models graphically. Cabrakan models are created using with a collection of application-specific modules, which can be reused from previous applications or designed for a particular algorithm to incorporate.

  5. CLAROV1.0

    Energy Science and Technology Software Center (OSTI)

    2004-06-01

    CLARO is a highly customizable graphical user interface package built on QT and Python. It has basic functions useful for the generation, display and manipulation of geometry and mesh data. This includes picking and CAD-like graphics and rotations. The menus presented to the user can be quickly customized and modules that use CLARO dynamically loaded at runtime.

  6. SALINAS1.0

    Energy Science and Technology Software Center (OSTI)

    2002-10-01

    Salinas isa general purpose finite element package for structural dynamics analysis, written pecifically for distributed memory computers. It has been used for the analysis of structures ranging MEMs, to weapons components to aircraft carriers. The package provides eigenanalysis, and implicit linear and nonlinear transient and static analysis of structures, and incorporates sensitivity analysis. A full range of structural elements is provided.

  7. SIGPRODV1.0

    Energy Science and Technology Software Center (OSTI)

    001794MLTPL00 Signature Product Code for Predicting Protein-Protein Interactions http://www.cs.sandia.gov/~smartin/sandia_only/

  8. GBS 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-09-30

    The Umbra gbs (Graph-Based Search) library provides implementations of graph-based search/planning algorithms that can be applied to legacy graph data structures. Unlike some other graph algorithm libraries, this one does not require your graph class to inherit from a specific base class. Implementations of Dijkstra's Algorithm and A-Star search are included and can be used with graphs that are lazily-constructed.

  9. CHARICE1.0

    Energy Science and Technology Software Center (OSTI)

    2007-10-25

    CHARICE analyzes velcity waveform data from ramp-wave experiments to determine a sample material's quasi-isentropic loading response in stress and density. A graphical interface handles all user interaction. CHARICE uses a generalized ASCII file format for input waveform data, obviating the need for pre-processing of these data. Capabilities include calculation of uncertainty bounds, correction for non-uniform baseplate thickness, and user-provided ramp-wave loading response for interferometer window materials. Output consists of particle velocity, lagrangian wave speed, density,more » and stress along the loading quasi-isentrope, as well as in-situ time istory for any of these variables at the front or back surface of each sample.« less

  10. DENSIFYV1.0

    Energy Science and Technology Software Center (OSTI)

    2000-02-02

    This code is for the prediction of microstructural evolution during solid state sintering. The mechanism simulated in this code are curvature-driven grain growth, pore migration by surface diffusion, vacancy formation, grain boundary migration of vacancies and vacancy annihilation.

  11. 1.0

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

  12. Big Numbers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of equipment, we

  13. Austin Energy Dials Down Home Energy Use With Smart Phones | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Austin Energy Dials Down Home Energy Use With Smart Phones Austin Energy Dials Down Home Energy Use With Smart Phones bbrn_stories_austin_energy_9-2-14.jpg Better Buildings Residential Network member Austin Energy used summer's unpredictable weather patterns as an opportunity to remind Austin, Texas, residents of its Power PartnerSM Thermostat incentive. Customers can receive an $85 rebate for one of several "smart" thermostats that they can control remotely from a smart

  14. Metallic glass could make your next cell phone harder to break

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metallic glass could make your next cell phone harder to break Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Metallic glass could make your next cell phone harder to break Lab researcher works to rearrange the atoms in metals April 1, 2014 A piece of metallic glass that has been bent around onto itself with a 1mm radius and glued into place. It would spring back to a flat piece if the glue

  15. TIME-RESOLVED 1-10 keV CRYSTAL SPECTROMETER FOR THE Z MACHINE AT SANDIA NATIONAL LABORATORIES

    SciTech Connect (OSTI)

    D. V. Morgan; S. Gardner; R. Liljestrand; M. Madlener; S. Slavin; M. Wu

    2003-06-01

    We have designed, fabricated, calibrated, and fielded a fast, time-resolved 1-10 keV crystal spectrometer to observe the evolution of wire pinch spectra at the Z machine at Sandia National Laboratories. The instrument has two convex cylindrical crystals (PET and KAP). Both crystals Bragg reflect x-rays into an array of ten silicon diodes, providing continuous spectral coverage in twenty channels from 1.0 to 10 keV. The spectral response of the instrument has been calibrated from 1.0 to 6.3 keV at beamline X8A at the National Synchrotron Light Source. The time response of the 1-mm2 silicon detectors was measured with the Pulsed X-ray Source at Bechtel Nevada's Los Alamos Operations, where 2-nanosecond full-width half-maximum (FWHM) waveforms with 700-picosecond rise times typically were observed. The spectrometer has been fielded recently on several experimental runs at the Z Machine. In this paper, we present the time-resolved spectra resulting from the implosions of double-nested tungsten wire arrays onto 5-mm diameter foam cylinders. We also show the results obtained for a double-nested stainless steel wire array with no target cylinder. The spectrometer was located at the end of a 7.1-meter beamline on line-of sight (LOS)21/22, at an angle 12{sup o} above the equatorial plane, and was protected from the debris field by a customized dual-slit fast valve. The soft detector channels below 2.0 keV recorded large signals at pinch time coinciding with signals recorded on vacuum x-ray diodes (XRDs). On experiment Z993, the spectrometer channels recorded a second pulse with a hard x-ray emission spectrum several nanoseconds after pinch time.

  16. DFT structural investigation on Fe(1,10-phenanthroline){sub 2} (NCS){sub 2} spin crossover molecule

    SciTech Connect (OSTI)

    Chiş, V.; Isai, R.; Droghetti, A.; Rungger, I.; Sanvito, S.; Morari, C.

    2013-11-13

    Understanding the coupling of spin crossover molecules to metallic surfaces is a key ingredient for harnessing of their remarkable features for future spintronics applications. Here we investigate the structural and electronic properties of deformed Fe(1,10-phenanthroline){sub 2} (NCS){sub 2} molecules, mimicking the possible effects arising from the interaction with a metallic substrate. We find a relatively large structural flexibility for this molecule, accompanied by small changes in their total energy. This suggests that the spin crossover activity can be modulated by the interaction with the substrate.

  17. GREEN BANK TELESCOPE ZPECTROMETER CO(1-0) OBSERVATIONS OF THE STRONGLY LENSED SUBMILLIMETER GALAXIES FROM THE HERSCHEL ATLAS

    SciTech Connect (OSTI)

    Frayer, D. T.; Maddalena, R.; Harris, A. I.; Baker, A. J.; Ivison, R. J.; Smail, Ian; Negrello, M.; Aretxaga, I.; Baes, M.; Birkinshaw, M.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Cooray, A.; Dannerbauer, H.

    2011-01-10

    The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) has uncovered a population of strongly lensed submillimeter galaxies (SMGs). The Zpectrometer instrument on the Green Bank Telescope (GBT) was used to measure the redshifts and constrain the masses of the cold molecular gas reservoirs for two candidate high-redshift lensed sources. We derive CO(1-0) redshifts of z = 3.042 {+-} 0.001 and z = 2.625 {+-} 0.001, and measure molecular gas masses of (1-3) x10{sup 10} M{sub sun}, corrected for lens amplification and assuming a conversion factor of {alpha} = 0.8 M{sub sun}( K km s{sup -1} pc{sup 2}){sup -1}. We find typical L(IR)/L'(CO) ratios of 120 {+-} 40 and 140 {+-} 50 L{sub sun}( K km s{sup -1} pc{sup 2}){sup -1}, which are consistent with those found for local ultraluminous infrared galaxies (ULIRGs) and other high-redshift SMGs. From analysis of published data, we find no evidence for enhanced L(IR)/L'(CO(1-0)) ratios for the SMG population in comparison to local ULIRGs. The GBT results highlight the power of using the CO lines to derive blind redshifts, which is challenging for the SMGs at optical wavelengths given their high obscuration.

  18. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    SciTech Connect (OSTI)

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  19. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    SciTech Connect (OSTI)

    Bogdanovi?, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau E-mail: rcheng@gatech.edu

    2014-06-20

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  20. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    SciTech Connect (OSTI)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.

  1. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  2. Microstructure and magnetic properties of (001) textured L1(0) FePt films on amorphous glass substrate

    SciTech Connect (OSTI)

    Speliotis, T; Varvaro, G; Testa, AM; Giannopoulos, G; Agostinelli, E; Li, W; Hadjipanayis, G; Niarchos, D

    2015-05-15

    L1(0) FePt thin films with an island-like morphology and magnetic perpendicular anisotropy were grown at low temperature (300 < T-dep< 375 degrees C) by magnetron sputtering on Hoya glass substrates using a 30-nm thick Cr (2 0 0) underlayer. An MgO buffer layer with a thickness of 2 nm was used to inhibit the diffusion from the Cr underlayer and promote the growth of (0 0 1) oriented L1(0) FePt films by inducing an in-plane lattice distortion. By varying the substrate temperature and the Ar sputter pressure (3.5 < P-Ar< 15 mTorr) during the deposition, the degree of chemical order, the microstructure and the magnetic properties were tuned and the best properties in term of squareness ratio (M-r/M-s similar to 0.95) and coercive field (H-c similar to 14 kOe) were observed for films deposited at T-dep = 350 degrees C and P-Ar= 5 mTorr, due to the appearance of a tensile strain, which favors the perpendicular anisotropy. The analysis of the angular dependence of remanent magnetization curves on the optimized sample suggests that the magnetization reversal is highly incoherent due to the inter-island interactions. Our results provide useful information on the low temperature growth of FePt films with perpendicular anisotropy onto glass substrates, which are relevant for a variety of technological applications, such as magnetic recording and spintronic devices. (C) 2015 Elsevier B.V. All rights reserved.

  3. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  4. PRESS HARD YOU ARE MAKING MULTIPLE COPIES B. MRO Name, Address, Phone No. and Fax No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRESS HARD - YOU ARE MAKING MULTIPLE COPIES B. MRO Name, Address, Phone No. and Fax No. A. Employer Name, Address, I.D. No. STEP 5A: PRIMARY SPECIMEN REPORT - COMPLETED BY TEST FACILITY NEGATIVE POSITIVE for: Marijuana Metabolite (9-THCA) 6- Acetylmorphine Methamphetamine MDMA REJECTED FOR TESTING ADULTERATED SUBSTITUTED INVALID RESULT PCP Codeine MDEA MDA Amphetamine Morphine DILUTE Cocaine Metabolite (BZE) STEP 5b: COMPLETED BY SPLIT TESTING LABORATORY X (Print) Certifying Scientist's Name

  5. Agency Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone

    Energy Savers [EERE]

    Agency Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone Department of the Interior Sarah Harris Chief of Staff to the Assist Secretary - Indian Affairs Tribalconsultation@bia.gov (202) 208-7163 Department of Justice Tracy Toulou Director, Office of Tribal Justice OTJ@usdoj.gov (202) 514-8812 Department of State Reta Lewis Special Representative for Global Intergovernmental Affairs tribalconsultation@state.gov (202) 647-7710 Department of the Treasury Alexander

  6. PS1-10jh: The disruption of a main-sequence star of near-solar composition

    SciTech Connect (OSTI)

    Guillochon, James; Manukian, Haik; Ramirez-Ruiz, Enrico

    2014-03-01

    When a star comes within a critical distance to a supermassive black hole (SMBH), immense tidal forces disrupt the star, resulting in a stream of debris that falls back onto the SMBH and powers a luminous flare. In this paper, we perform hydrodynamical simulations of the disruption of a main-sequence star by an SMBH to characterize the evolution of the debris stream after a tidal disruption. We demonstrate that this debris stream is confined by self-gravity in the two directions perpendicular to the original direction of the star's travel and as a consequence has a negligible surface area and makes almost no contribution to either the continuum or line emission. We therefore propose that any observed emission lines are not the result of photoionization in this unbound debris, but are produced in the region above and below the forming elliptical accretion disk, analogous to the broad-line region (BLR) in steadily accreting active galactic nuclei. As each line within a BLR is observationally linked to a particular location in the accretion disk, we suggest that the absence of a line indicates that the accretion disk does not yet extend to the distance required to produce that line. This model can be used to understand the spectral properties of the tidal disruption event PS1-10jh, for which He II lines are observed, but the Balmer series and He I are not. Using a maximum likelihood analysis, we show that the disruption of a main-sequence star of near-solar composition can reproduce this event.

  7. The structure of CO{sub 2} hydrate between 0.7 and 1.0 GPa

    SciTech Connect (OSTI)

    Tulk, C. A.; Molaison, J. J.; Machida, S.; Klug, D. D.; Lu, H.; Guthrie, M.

    2014-11-07

    A deuterated sample of CO{sub 2} structure I (sI) clathrate hydrate (CO{sub 2}8.3 D{sub 2}O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO{sub 2} hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai et al. [J. Phys. Chem. 133, 124511 (2010)] and Bollengier et al. [Geochim. Cosmochim. Acta 119, 322 (2013)], but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO{sub 2} molecules filling the water channels. This CO{sub 2}+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts a MH-III like filled ice structure with considerable disorder of the orientations of the CO{sub 2} molecule. Furthermore, the disorder appears to be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al., our neutron diffraction data show that the filled ice phase can be recovered to ambient pressure (0.1?MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150?K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO{sub 2} hydrate transforms directly from the sI form to the filled ice structure.

  8. BLIND DETECTIONS OF CO J = 1-0 IN 11 H-ATLAS GALAXIES AT z = 2.1-3.5 WITH THE GBT/ZPECTROMETER

    SciTech Connect (OSTI)

    Harris, A. I.; Baker, A. J.; Frayer, D. T.; Smail, Ian; Swinbank, A. M.; Riechers, D. A.; Van der Werf, P. P.; Auld, R.; Dariush, A.; Eales, S.; Baes, M.; Bussmann, R. S.; Buttiglione, S.; De Zotti, G.; Cava, A.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Dunne, L.; Dye, S. E-mail: ajbaker@physics.rutgers.edu; and others

    2012-06-20

    We report measurements of the carbon monoxide ground state rotational transition ({sup 12}C{sup 16}O J = 1-0) with the Zpectrometer ultrawideband spectrometer on the 100 m diameter Green Bank Telescope. The sample comprises 11 galaxies with redshifts between z = 2.1 and 3.5 from a total sample of 24 targets identified by Herschel-ATLAS photometric colors from the SPIRE instrument. Nine of the CO measurements are new redshift determinations, substantially adding to the number of detections of galaxies with rest-frame peak submillimeter emission near 100 {mu}m. The CO detections confirm the existence of massive gas reservoirs within these luminous dusty star-forming galaxies (DSFGs). The CO redshift distribution of the 350 {mu}m selected galaxies is strikingly similar to the optical redshifts of 850 {mu}m-selected submillimeter galaxies in 2.1 {<=} z {<=} 3.5. Spectroscopic redshifts break a temperature-redshift degeneracy; optically thin dust models fit to the far-infrared photometry indicate characteristic dust temperatures near 34 K for most of the galaxies we detect in CO. Detections of two warmer galaxies, and statistically significant nondetections, hint at warmer or molecule-poor DSFGs with redshifts that are difficult to determine from Herschel-SPIRE photometric colors alone. Many of the galaxies identified by H-ATLAS photometry are expected to be amplified by foreground gravitational lenses. Analysis of CO linewidths and luminosities provides a method for finding approximate gravitational lens magnifications {mu} from spectroscopic data alone, yielding {mu} {approx} 3-20. Corrected for magnification, most galaxy luminosities are consistent with an ultraluminous infrared galaxy classification, but three are candidate hyper-LIRGs with luminosities greater than 10{sup 13} L{sub Sun }.

  9. Texas Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Texas Natural Gas Number of Commercial Consumers (Number of Elements...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. New York Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. New York Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. Indiana Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  17. Document Number Q0029500 Introduction

    Office of Legacy Management (LM)

    Introduction 1.0 Introduction This Remedial Investigation (RI) AddendumRocused Feasibility Study (FFS) report updates the 1998 final RI and presents the results of a FFS conducted for Operable Unit (OU) 111, contaminated surface water and ground water, of the Monticello Mill Tailings Site (MMTS). These documents are combined to promote better reference between the updated RI information and the remedy comparisons of the FFS. This document is prepared by the U.S. Department of Energy (DOE) Grand

  18. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas

  19. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas Industrial

  20. Adirondack North Country Association | Open Energy Information

    Open Energy Info (EERE)

    Street, Suite 201 Place: Saranac Lake, New York Zip: 12946 Region: Northeast - NY NJ CT PA Area Number of Employees: 1-10 Year Founded: 1954 Phone Number: 518 891 6200 Website:...

  1. Bioten Power and Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Group Address: 2725 Russell Rd Place: Utica, KY Zip: 42376 Sector: Biomass Product: Gasification technology Number of Employees: 1-10 Year Founded: 2008 Phone Number: 270-275-9164...

  2. VerdeLogix | Open Energy Information

    Open Energy Info (EERE)

    80910 Region: Rockies Area Sector: Efficiency Product: VL 100 Energy Gatway, VL 200 Portal Number of Employees: 1-10 Year Founded: 2008 Phone Number: 719 229 1648 Website:...

  3. Genifuel | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah Zip: 84109 Region: Rockies Area Sector: Biofuels Product: Renewable Natural Gas Number of Employees: 1-10 Year Founded: 2006 Phone Number: 801-467-9976...

  4. Integrated Energy Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    11900 College Blvd, Ste 210 Place: Overland Park, Kansas Zip: 66210-3939 Product: Bio-Coal TM Technology Number of Employees: 1-10 Year Founded: 2009 Phone Number: +1 913...

  5. Enginuity Energy, LLC | Open Energy Information

    Open Energy Info (EERE)

    17050 Region: Northeast - NY NJ CT PA Area Sector: Biomass Product: Power Generation and Energy Conservation Number of Employees: 1-10 Year Founded: 2007 Phone Number: 717 796...

  6. InfiniRel Corporation | Open Energy Information

    Open Energy Info (EERE)

    Ste 209 Place: Frisco, Texas Zip: 75034 Region: Texas Area Product: Condition-Based Maintenance System Number of Employees: 1-10 Year Founded: 2009 Phone Number: 512-299-6674...

  7. Ardesta | Open Energy Information

    Open Energy Info (EERE)

    201 South Main Street, 10th Floor Place: Ann Arbor, Michigan Zip: 48104 Product: Venture capital. Number of Employees: 1-10 Year Founded: 2000 Phone Number: (734) 994-7000...

  8. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    SciTech Connect (OSTI)

    2009-10-28

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africas most successful mobile network operators, will talk about Mobile phones and Africa: a success story. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss Citizen Problem Solving. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africas most successful companies with operations in 15 countries, covering more than a third of the continents population and investing more than US$750 million in Africa. The company was sold to MTC Kuwait in 2005 for $3.4billion. In 2006 Dr Ibrahim established the Mo Ibrahim Foundation to support great African leadership. The Foundation focuses on two major initiatives to stimulate debate around, and improve the quality of, governance in Africa. The Ibrahim Prize for Achievement in African Leadership recognises and celebrates excellence; and the Ibrahim Index of African Governance provides civil society with a comprehensive and quantifiable tool to promote government accountability. Dr Ibrahim is also Founding Chairman of Satya Capital Ltd, an investment company focused on opportunities in Africa. Dr Ibrahim has been awarded an Honorary Doctorate by the University of Londons School of Oriental and African Studies, the University of Birmingham and De Montfort University, Leicester as well as an Honorary Fellowship Award from the London Business School. He has also received the Chairmans Award for Lifetime Achievement from the GSM Association in 2007 and the Economists Innovation Award 2007 for Social & Economic Innovation. In 2008 Dr Ibrahim was presented with the BNP Paribas Prize for Philanthropy, and also listed by TIME magazine as one of the 100 most influential people in the world. Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive Abstract American playwright Damien Runyon (Guys and Dolls) once remarked, "the race is not always to the swift, nor the victory to the strong -- but that IS how you bet." Not only does a system of race handicapping follow from this logic, but the whole notion of expertise and technical qualifications. Such 'credentials' allow one to 'bet' on who might most likely solve a difficult challenge, whether as consultant, contractor or employee. Of course, the approach would differ if one were allowed to bet AFTER the race. When such systems came into broad use, i.e., chat rooms, usenets, innocentive, etc., and were subsequently studied, it was often found that the greate

  9. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  10. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  11. MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff Member for U. S. Senator Martin Heinrich (D-NM)

    SciTech Connect (OSTI)

    Barnes, Cris William

    2015-02-24

    At the request of Katherine Richardson-McDaniel, Staff Member to U.S. Senator Martin Heinrich (D-NM), a high-level briefing was requested about MaRIE 1.0, the Matter-Radiation Interactions in Extremes effort at Los Alamos National Laboratory. What it would be, the mission need motivation, the scientific challenge, and the current favorable impact on both programs and people are shown in viewgraph form.

  12. CTrilinos v 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-04-28

    CTrilinos provides a C language interface to a subset of Trilinos. The interface hides the object-oriented nature of Trilinos by allowing these objects to be acted upon using a set of three integers that uniquely identify the object. No pointers to the underlying objects are made available for direct manipulation, protecting against segmentation faults. CTrilinos serves as a base layer over which the ForTrilinos linking layer operates, facilitating the use Trilinos from object-oriented Fortran.CTrilinos canmore » be applied wherever the supported underlying Trilinos packages can be applied.« less

  13. FDEM v.1.0

    SciTech Connect (OSTI)

    2011-05-27

    Algorithm FOEM numerically solves a system of six, coupled, first-order, linear, inhomogeneous partial differential equations (called the "EH-system?) with an explicit, time-domain, finite-difference (FD) The six dependent variables three electric field vector components and three magnetic field FOEM vector components) are stored on staggered spatial and temporal grids. Discrete FO operators approximating the partial derivatives possess 2nd-order accuracy in time and Nth-order accuracy in space. The 3D spatial grid is rectangular, and grid intervals are uniform in each coordinate direction. FD formulae for updating the wavefield variables are appropriately non-dimensionalized and normalized so that single-precision arithmetic calculations yield adequate accuracy. This software will be used to generate electromagnetic responses for typical geological/geophysical models of interest in the petroleum, mining, geotechnical, geothermal, hydrological, environmental assessment, and underground storage industries. Additionally, US government agencies (including the military) involved in monitoring of explosions (chemical or nuclear) or remote surveillance of underground facilities may be interested in using algorithm FOEM. Finally, this software may be of use to organizations involved in fundamental research and applications development in the area of electromagnetic wave propagation (e.g .? national laboratories, academic departments. industry).

  14. NII Simulator 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-02

    The software listed here is a simulator for SAIC P7500 VACIS non intrusive inspection system. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed to simulate the P7500 that the Second Line of Defense communications software system must interface with. The primary use of this simulator ismore » for testing of both Sandia developed and DOE contractor developed software.« less

  15. ZOLTAN Ver.1.0

    Energy Science and Technology Software Center (OSTI)

    2000-02-08

    Zoltan is a dynamic load-balancing library for parallel applications. Zoltan redistributes computational work on-the-fly, as an application is running, in an attempt to minimize processor idle time and maximize computational efficiency. Zoltan's object-oriented interface enables the library to be used by a variety of different applications without limiting the data structures that can be used by the applications. The library contains a suite of algorithms that are all accessed through the same interface. Thus, applicationmore » developers can easily experiment with different algorithms to find those that are most appropriate to their applications. Likewise, algorithm developers can use Zoltan as a test-bed for new algorithm development and compare performance of new algorithms to the methods exiting in Zoltan.« less

  16. Poblano v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-11

    Poblano is a Matlab toolbox of large-scale algorithms for nonlinear optimization. The algorithms in Poblano require only first-order derivative information (e.g., gradients for scalar-valued objective functions), and therefore can scale to very large problems [6].Poblano is a set of general purpose methods for solving unconstrained nonlinear optimization methods. It has been applied to standard test problems covering a range of application areas. The driving application for Poblano development has been tensor decompositions in data analysismore » applications (bibliometric analysis, social network analysis, chemometrics, etc.) [1].« less

  17. Gibraltar v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-11-18

    Gibraltar is a library and associated test suite which performs Reed-Solomon coding and decoding of data buffers using graphics processing units which support NVIDIA's CUDA technology. This library is used to generate redundant data allowing for recovery of lost information. For example, a user can generate m new blocks of data from n original blocks, distributing those pieces over n+m devices. If any m devices fail, the contents of those devices can be recovered frommore » the contents of the other n devices, even if some of the original blocks are lost. This is a generalized description of RAID, a technique for increasing data storage speed and size.« less

  18. Entity- Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    This package contains classes that capture high-level aspects of characters and vehicles. Vehicles manage seats and riders. Vehicles and characters now can be configured to compose different behaviors and have certain capabilities, by adding them through xml data. These behaviors and capabilities are not included in this package, but instead are part of other packages such as mobility behavior, path planning, sight, sound. Entity is not dependent on these other packages. This package also containsmore » the icons used for Umbra applications Dante Scenario Editor, Dante Tabletop and OpShed. This assertion includes a managed C++ wrapper code (EntityWrapper) to enable C# applications, such as Dante Scenario Editor, Dante Tabletop, and OpShed, to incorporate this library.« less

  19. Tifpack v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-11

    A package for computing and applying algebraic preconditioners in the context of preconditioned iterative methods. It is related to the existing Ifpack package in Trilinos but provides support for template scalar and ordinal types and explicitly relies on Tpetra and Kokkos instead of Epetra. Algebraic preconditioners are used by iterative solvers as solution method in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization, and uncertainty quantification.

  20. FEASTPACK v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2013-12-19

    The software implements the generative graph algorithm described in the following reference: T. G. Kolda, A. Pinar, T. Plantenga and C. Seshadhri. A Scalable Generative Graph Model with Community Structure, arXiv:1302.6636, March 2013, http:l/arxiv.org/abs/1302.6636. The software also implements the clustering coefficient algorithms described in C. Seshadhri, A. Pinar and T. G. Kolda. Triadic Measures on Graphs: The Power of Wedge Sampling, in Proc. 2013 SIAM International Conference on Data Mining {SDM), May 2013.

  1. Stokhos v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-11-09

    A Trilinos package for applying stochastic Galerkin uncertainty quantification methods to large-scale C++ application codes, primarily stochastic partial differential equations. Stokhos is intended for use in estimating uncertainties for general scientific computations and is based on published algorithms. It provides no capability for implementing those computations itself. Estimating uncertainties and errors from solution algorithms or simulations, primarily simulations of partial differential equations, arising from uncertainties or errors in solution algorithm or simulation input data, includingmore » statistical moments, probabilities, and coefficients of variation.« less

  2. FDEM v.1.0

    Energy Science and Technology Software Center (OSTI)

    2011-05-27

    Algorithm FOEM numerically solves a system of six, coupled, first-order, linear, inhomogeneous partial differential equations (called the "EH-system”) with an explicit, time-domain, finite-difference (FD) The six dependent variables three electric field vector components and three magnetic field FOEM vector components) are stored on staggered spatial and temporal grids. Discrete FO operators approximating the partial derivatives possess 2nd-order accuracy in time and Nth-order accuracy in space. The 3D spatial grid is rectangular, and grid intervals aremore » uniform in each coordinate direction. FD formulae for updating the wavefield variables are appropriately non-dimensionalized and normalized so that single-precision arithmetic calculations yield adequate accuracy. This software will be used to generate electromagnetic responses for typical geological/geophysical models of interest in the petroleum, mining, geotechnical, geothermal, hydrological, environmental assessment, and underground storage industries. Additionally, US government agencies (including the military) involved in monitoring of explosions (chemical or nuclear) or remote surveillance of underground facilities may be interested in using algorithm FOEM. Finally, this software may be of use to organizations involved in fundamental research and applications development in the area of electromagnetic wave propagation (e.g .• national laboratories, academic departments. industry).« less

  3. Optika v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-11-18

    A C++ Library allowing developers to quickly ascertain parameters and input from the user via a GUI. Optika also allows for input validation and interdependencies between parameters. Scientific applications in which the application developer is more concerned with the capabilities of the program rather than the user interface.

  4. Albany v 1.0

    Energy Science and Technology Software Center (OSTI)

    2011-01-14

    The Albany code is a general purpose finite element code for solving partial differential equations (PDEs). Albany is a research code that demonstrates how a PDE code can be built by interfacing many of the open-source software libraries that are released under Sandia's Trilinos project. Part of the mission of Albany is to be a testbed for new Trilinos libraries, to refine their methods, usability, and interfaces. Albany also serves as a demonstration code onmore » how to build an application code against an installed Trilinos project. Because of this, Albany is a desirable starting point for new code development efforts that wish to make heavy use of Trilinos. The physics solved in Albany are currently only very academic problems, such as heat transfer, linear elasticity, and nonlinear elasticity. Albany includes hooks to optimization and uncertainty quantification algorithms, including those in the Dakota toolkit.« less

  5. LULESH V.1.0

    Energy Science and Technology Software Center (OSTI)

    002592WKSTN00 Livermore Unstructured Lagrange Explicit Shock Hydrodynamics https://computation.llnl.gov/casc/software.html

  6. Phalanx V1.0

    Energy Science and Technology Software Center (OSTI)

    2008-07-14

    Phalanx is a software library to provide flexible dependency management for complex nonlinear partial differential equation operators. It breaks a complex set of equations into a manageable set of fields and evaluation routines. Users can flexibly swap evaluators to change the underlying dependency graph of the fields automatically. By constructing the dependency list, sensitivities can be calculated either analytically or by using embedded automatic differentiation software.

  7. LAUNCHMON V1.0

    Energy Science and Technology Software Center (OSTI)

    002257WKSTN00 LaunchMON: An Infrastructue for Large Scale Tool Daemon Launching https://computing.llnl.gov/?set=resources&page=os-projects

  8. IDAS V1.0

    Energy Science and Technology Software Center (OSTI)

    002222MLTPL00 Stiff DAE integrator with sensitivity analysis capabilities https://computation.llnl.gov/casc/sundials

  9. Barcode V1.0

    Energy Science and Technology Software Center (OSTI)

    2003-03-03

    This software produces barcode images for printing and reads barcodes from digital images according to the mathematical and algorithmic description from a Sandia patent application titled "A Self-Registering Sread-Spectrum Barcode". A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along withmore »the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature and perspective.« less

  10. MDEF V1.0

    Energy Science and Technology Software Center (OSTI)

    002320GENWS00 Multi-scale and Multi-phase deformation of crystalline materials http://anisotropy.mae.cornell.edu/mdef/index.html

  11. Shards v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-07-28

    Shards is a library of Shared Discretization Tools intended to support development of computer codes for the numerical solution of Partial Differential Equations (PDEs). The library comprises of two categories of tools: methods to manage and access information about cell topologies used in mesh-based methods for PDEs, and methods to work with multi-dimensional arrays used to store numerical data in corresponding computer codes. The basic cell topology functionality of Shards includes methods to query adjacenciesmore » of subcells, find subcell permutation with respect to a global cell and create user-defined custom cell topologies. Multi-dimensional array part of the package provides specialized compile-time dimension tags, multi-index access methods, rank and dimension queries.« less

  12. Phisherman v 1.0

    Energy Science and Technology Software Center (OSTI)

    2015-10-15

    Phisherman is an online software tool that was created to help experimenters study phishing. It can potentially be re-purposed to run other human studies. Phisherman enables studies to be run online, so that users can participate from their own computers. This means that experimenters can get data from subjects in their natural settings. Alternatively, an experimenter can also run the app online in a lab-based setting, if that is desired. The software enables the onlinemore » deployment of a study that is comprised of three main parts: (1) a consent page, (2) a survey, and (3) an identification task, with instruction/transition screens between each part, allowing the experimenter to provide the user with instructions and messages. Upon logging in, the subject is taken to the permission page, where they agree to or do not agree to take part in the study. If the subject agrees to participate, then the software randomly chooses between doing the survey first (and identification task second) or the identification task first (and survey second). This is to balance possible order effects in the data. Procedurally, in the identification task, the software shows the stimuli to the subject, and asks if she thinks it is a phish (yes/no) and how confident she is about her answer. The subject is given 5 levels of certainty to select from, labeled “low” (1), to “medium” (3), to “high” (5), with the option of picking a level between low and medium (2), and between medium and high (4). After selecting his/her confidence level, then the “Next” button activates, allowing a user to move to the next email. The software saves a given subject’s progress in the identification task, so that she may log in and out of the site. The consent page is a space for the experimenter to provide the subject with human studies board /internal review board information, and to formally consent to participate in the study. The survey is a space for the experimenter to provide questions and spaces for the users to input answers (allowing both multiple-choice and free-answer options). Phisherman includes administrative pages for managing the stimuli and users. This includes a tool for the experimenter to create, preview, edit, delete (if desired), and manage stimuli (emails). The stimuli may include pictures (uploaded to an appropriate folder) and links, for realism. The software includes a safety feature that prevents the user from going to any link location or opening a file/image. Instead of re-directing the subject’s browser, the software provides a pop-up box with the URL location of where the user would have gone. Another administrative page may be used to create fake subject accounts for testing the software prior to deployment, as well as to delete subject accounts when necessary. Data from the experiment can be downloaded from another administrative page.« less

  13. Kerygma V1.0

    Energy Science and Technology Software Center (OSTI)

    2003-09-20

    Kerygnia is a collection of software components to support the collection, analysis, and reuse of a person’s interaction with a computer. The software does three main things: 1. Data collection: Records a person’s interaction with a personal computer running Microsoft Windows. It records various kinds of events and the content of many of those events. 2. Data representation and analysis: It contains an object oriented library containing classes for representing the information collected and algorithmsmore » for operating on that data. Some of the functions include creating indexes and comparing documents and terms. The library is written in C#, so it should work with other languages on the NET platform. 3. Applications: A personal information agent and reporting components are included to provide real-time reminding of relevant web pages accessed in the past and to provide detailed reports of the persons past activity. The key distinguishing feature of this software is its breadth, flexibility, and extensibility. It brings together under a single framework the components necessary for collection, analysis, manipulation, and reuse of data generated by and collected from a user during computer use.« less

  14. Piro v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The Piro library is a new package that is part of the Trilinos framework. Piro is a convenience package provides a simple and unified interface to many of the solver and analysis packages in Trilinos. The Piro package wraps many of the common usages of other existing Trilinos packages (e.g. NOX, Rythmos, TriKota) and provides a simple interface. In this way, a computer simulation code that wants to use Trilinos analysis tools can access themmore » with just and handful of lines of Piro code. This saves much effort in interfacing their code to each of the other codes one at a time.« less

  15. TTW 2-1-10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kennel Club was established in 1877, and is the oldest organization dedicated to the sport of purebred dogs in America. "I am so excited and proud of him," said Leigh, who...

  16. Acoustics- Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, themore » sounds are removed, as a character forgets what it has heard.« less

  17. MACSIO V.1.0

    Energy Science and Technology Software Center (OSTI)

    003585WKSTN00 Multi-Purpose, Application-Centric, Scalable I/O Proxy Application https://github.com/LLNL/MACSio

  18. IRIS V.1.0

    Energy Science and Technology Software Center (OSTI)

    002714MLTPL00 Search tool plug-in: imploements latent topic feedback https://github.com/davidbuttler/iris

  19. Kayenta v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-06-09

    The Kayenta material model (previously named the Sandia GeoModel, see The Sandia GeoModel Theory and User's Guide, by A.F. Fossum and R.M. Brannon, Sandia National Laboratories, Albuquerque, NM, 2004, SAND2004-3226) is a unified general-purpose constitutive model that can predict material response over a wide range of material properties and strain rates. The model strikes a balance between first-principles micro-mechanics and phenomenological, homogenized, and semi-empirical modeling strategies. Being a unified theory, the model can simultaneously modelmore » multiple failure mechanisms, or it can duplicate simpler idealized yield models such as classic Von Mises plasticity and Mohr-Coulomb failure. Since publication of the GeoModel Theory and User's Guide the model has been extended to support material softening and failure, as well as thermodynamic effects. These extensions have generalized the application space of the model, and it is now capable of accurately modeling metals and metal-like materials in addition to rocks and rock-like materials.« less

  20. BRISC v.1.0

    Energy Science and Technology Software Center (OSTI)

    2011-01-06

    BRISC is a developmental prototype for a nextgeneration “systems-level” integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled “burner” nuclear reactor. For example, the RIO Fluid Flow and Heat transfer codemore » developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfer in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less

  1. TORUSTEST V1.0

    Energy Science and Technology Software Center (OSTI)

    002225MLTPL00 MPI Multicore Torus Communication Benchmark https://asc.llnl.gov/sequoia/benchmarks/

  2. HGTFINDER V.1.0

    Energy Science and Technology Software Center (OSTI)

    002814WKSTN00 Detection of homologous horizontal gene transfer in SNP data sourceforge.net/projects/hgtfinder/files/

  3. pone.0109935 1..10

    Office of Scientific and Technical Information (OSTI)

    3 ACCESS Freely available online FLOS ONE Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome Edward V. LaBelle1, Christopher W. Marshall2, Jack A. Gilbert2'3'4'5, Harold D. May1* 1 Department of Microbiology & Immunology, Marine Biomedicine & Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina, United States of America, 2 Institute for Genomic and Systems Biology, Argonne

  4. Showmesh V1.0

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    SHOWMESH provides a graphical view of a three dimensional massively parallel (MP) computer. It shows what program is running on each computer processor in the MP.

  5. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  6. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  7. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. New Hampshire Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153 295 376 1990's 364 361 344 334 324 332 367 385 389 417 2000's 432 331 437 550 305 397 421 578 5,298 155 2010's 306 362 466 403 326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  9. North Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138 148 151 1990's 165 170 171 174 186 189 206 216 404 226 2000's 192 203 223 234 241 239 241 253 271 279 2010's 307 259 260 266 269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  10. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  11. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  12. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  13. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22 21 14 1990's 15 13 18 20 24 23 27 30 36 37 2000's 38 36 38 41 43 41 35 37 35 36 2010's 38 36 38 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  14. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  15. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  16. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  18. West Virginia Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 463 208 211 1990's 182 198 159 197 191 192 182 173 217 147 2000's 207 213 184 142 137 145 155 114 109 101 2010's 102 94 97 95 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  19. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  20. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  1. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  2. Document ID Number: RL-721

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ---------------------------------------------------------- Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings,

  3. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  4. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  10. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  13. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  14. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  15. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  16. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  19. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  20. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  2. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  5. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  8. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  14. New Hampshire Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,831 9,159 10,237 1990's 10,521 11,088 11,383 11,726 12,240 12,450 12,755 13,225 13,512 13,932 2000's 14,219 15,068 15,130 15,047 15,429 16,266 16,139 16,150 41,332 16,937 2010's 16,645 17,186 17,758 17,298 17,421 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. New Hampshire Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,078 61,969 64,059 1990's 65,310 67,991 69,356 70,938 72,656 74,232 75,175 77,092 78,786 80,958 2000's 82,813 84,760 87,147 88,170 88,600 94,473 94,600 94,963 67,945 96,924 2010's 95,361 97,400 99,738 98,715 99,146 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  16. North Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,236 3,196 3,381 1990's 2,802 3,506 3,119 2,664 3,401 3,652 3,973 5,375 6,228 5,672 2000's 5,288 2,962 3,200 3,101 3,021 2,891 2,701 2,991 2,984 2,384 2010's 2,457 2,468 2,525 2,567 2,596 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. North Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435,826 472,928 492,821 1990's 520,140 539,321 575,096 607,388 652,307 678,147 699,159 740,013 777,805 815,908 2000's 858,004 891,227 905,816 953,732 948,283 992,906 1,022,430 1,063,871 1,095,362 1,102,001 2010's 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 - = No Data

  18. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  20. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  3. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  8. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  10. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  12. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  13. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  14. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  15. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  17. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  19. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  20. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  2. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,447 2,698 2,768 1990's 2,949 3,154 3,198 3,314 3,512 3,649 3,790 3,928 4,034 4,219 2000's 4,316 4,416 4,516 4,602 4,684 4,781 4,861 4,925 4,980 5,085 2010's 5,137 5,256 5,535 5,441 5,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,553 16,616 16,920 1990's 18,300 19,879 20,468 21,553 22,546 23,523 24,383 25,539 26,664 27,931 2000's 28,532 29,463 30,108 30,856 31,971 33,015 34,081 34,937 35,929 37,242 2010's 38,047 38,839 39,917 41,152 42,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Virginia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 54,071 54,892 61,012 1990's 63,751 67,997 69,629 70,161 72,188 74,690 77,284 78,986 77,220 80,500 2000's 84,646 84,839 86,328 87,202 87,919 90,577 91,481 93,015 94,219 95,704 2010's 95,401 96,086 96,503 97,499 98,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 877 895 895 1990's 929 1,156 1,101 2,706 2,740 2,812 2,822 2,391 2,469 2,984 2000's 1,749 1,261 1,526 1,517 1,217 1,402 1,256 1,271 1,205 1,126 2010's 1,059 1,103 1,132 1,132 1,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  9. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 550,318 573,731 601,906 1990's 622,883 651,203 664,500 690,061 721,495 753,003 789,985 812,866 847,938 893,887 2000's 907,855 941,582 982,521 996,564 1,029,389 1,066,302 1,085,509 1,101,863 1,113,016 1,124,717 2010's 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 - = No Data Reported; -- = Not

  10. Washington Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,365 56,487 55,231 1990's 58,148 60,887 63,391 65,810 68,118 70,781 73,708 75,550 77,770 80,995 2000's 83,189 84,628 85,286 87,082 93,559 92,417 93,628 95,615 97,799 98,965 2010's 99,231 99,674 100,038 100,939 101,730 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,355 3,564 3,365 1990's 3,428 3,495 3,490 3,448 3,586 3,544 3,587 3,748 3,848 4,040 2000's 4,007 3,898 3,928 3,775 3,992 3,489 3,428 3,630 3,483 3,428 2010's 3,372 3,353 3,338 3,320 3,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 392,469 413,008 425,624 1990's 458,013 492,189 528,913 565,475 604,315 638,603 673,357 702,701 737,208 779,104 2000's 813,319 841,617 861,943 895,800 926,510 966,199 997,728 1,025,171 1,047,319 1,059,239 2010's 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 - = No Data Reported; -- = Not

  13. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  14. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  16. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  19. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  7. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  14. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  16. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  11. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  12. West Virginia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,283 33,192 33,880 1990's 32,785 32,755 33,289 33,611 33,756 36,144 33,837 33,970 35,362 35,483 2000's 41,949 35,607 35,016 35,160 34,932 36,635 34,748 34,161 34,275 34,044 2010's 34,063 34,041 34,078 34,283 34,339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  13. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 351,024 349,765 349,347 1990's 349,673 350,489 352,463 352,997 352,929 353,629 358,049 362,432 359,783 362,292 2000's 360,471 363,126 361,171 359,919 358,027 374,301 353,292 347,433 347,368 343,837 2010's 344,131 342,069 340,256 340,102 338,652 - = No Data Reported; -- = Not

  14. Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,760 99,157 102,492 1990's 106,043 109,616 112,761 115,961 119,788 125,539 129,146 131,238 134,651 135,829 2000's 140,370 144,050 149,774 150,128 151,907 155,109 159,074 160,614 163,026 163,843 2010's 164,173 165,002 165,657 166,845 167,901 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,411 7,218 7,307 1990's 7,154 7,194 7,396 7,979 7,342 6,454 5,861 8,346 9,158 9,756 2000's 9,630 9,864 9,648 10,138 10,190 8,484 5,707 5,999 5,969 6,396 2010's 6,413 6,376 6,581 6,677 7,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,054,347 1,072,585 1,097,514 1990's 1,123,557 1,151,939 1,182,834 1,220,500 1,253,333 1,291,424 1,324,570 1,361,348 1,390,068 1,426,909 2000's 1,458,959 1,484,536 1,514,700 1,541,455 1,569,719 1,592,621 1,611,772 1,632,200 1,646,644 1,656,614 2010's 1,663,583 1,671,834 1,681,001 1,692,891

  17. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  19. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  20. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging

    SciTech Connect (OSTI)

    Barnes, Cris William; Barber, John L.; Kober, Edward Martin; Lookman, Turab; Sandberg, Richard L.; Shlachter, Jack S.; Sheffield, Richard L.

    2015-02-23

    The Matter-Radiation Interactions in Extremes project will build the experimental facility for the time-dependent control of dynamic material performance. An x-ray free electron laser at up to 42-keV fundamental energy and with photon pulses down to sub-nanosecond spacing, MaRIE 1.0 is designed to meet the challenges of time-dependent mesoscale materials science. Those challenges will be outlined, the techniques of coherent diffractive imaging and dynamic polycrystalline diffraction described, and the resulting requirements defined for a coherent x-ray source. The talk concludes with the role of the MaRIE project and science in the future.

  1. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  2. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel; Voss, Lars F.; Wang, Tzu Fang; Shao, Qinghui

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.

  3. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    SciTech Connect (OSTI)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  4. EXEN Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    United States Zip: 92029 Region: Southern CA Area Sector: Efficiency Product: Hydro-diesel fuel system for diesel engines Number of Employees: 1-10 Year Founded: 2006 Phone...

  5. Solar Labs | Open Energy Information

    Open Energy Info (EERE)

    Labs Jump to: navigation, search Logo: Solar Labs Name: Solar Labs Address: 1006 N Mary St Place: Knoxville, Tennessee Zip: 37914 Number of Employees: 1-10 Year Founded: 2005 Phone...

  6. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    ScienceCinema (OSTI)

    None

    2011-10-06

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africa?s most successful mobile network operators, will talk about ?Mobile phones and Africa: a success story?. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss ?Citizen Problem Solving?. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africa?s most successful companies with operations in 15 countries, covering more than a third of the continent?s population and investing more than US$750 million in Africa. The company was sold to MTC Kuwait in 2005 for $3.4billion. In 2006 Dr Ibrahim established the Mo Ibrahim Foundation to support great African leadership. The Foundation focuses on two major initiatives to stimulate debate around, and improve the quality of, governance in Africa. The Ibrahim Prize for Achievement in African Leadership recognises and celebrates excellence; and the Ibrahim Index of African Governance provides civil society with a comprehensive and quantifiable tool to promote government accountability. Dr Ibrahim is also Founding Chairman of Satya Capital Ltd, an investment company focused on opportunities in Africa. Dr Ibrahim has been awarded an Honorary Doctorate by the University of London?s School of Oriental and African Studies, the University of Birmingham and De Montfort University, Leicester as well as an Honorary Fellowship Award from the London Business School. He has also received the Chairman?s Award for Lifetime Achievement from the GSM Association in 2007 and the Economists Innovation Award 2007 for Social & Economic Innovation. In 2008 Dr Ibrahim was presented with the BNP Paribas Prize for Philanthropy, and also listed by TIME magazine as one of the 100 most influential people in the world. Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive Abstract American playwright Damien Runyon (Guys and Dolls) once remarked, "the race is not always to the swift, nor the victory to the strong -- but that IS how you bet." Not only does a system of race handicapping follow from this logic, but the whole notion of expertise and technical qualifications. Such 'credentials' allow one to 'bet' on who might most likely solve a difficult challenge, whether as consultant, contractor or employee. Of course, the approach would differ if one were allowed to bet AFTER the race. When such systems came into broad use, i.e., chat rooms, usenets, innocentive, etc., and were subsequently studied, it was often found that the greatest probability of solution lies in the "long tail" of the function rather than in the head representing formally vetted 'experts.' Insight into a problem is often the intersection of training, experience, metaphor and provocation (think Archimedes). Examples of "citizens" outside a targeted field of expertise providing uniques solutions will illustrate the principles involved. Bio Dr. Alph Bingham is a pioneer in the field of open innovation and an advocate of collaborative approaches to research and development. He is co-founder, and former president and chief executive officer of InnoCentive Inc., a Web-based community that matches companies facing R&D; challenges with scientists who propose solutions. Through InnoCentive, a platform that leverages the ability to connect to a whole planet of people through the Internet, organizations can access individuals ? problem solvers ? who might never have been found. Alph spent more than 25 years with Eli Lilly and Company, and offers deep experience in pharmaceutical research and development, research acquisitions and collaborations, and R&D; strategic planning. During his career he was instrumental in creating and developing Eli Lilly's portfolio management process as well as establishing the divisions of Research Acquisitions, the Office of Alliance Management and e.Lilly, a business innovation unit, from which various other ventures were spun out that create the advantages of open and networked organizational structures, including: InnoCentive, YourEncore, Inc., Coalesix, Inc., Maaguzi, Inc., Indigo Biosystems, Seriosity, Chorus and Collaborative Drug Discovery, Inc. He currently serves on the Board of Directors of InnoCentive, Inc., and Collaborative Drug Discovery, Inc.; the advisory boards of the Center for Collective Intelligence (MIT), and the Business Innovation Factory, as well as a member of the board of trustees of the Bankinter Foundation for Innovation in Madrid. He has lectured extensively at both national and international events and serves as a Visiting Scholar at the National Center for Supercomputing Application at the University of Illinois at Champaign-Urbana. He is also the former chairman of the Board of Editors of the Research Technology Management Journal. Dr. Bingham was the recipient of the Economist's Fourth Annual Innovation Summit "Business Process Award" for InnoCentive. He was also named as one of Project Management Institute's "Power 50" leaders in October 2005. Dr. Bingham received a Ph.D. in organic chemistry from Stanford University.

  7. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h–1 M⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  8. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less

  9. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J.

    2006-11-01

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  10. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    SciTech Connect (OSTI)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.

  11. 3610 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ●

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ● Fax 602-808-2099 ● www.sunzia.net October 17, 2013 Transmitted via electronic mail to juliea.smith@hq.doe.gov and christopher.lawrence@hq.doe.gov Subject: SunZia Southwest Transmission Project comments on Department of Energy's August 29, 2013 Federal Register Notice regarding Improving Performance of Federal Permitting and Review of Infrastructure Projects. The following comments are provided to the Department of

  12. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  13. Synthesis, crystal structure and magnetic characterization of metal(II) coordination polymers based on 2-carboxyethylphosphonic acid and 1,10-phenanthroline (metal=Cu, Co, Cd)

    SciTech Connect (OSTI)

    Fernandez-Zapico, Eva; Montejo-Bernardo, Jose Manuel; D'Vries, Richard; Garcia, Jose R.; Garcia-Granda, Santiago; Rodriguez Fernandez, Jesus; Pedro, Imanol de; Blanco, Jesus A.

    2011-12-15

    Three non-isostructural metal(II) coordination polymers (metal=copper, cobalt, cadmium) were synthesized under the same mild hydrothermal conditions (T=408 K) by mixture of the corresponding metal acetate with 2-carboxyethylphosphonic acid and 1,10-phenanthroline (1:1:1 M ratio) and their structures were determined by single-crystal X-ray diffraction. Cu{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}(H{sub 2}O){sub 2} and Cd{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2} are triclinic (space group P-1) with a=7.908(5) A, b=10.373(5) A, c=11.515(5) A, {alpha}=111.683(5) Degree-Sign , {beta}=95.801(5) Degree-Sign , {gamma}=110.212(5) Degree-Sign (T=120 K), and a=8.162(5) A, b=9.500(5) A, c=11.148(5) A, {alpha}=102.623(5) Degree-Sign , {beta}=98.607(5) Degree-Sign , {gamma}=113.004(5) Degree-Sign (T=293 K), respectively. In contrast, [Co{sub 2}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 2}({mu}-OH{sub 2})](H{sub 2}O) is orthorhombic (space group Pbcn) with a=21.1057(2) A, b=9.8231(1) A, c=15.4251(1) A (T=120 K). For these three compounds, structural features, including H-bond network and the {pi}-{pi} stacking interactions, and thermal stability are reported and discussed. None of the materials present a long-range magnetic order in the range of temperatures investigated from 300 K down to 1.8 K. - Graphical abstract: In same synthetic conditions, both the chemical and structural features of three transition metal(II) coordination polymers based on 2-carboxyethylphosphonate and 1-10 Prime -phenanthroline are influenced by the metal cation characteristics, leading to non-homologous materials with different properties, which show the high chemical versatility of this interesting system. Highlights: Black-Right-Pointing-Pointer Non-isostructural metal coordination polymers were synthesized under mild hydrothermal conditions. Black-Right-Pointing-Pointer Ligand's flexibility provides the opportunity to design compounds with tailored properties. Black-Right-Pointing-Pointer Structural changes in the secondary building units are induced by metal features.

  14. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; et al

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  15. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    SciTech Connect (OSTI)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; Wang, J. D.; Hao, J. M.

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widely used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.

  16. Structure and luminescence properties of [Re(4,7-dimethyl-1,10-phenanthroline)(CO){sub 3}py]{sup +} in a solid matrix

    SciTech Connect (OSTI)

    Wallace, L.; Woods, C.; Rillema, D.P.

    1995-05-24

    The low-temperature luminescence properties of [Re(4,7-Me{sub 2}phen)(CO){sub 3}py]{sup +} (4,7-Me{sub 2}phen=4,7-dimethyl-1,10-phenanthroline, py=pyridine) as a crystal or in ethanol-methanol glass are reported, together with a crystal structure of the complex as its perchlorate salt. The complex [Re(4,7-Me{sub 2}phen)(CO){sub 3}py](ClO{sub 4}) crystallizes in the space group Pna2{sub 1} with a = 16.262(4) {Angstrom}, b = 12.721(3) {Angstrom}, c = 10.814(2) {Angstrom}, and Z=4. The geometry is facial and the Re-N(4,7-Me{sub 2}phen) bond lengths are 2.13(2) and 2.24(2) {Angstrom}, the Re-N(py) bond distance is 2.15(2) {Angstrom}, and the Re-C(CO) bond distances are 1.93(3), 1.87(3), and 1.90(2) {Angstrom}. Single-crystal absorption and luminescence spectra at temperatures below 6K show that the emitting state in this environment is triplet ligand-centered ({sup 3}LC). In an ethanol-methanol glass, the luminescence spectra indicate that a largely {sup 3}LC assignment is also appropriate in this matrix; however lifetime measurements provide some evidence for a contribution from the nearby triplet metal-to-ligand charge-transfer ({sup 3}MLCT) state. Measurements of the Zeeman effect in both environments confirm these conclusions.

  17. Structure, stability, and electronic property of carbon-doped gold clusters Au{sub n}C{sup ?} (n = 110): A density functional theory study

    SciTech Connect (OSTI)

    Yan, Li-Li; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Wen, Hui; Gai, Yan-Bo; Zhang, Wei-Jun E-mail: wjzhang@aiofm.ac.cn; Huang, Wei E-mail: wjzhang@aiofm.ac.cn; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026

    2013-12-28

    The equilibrium geometric structures, relative stabilities, and electronic properties of Au{sub n}C{sup ?} and Au{sub n+1}{sup ?} (n = 110) clusters are systematically investigated using density functional theory with hyper-generalized gradient approximation. The optimized geometries show that one Au atom capped on Au{sub n?1}C{sup ?} clusters is a dominant growth pattern for Au{sub n}C{sup ?} clusters. In contrast to Au{sub n+1}{sup ?} clusters, Au{sub n}C{sup ?} clusters are most stable in a quasi-planar or three-dimensional structure because C doping induces the local non-planarity while the rest of the structure continues to grow in a planar mode, resulting in an overall non-2D configuration. The relative stability calculations show that the impurity C atom can significantly enhance the thermodynamic stability of pure gold clusters. Moreover, the effect of C atom on the Au{sub n}{sup ?} host decreases with the increase of cluster size. The HOMO-LUMO gap curves show that the interaction of the C atom with Au{sub n}{sup ?} clusters improves the chemical stability of pure gold clusters, except for Au{sub 3}{sup ?} and Au{sub 4}{sup ?} clusters. In addition, a natural population analysis shows that the charges in corresponding Au{sub n}C{sup ?} clusters transfer from the Au{sub n}{sup ?} host to the C atom. Meanwhile, a natural electronic configuration analysis also shows that the charges mainly transfer between the 2s and 2p orbitals within the C atom.

  18. DOE/SC-ARM-TR-140 Droplet Number Concentration Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Droplet Number Concentration Value-Added Product L Riihimaki S McFarlane C Sivaraman June 2014 Version 1.0 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its

  19. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    SciTech Connect (OSTI)

    Li, X; Ma, B; Kuang, Y; Diao, X

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.

  20. California's Efforts for Advancing Ultrafine Particle Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel...

  1. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for...

  2. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  3. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Property:NumberOfEmployees | Open Energy Information

    Open Energy Info (EERE)

    Inc. + 11-50 + 3 3Degrees + 51-200 + 3TIER + 51-200 + 5 5 boro biofuel + 11-50 + A A1 Sun, Inc. + 1-10 + A10 Power + 1-10 + ACORE + 11-50 + AEE Renewables + 11-50 + ALDACOR...

  14. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  15. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  16. OMB Control Number: 1910-5165

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    damages assessed under Contract Work Hours and Safety Standards Act: Page 1 OMB Control Number: 1910-5165 Expires: 04302015 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT...

  17. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number Models in Computational Astrophysics - Ann Almgren, Berkeley Lab Last edited: 2016-02-01 08:06:52

  18. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect (OSTI)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  19. Compendium of Experimental Cetane Number Data

    SciTech Connect (OSTI)

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  20. Table HC6.10 Home Appliances Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total.............................................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day........................................... 8.2 1.4 1.9 1.4 1.0 2.4 2 Times A Day........................................................ 24.6 4.3 7.6 4.3 4.8 3.7 Once a Day............................................................ 42.3 9.9

  1. Table HC6.9 Home Appliances Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    HC6.9 Home Appliances Characteristics by Number of Household Members, 2005 Total U.S.............................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Conventional Ovens Use an Oven.................................................. 109.6 29.5 34.4 18.2 15.7 11.8 1................................................................. 103.3 28.4 32.0 17.3 14.7 11.0 2 or More.................................................... 6.2 1.1 2.5 1.0 0.9 0.8 Do Not

  2. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP ...

  3. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare

  4. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  5. EM3DAVer1.0

    Energy Science and Technology Software Center (OSTI)

    2000-07-13

    Software simulates low-frequency (~1 to 10^6 Hz) electromagnetic induction in an anisotropic conducting medium. Induction is stimulated by an arbitrary superposition of electric and magnetic dipoles as well as line sources. The anisotropic nature of the conducting medium is described by a fully generalized 3X3 conductivity tensor. Upon completion, software computes in-phrase and quadrature components of magnetic and electric fields at user-specified points. Values are further decomposed in terms of primary, background and total fields.more » Software also includes a graphical user interface for building anisotropy models and provides plotting capability for simulation output.« less

  6. GT Merge Process: Version 1.0

    SciTech Connect (OSTI)

    Flanagan, M P; Dodge, D; Myers, S C

    2008-06-10

    This document summarizes the process used to merge GT25 and better data between LANL and LLNL for use in a tomographic inversion for Pn velocity of Eurasia. The merge process is automated and includes extensive quality control operations at each step. Events in common between the labs are identified and resolved using GT level criteria. Arrivals in common between the labs are also resolved through the use of agreed upon arrival author rankings. Finally, baselined origin times are computed for all crustal events using either teleseismic P-arrivals and the iasp91 model or, in certain regions, regional P-arrivals and regional velocity models that are known to be consistent with teleseismic iasp91 P-wave predictions. We combine the core tables from each lab and first resolve unique and common GT events between LANL and LLNL. Phase names are then checked and possibly adjusted for consistency. Next, we merge at the pick level so that each distinct EVENT-STATION-PHASE tuple has a unique arrival. All BMEB (Bondar-Myers-Engdahl-Bergman) GT are evaluated for adherence to their criteria, and possibly re-calculated. Finally, new origin times are computed (baselining) for the merged GT events. In addition to the reconciliation of events and picks between LANL and LLNL, the merge process involves several quality control steps that are intended to remove outlier and irrelevant data from the final results.

  7. Acoustic Inspection Device V1.0

    Energy Science and Technology Software Center (OSTI)

    2002-01-16

    The Acoustic Inspection Device (AID) is an instrument used to interrogate materials with ultrasonic acoustic waves. The AID application software program runs under the Microsoft Windows 98 or Windows 2000 operating system. Is serves as the instrument controller and provides the user interface for the instrument known as the Acoustic Inspection Device (AID). The program requests, acquires, and analyzes acoustic waveforms from the AID hardware (pulser/receiver module, digitizer, and communications link). Graphical user displays ofmore » the AID application program include the real-time display of ultrasonic acoustic waveforms and analytical results including acoustic time-of-flight, velocity, and material identification. This program utilizes a novel algorithm, developed at PNNL, that automatically extracts the time-of-flight and amplitude data from the raw waveform and compares the extracted data to a material database.« less

  8. PMGR_COLLECTIVE V1.0

    Energy Science and Technology Software Center (OSTI)

    002339WKSTN00 The Process Manager Collective Library http://sourceforge.net/projects/pmgrcollective/

  9. es5b02275 1..10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R. Subramanian, Daniel S. Tkacik, Joseph R. Roscioli, and Scott C. Herndon Department of ... 80523, United States Fort Lewis College, Durango, Colorado ...

  10. LaplaceV1.0

    Energy Science and Technology Software Center (OSTI)

    2008-10-05

    Laplace is a electric field driven flow simulation program for detailed device design support. Transport processes include electrokinesis, dielectrophoresis, and diffusion. Laplace solves for the electric field in a microfluidic system and the liquid and particle flow that is produced by the electric field for the primary purpose of microfluidic design development and simulation. Laplace allows you to visualize the flow by tracking tracer particles, viewing flow streamlines, etc. Laplace can make movies of simulatedmore » particle motion to allow you to test and share the behavior of microfuidic designs. The electric field is calculated using an iterative linear solver and particle motion is solved by finite difference, finite-displacement simulation of particle trajectories. Laplace uses a bitmapped picture or drawing of a microsystem to infer the geometry. The channel depth is everywhere proportional to the magnitude of the blue channel of the image: 0 (black) = zero depth, or no channel, 256 (saturated blue) = deepest channel, and intermediate values correspond to intermediate depths. Laplace automatically applies various boundary conditions (applied voltage or current) to ports, where channels cross the edge of the image.« less

  11. miniMD v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-06-12

    Simple parallel MD code that serves as a microapplication in the Mantevo suite. Study of computer system design and implementation, benchmarking of new and existing computer systems.

  12. XBox Input -Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-10-03

    Contains class for connecting to the Xbox 360 controller, displaying the user inputs {buttons, triggers, analog sticks), and controlling the rumble motors. Also contains classes for converting the raw Xbox 360 controller inputs into meaningful commands for the following objects: • Robot arms - Provides joint control and several tool control schemes • UGV's - Provides translational and rotational commands for "skid-steer" vehicles • Pan-tilt units - Provides several modes of control including velocity, position,more » and point-tracking • Head-mounted displays (HMO)- Controls the viewpoint of a HMO • Umbra frames - Controls the position andorientation of an Umbra posrot object • Umbra graphics window - Provides several modes of control for the Umbra OSG window viewpoint including free-fly, cursor-focused, and object following.« less

  13. GreenArrow version 1.0

    Energy Science and Technology Software Center (OSTI)

    2006-03-29

    GreenArrow is a visualization program for displaying directed graphs that can use text in place of lines to represent the edges between nodes. This text can be animated to show the link direction, and allow for more text to be displayed then would normally be allowed. The text is also tapered and arced to show direction. The node labels can be wrapped around the node to avoid label crossing as well. The program is interactive,more » and allows the user to zoom, pan and rotate a graph, as well as manipulate the individual nodes.« less

  14. SAMPLES Visualization Tools V1.0

    Energy Science and Technology Software Center (OSTI)

    2000-01-17

    The SAMPLE Visualization Tools CD consists of a 2D Process Visualizer, 3D Visualizer, and integration code for use with AutoCAD uner Windows NT. The tools are intended to be an add-on package to the SAMPLES (Sandia Agile MEMS Prototyping, Layout Tools, Education and Services). Program CD, a previously published Sandia software package. The 2D Process Visualizer creates 2D cross-section slice views of a MEMS (micro-electromechanical)design. Views are created for each step in the MEMS fabricationmore » process. The 2D viewer has capabilities to pan, zoom, step forward and backward to allow the user to inspect the design. The 3D Visualizer creates an extruded-model view of a MEMS design. The 3D viewer has capabilities to pan, zoom, and fly around the model to allow the user to inspect the design.« less

  15. REX3DV1.0

    Energy Science and Technology Software Center (OSTI)

    2002-03-28

    This code is a FORTRAN code for three-dimensional Monte Carol Potts Model (MCPM) Recrystallization and grain growth. A continuum grain structure is mapped onto a three-dimensional lattice. The mapping procedure is analogous to color bitmapping the grain structure; grains are clusters of pixels (sites) of the same color (spin). The total system energy is given by the Pott Hamiltonian and the kinetics of grain growth are determined through a Monte Carlo technique with a nonconservedmore » order parameter (Glauber dynamics). The code can be compiled and run on UNIX/Linux platforms.« less

  16. Emiliania huxleyi v1.0

    SciTech Connect (OSTI)

    Kuo, Alan

    2008-10-01

    We discuss how to find tandem duplicates and look at: (1) self aligning, proteomes - [Blastp]; (2) convert into symmetric similarity matrix; (3) cluster into familites - [MCL]; (4) annotate families with Pfam - [Hmmer]; and (5) classify families by taxa; and (6) look for interesting stuff.

  17. Cam Cal - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2011-01-14

    The camcal package provides camera calibration utilities and C++ drivers to support visual targeting within the Umbra framework. The camera calibration model combines a 4-parameter distortion model, an intrinsic matrix and an extrinsic matrix representation. A table look up allows all of these matrices to be updated based upon a "zoom" parameter which moves between 0 (full -wide) and 1(full-zoom). The software includes a TclfTk Gui tool for calibrating zoom cameras, camera functions for implementingmore » the active sketch visual targeting paradigm, and a SoS (System of System) class that wraps up this functionality.« less

  18. es5b01669 1..10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... gas creates potential economic, climate, energy security, and public health benefits. ... July 2, 2015 Published: July 21, 2015 Article pubs.acs.orgest 2015 American ...

  19. flume-plugins Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2015-04-01

    Flume-plugins are plugins for Apache Flume, which are used for managing data transferred through Apache Flume.

  20. Microgrid Sizing Capability v 1.0

    Energy Science and Technology Software Center (OSTI)

    2015-11-20

    The MSC is an optimization model, written in Python, that is used to make an initial determination of the types and quantities of electric power generation and energy storage technologies that should be purchased when developing a microgrid. In addition to determining which technologies to purchase, the model determines the optimal policies for operating the microgrid. The model selects the purchases and operating polices in a manner that minimizes annual energy costs (operating costs plusmore » annualized capital costs), while ensuring that that the purchased technologies are paid back within a reasonable timeframe.« less

  1. GlobiPack v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-03-31

    GlobiPack contains a small collection of optimization globalization algorithms. These algorithms are used by optimization and various nonlinear equation solver algorithms.Used as the line-search procedure with Newton and Quasi-Newton optimization and nonlinear equation solver methods. These are standard published 1-D line search algorithms such as are described in the book Nocedal and Wright Numerical Optimization: 2nd edition, 2006. One set of algorithms were copied and refactored from the existing open-source Trilinos package MOOCHO where themore » linear search code is used to globalize SQP methods. This software is generic to any mathematical optimization problem where smooth derivatives exist. There is no specific connection or mention whatsoever to any specific application, period. You cannot find more general mathematical software.« less

  2. Slycat v 1.0 Beta

    Energy Science and Technology Software Center (OSTI)

    2013-07-10

    Slycat is a web-based system for analysis of large, high-dimensional data such as that produced by High Performance Computing (HPC) platforms. The Slycat server integrates data ingestion, scalable analysis, data management, and visualization with commodity web clients using a multi-tiered hierarchy of data and model storage. Analysis inputs are pushed into Slycat, where models are generated and analysis artifacts are stored in a project database. These artifacts are the basis for visualizations that are deliveredmore » to users’ desktops through ordinary web browsers, eliminating the need to build and deploy platform-specific client applications. Slycat currently provides two types of analysis: canonical correlation analysis (CCA) to model relationships between inputs and output metrics, and time series analysis featuring clustering and comparative visualization of waveforms.« less

  3. Sounding Board V.1.0

    Energy Science and Technology Software Center (OSTI)

    2006-10-10

    Sounding Board allows users to query multiple models simultaneously, finding relevant experts, related terms, and historical text related to one's query.

  4. SIERRA Toolkit v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The SIERRA Toolkit is a collection of libraries to facilitate the development of parallel engineering analysis applications. These libraries supply basic core services that an engineering analysis application may need such as a parallel distributed and dynamic mesh database (for unstructured meshes), mechanics algorithm support (parallel infrastructure only), interfaces to parallel solvers, parallel mesh and data I/O, and various utilities (timers, diagnostic tools, etc.).The toolkit is intended to reduce the effort required to develop anmore » engineering analysis application by removing the need to develop core capabilities that most every application would require.« less

  5. Code Seal v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-11

    CodeSeal is a Sandia National Laboratories developed technology that provides a means of securely obfuscating finite state machines in a mathematically provable way. The technology was developed in order to provide a solution for anti-reverse engineering, assured execution, and integrity of execution. CodeSeal accomplishes these goals with the addition of the concept of a trust anchor, a small piece of trust integrated into the system, to the model of code obfuscation. Code obfuscation is anmore » active area of academic research, but most findings have merely demonstrated that general obfuscation is impossible. By modifying the security model such that we may rely on the presence of a small, tamper-protected device, however, Sandia has developed an effective method for obfuscating code. An open publication describing the technology in more detail can be found at http://eprint.iacr.org/2008/184.pdf.Independent Software/Hardware monitors, Use control, Supervisory Control And Data Acquisition (SCADA), Algorithm obfuscation« less

  6. acousto-electricV1.0

    Energy Science and Technology Software Center (OSTI)

    2011-09-08

    Seismo-electric for both seismic and electric sources Code is for a layered acoustic and electric medium. Seismic calculated at a time step delta_t, the electric and magnetic fields calculated at a smaller time step within delta_t. Seismic calculated on a smaller grid than the EM calculations. At appropriate time steps pressure is interpolated onto the EM grid and/or electric fields interpolated onto the seismic grid. This version takes into the air-earth interface for both seismicmore » and EM wave fields. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spatial and temporal grid. The acoustic equations (where shear is ignored) are obtained from the poroelastic governing equations. The acoustic equations are solved using a finite-difference approach with a staggered grid in space and time.« less

  7. TriKota v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-04

    The TriKota software is a library that allows the Dakota Optimization Toolkit to be easily accessed from a computer code that is already interfaced to the solution algorithms in the Trilinos framework. It is a class of code known as an adapter. TriKota also supplies examples so that new applications can quickly make use of it’s capabilities.The TriKota package is meant to enable more rapid development and a broader use of optimization and uncertainty quantificationmore » algorithms. As a general-purpose mathematical software, the uses will span many application areas that seek to perform computational design and analysis.« less

  8. SNL cxxtest v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-04-28

    SNL cxxtest is a set of Python routines that support software testing for C++ codes. This software augments the open-source cxxtest project to provide a more comprehensive capability for software testing.

  9. Coopr Forum v 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-04

    SNL Coopr Forum is a set of Python routines that provide extensions to the Coopr optimization software. This software augments the open-source Coopr project to provide a more comprehensive capability for formulating and solving optimization applications.Optimization is a common analysis tool used in engineering design and scientific discovery. The SNL Coopr Forum software augments the Coopr Forum open source project to provide extensions of the Coopr optimization framework. Specifically, Coopr Forum provides plugin tools thatmore » allow Coopr to apply different optimization solvers, manage optimization solvers in a distributed manner, and to process input and output files. Thus, Coopr Forum is comprised of a variety of distinct software components, each of which provides a different capability that can be used within Coopr.« less

  10. es5b00410 1..10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Diamond System). 25,26 The horizontal wind measurement accuracy is 0.4 m s -1 , as discussed by Garman 2009. 27 Ambient temperature measurements are made using a microbead ...

  11. MEMS3DMODELERV1.0

    Energy Science and Technology Software Center (OSTI)

    2001-10-30

    The MEMS 3 D Modeler is a software package that creates 3D CAD solid models from 2D layout masks and a MEMS process definition. The solid models may be generated in either the ACIS SAT or IGES format. The result is an accurate representation that may be used for visualization or FEA analysis

  12. TableBuster V1.0

    Energy Science and Technology Software Center (OSTI)

    2003-06-06

    Brief Description:TableBuster enables Telelogic DOORS users to export tables with split merged cells from Microsoft Word into DOORS. Practical Application: Users of Telelogic DOORS will be more easily able to track and manage requirements that are initally defined in Microsoft Word tables containing split or merged cells. Method of Solution: TableSplitter contains two procedures. The Setup subroutine unlinks all Word fields in the active Word document. It next counts all the tables in the documentmore » and then calls the SplitCells subroutine. SplitCells splits the appropriate cells for each table, so a n row by m column table actually has n by m cells that DOORS can import.« less

  13. View Shed - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2014-09-18

    The View Shed library is a collection of Umbra modules that are used to calculate areas of visual coverage (view sheds). It maps high and low visibility areas and calculates sensor (camera placement for maximum coverage and performance. This assertion includes a managed C++ wrapper code (ViewShedWrapper) to enable C# applications, such as OpShed, to incorporate this library.

  14. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  15. Collaborative Analytical Toolbox version 1.0

    Energy Science and Technology Software Center (OSTI)

    2008-08-21

    The purpose of the Collaborative Analytical Toolbox (CAT) is to provide a comprehensive, enabling, collaborative problem solving environment that enables users to more effectively apply and improve their analytical and problem solving capabilities. CAT is a software framework for integrating other tools and data sources. It includes a set of core services for collaboration and information exploration and analysis, and a framework that facilitates quickly integrating new ideas, techniques, and tools with existing data sources.

  16. Unmanned Air Vehicle -Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2013-04-17

    This package contains modules that model the mobility of systems such as helicopters and fixed wing flying in the air. This package currently models first order physics - basically a velocity integrator. UAV mobility uses an internal clock to maintain stable, high-fidelity simulations over large time steps This package depends on interface that reside in the Mobility package.

  17. SurfpackV1.0

    Energy Science and Technology Software Center (OSTI)

    2006-03-01

    Surfpack is a general-purpose software library of multidimensional function approximation methods for applications such as data visualization, data mining, sensitivity analysis, uncertainty quantification, and numerical optimization. Surfpack is primarily intended for use on sparse, irregularly-spaced sets of data points, where the data do not lie on a regularly-spaced grid. Surfpack generates output data files that can be readily imported into many standard data plotting and visualization software tools.

  18. es5b00410 1..10

    Energy Savers [EERE]

    Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin Tegan N. Lavoie,* ,† Paul B. Shepson, †,‡ Maria O. L. Cambaliza, † Brian H. Stirm, § Anna Karion, ∥,⊥ Colm Sweeney, ∥,⊥ Tara I. Yacovitch, ∇ Scott C. Herndon, ∇ Xin Lan, ◆ and David Lyon ¶ † Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States ‡ Department of Earth, Atmospheric and Planetary Sciences and Purdue Climate Change Research Center,

  19. es5b01669 1..10

    Energy Savers [EERE]

    the Natural Gas Transmission and Storage System in the United States Daniel J. Zimmerle,* ,† Laurie L. Williams, ‡ Timothy L. Vaughn, † Casey Quinn, † R. Subramanian, § Gerald P. Duggan, † Bryan Willson, † Jean D. Opsomer, ∥ Anthony J. Marchese, † David M. Martinez, † and Allen L. Robinson § † Energy Institute and Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524, United States ‡ Department of Physics and Engineering, Fort Lewis

  20. es5b02275 1..10

    Energy Savers [EERE]

    United States Natural Gas Gathering and Processing Anthony J. Marchese,* ,† Timothy L. Vaughn, † Daniel J. Zimmerle, ‡ David M. Martinez, † Laurie L. Williams, § Allen L. Robinson, ∥ Austin L. Mitchell, ∥ R. Subramanian, ∥ Daniel S. Tkacik, ∥ Joseph R. Roscioli, ⊥ and Scott C. Herndon ⊥ † Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States ‡ The Energy Institute, Colorado State University, Fort Collins, Colorado

  1. Adaptive Analysis Engine v 1.0

    Energy Science and Technology Software Center (OSTI)

    2010-08-05

    This software provides an adaptable framework for performing comprehensive analyses of digital data streams. This software can be used to acquire and analyze raw digital data streams, as well as define, extract, and analyze data channels embedded in digital data streams.This software serves as a foundational framework for developing comprehensive software-based data acquisition, extraction, and analysis tools for ground-based, airborne, and space-based data stream sources. This software serves as a foundational framework for developing comprehensivemore » software-based data acquisition, extraction, and analysis tools for data stream sources from ground-based, airborne, and space-based data stream sources – primarily radio-frequency (RF) data links. Potential applications include state-of-health data links from communication satellites, aircraft, and vehicles, as well as stationary data collection platforms such as well monitors and weather stations. The software was developed with an abstract and extensible architecture which allows it to be easily configured to support any of these diverse data analysis applications« less

  2. DI-MMAP V.1.0

    Energy Science and Technology Software Center (OSTI)

    002804WKSTN00 Data-Intensive Memory-Map simulator and runtime https://computation.llnl.gov/casc/dcca-pub/dcca/downloads.ht

  3. CrayConv V1.0

    Energy Science and Technology Software Center (OSTI)

    2002-06-01

    Cray Convert converts a Fortran unformatted file from Cray file format to generic Fortran 77 file format, includes automatic conversion of Cray binary data representation to IEEE binary data representation. Each 64-bit word is categorized into a floating-point, integer, or character data based on permissable bit patterns for that data. Can distinguish automatically between different datatypes in the file and automatically pick the correct way to convert the data correctly.

  4. jp303844t 1..10

    Office of Scientific and Technical Information (OSTI)

    Ab Initio Thermodynamic Study of the CO 2 Capture Properties of Potassium Carbonate Sesquihydrate, K 2 CO 3 *1.5H 2 O Yuhua Duan,* ,† David R. Luebke, † Henry W. Pennline, † Bingyun Li, †,‡ Michael J. Janik, § and J. Woods Halley ∥ † National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, United States ‡ School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States § Department of Chemical

  5. High Level Architecture - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2014-05-13

    This package enables an Umbra simulation to join an HLA federation to co-simulate with other simulations such as another Umbra instance and OpNet. This enables higher fidelity models to be incorporated into an Umbra simulation. This also enables existing simulations/models to be integrated into Umbra without the need of writing the code specifically for Umbra.

  6. Hubs+ Report Appendix 1_0.pdf

    Office of Environmental Management (EM)

  7. Cpp Utility - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2014-09-08

    A collection of general Umbra modules that are reused by other Umbra libraries. These capabilities include line segments, file utilities, color utilities, string utilities (for std::string), list utilities (for std ::vector ), bounding box intersections, range limiters, simple filters, cubic roots solvers and a few other utilities.

  8. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  9. Battling bird flu by the numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  10. WIPP Documents - All documents by number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note: Documents that do not have document numbers are not included in this listing. Large file size alert This symbol means the document may be a large file size. All documents by number Common document prefixes DOE/CAO DOE/TRU DOE/CBFO DOE/WIPP DOE/EA NM DOE/EIS Other DOE/CAO Back to top DOE/CAO 95-1095, Oct. 1995 Remote Handled Transuranic Waste Study This study was conducted to satisfy the requirements defined by the WIPP Land Withdrawal Act and considered by DOE to be a prudent exercise in

  11. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  12. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  13. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  14. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  15. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 132,938 134,394 135,557 136,382 1987-2014 Sales 131,986 132,697 134,165 135,235...

  16. West Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    343,837 344,131 342,069 340,256 340,102 338,652 1987-2014 Sales 344,125 342,063 340,251 340,098 338,649 1997-2014 Transported 6 6 5 4 3 1997-2014 Commercial Number of Consumers...

  17. Connecticut Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    489,349 490,185 494,970 504,138 513,492 522,658 1986-2014 Sales 489,380 494,065 503,241 512,110 521,460 1997-2014 Transported 805 905 897 1,382 1,198 1997-2014 Commercial Number of...

  18. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  19. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  20. Maine Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20,806 21,142 22,461 23,555 24,765 27,047 1987-2014 Sales 21,141 22,461 23,555 24,765 27,047 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 8,815 9,084...

  1. South Dakota Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    173,856 176,204 179,042 1997-2014 Commercial Number of Consumers 22,071 22,267 22,570 22,955 23,214 23,591 1987-2014 Sales 22,028 22,332 22,716 22,947 23,330 1998-2014...

  2. Rhode Island Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    24,846 225,204 225,828 228,487 231,763 233,786 1987-2014 Sales 225,204 225,828 228,487 231,763 233,786 1997-2014 Commercial Number of Consumers 22,988 23,049 23,177 23,359 23,742 23,934 1987-2014 Sales 21,507 21,421 21,442 21,731 21,947 1998-2014 Transported 1,542 1,756 1,917 2,011 1,987 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 467 454 468 432 490 551 1967-2014 Industrial Number of Consumers 260 249 245 248 271 266 1987-2014 Sales 57 53 56 62 62 1998-2014 Transported 192

  3. South Carolina Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    565,774 570,797 576,594 583,633 593,286 604,743 1987-2014 Sales 570,797 576,594 583,633 593,286 604,743 1997-2014 Commercial Number of Consumers 55,850 55,853 55,846 55,908 55,997 56,172 1987-2014 Sales 55,776 55,760 55,815 55,902 56,074 1998-2014 Transported 77 86 93 95 98 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 393 432 396 383 426 452 1967-2014 Industrial Number of Consumers 1,358 1,325 1,329 1,435 1,452 1,426 1987-2014 Sales 1,139 1,137 1,215 1,223 1,199 1998-2014

  4. Tennessee Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ,083,573 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1987-2014 Sales 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1997-2014 Commercial Number of Consumers 127,704 127,914 128,969 130,139 131,091 131,001 1987-2014 Sales 127,806 128,866 130,035 130,989 130,905 1998-2014 Transported 108 103 104 102 96 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 406 439 404 345 411 438 1967-2014 Industrial Number of Consumers 2,717 2,702 2,729 2,679 2,581 2,595 1987-2014 Sales 2,340

  5. Texas Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,248,613 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 1987-2014 Sales 4,287,929 4,326,076 4,369,990 4,424,037 4,469,220 1997-2014 Transported 566 80 67 66 62 1997-2014 Commercial Number of Consumers 313,384 312,277 314,041 314,811 314,036 317,217 1987-2014 Sales 310,842 312,164 312,574 311,493 313,971 1998-2014 Transported 1,435 1,877 2,237 2,543 3,246 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 534 605 587 512 553 583 1967-2014 Industrial Number of Consumers 8,581

  6. Kentucky Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    754,761 758,129 759,584 757,790 761,575 760,131 1987-2014 Sales 728,940 730,602 730,184 736,011 735,486 1997-2014 Transported 29,189 28,982 27,606 25,564 24,645 1997-2014 Commercial Number of Consumers 83,862 84,707 84,977 85,129 85,999 85,318 1987-2014 Sales 80,541 80,392 80,644 81,579 81,026 1998-2014 Transported 4,166 4,585 4,485 4,420 4,292 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 423 435 407 361 435 469 1967-2014 Industrial Number of Consumers 1,715 1,742 1,705 1,720

  7. Louisiana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    889,570 893,400 897,513 963,688 901,635 899,378 1987-2014 Sales 893,400 897,513 963,688 901,635 899,378 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 58,396 58,562 58,749 63,381 59,147 58,611 1987-2014 Sales 58,501 58,685 63,256 58,985 58,438 1998-2014 Transported 61 64 125 162 173 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 405 461 441 415 488 532 1967-2014 Industrial Number of Consumers 954 942 920 963 916 883 1987-2014 Sales 586 573 628 570 546

  8. Maryland Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    067,807 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1987-2014 Sales 923,870 892,844 867,627 852,555 858,352 1997-2014 Transported 147,696 184,324 211,351 246,717 242,940 1997-2014 Commercial Number of Consumers 75,771 75,192 75,788 75,799 77,117 77,846 1987-2014 Sales 54,966 53,778 52,383 52,763 53,961 1998-2014 Transported 20,226 22,010 23,416 24,354 23,885 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 912 898 891 846 923 961 1967-2014 Industrial Number of Consumers

  9. Mississippi Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    437,715 436,840 442,479 442,840 445,589 444,423 1987-2014 Sales 436,840 439,511 440,171 442,974 444,423 1997-2014 Transported 0 2,968 2,669 2,615 0 2010-2014 Commercial Number of Consumers 50,713 50,537 50,636 50,689 50,153 50,238 1987-2014 Sales 50,503 50,273 50,360 49,829 50,197 1998-2014 Transported 34 363 329 324 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 377 419 400 352 388 442 1967-2014 Industrial Number of Consumers 1,141 980 982 936 933 943 1987-2014 Sales 860 853

  10. Missouri Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    348,781 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1987-2014 Sales 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1997-2014 Transported 0 0 0 0 0 2010-2014 Commercial Number of Consumers 140,633 138,670 138,214 144,906 142,495 143,024 1987-2014 Sales 137,342 136,843 143,487 141,047 141,477 1998-2014 Transported 1,328 1,371 1,419 1,448 1,547 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 437 441 451 378 453 510 1967-2014 Industrial Number of Consumers 3,573 3,541 3,307

  11. Montana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    255,472 257,322 259,046 259,957 262,122 265,849 1987-2014 Sales 256,841 258,579 259,484 261,637 265,323 1997-2014 Transported 481 467 473 485 526 2005-2014 Commercial Number of Consumers 33,731 34,002 34,305 34,504 34,909 35,205 1987-2014 Sales 33,652 33,939 33,967 34,305 34,558 1998-2014 Transported 350 366 537 604 647 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 699 602 651 557 601 612 1967-2014 Industrial Number of Consumers 396 384 381 372 372 369 1987-2014 Sales 312 304

  12. Utah Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    810,442 821,525 830,219 840,687 854,389 869,052 1987-2014 Sales 821,525 830,219 840,687 854,389 869,052 1997-2014 Commercial Number of Consumers 60,781 61,976 62,885 63,383 64,114 65,134 1987-2014 Sales 61,929 62,831 63,298 63,960 64,931 1998-2014 Transported 47 54 85 154 203 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 609 621 643 558 646 586 1967-2014 Industrial Number of Consumers 293 293 286 302 323 328 1987-2014 Sales 205 189 189 187 178 1998-2014 Transported 88 97 113

  13. Vermont Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    37,242 38,047 38,839 39,917 41,152 42,231 1987-2014 Sales 38,047 38,839 39,917 41,152 42,231 1997-2014 Commercial Number of Consumers 5,085 5,137 5,256 5,535 5,441 5,589 1987-2014 Sales 5,137 5,256 5,535 5,441 5,589 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 488 464 472 418 873 864 1967-2014 Industrial Number of Consumers 36 38 36 38 13 13 1987-2014 Sales 37 35 38 13 13 1998-2014 Transported 1 1 0 0 0 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 80,290

  14. Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,124,717 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 1987-2014 Sales 1,076,080 1,081,581 1,088,340 1,102,646 1,114,224 1997-2014 Transported 57,023 63,468 67,296 67,515 69,670 1997-2014 Commercial Number of Consumers 95,704 95,401 96,086 96,503 97,499 98,741 1987-2014 Sales 85,521 85,522 85,595 86,618 87,470 1998-2014 Transported 9,880 10,564 10,908 10,881 11,271 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 707 722 669 624 699 731 1967-2014 Industrial Number of

  15. Washington Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231 99,674 100,038 100,939 101,730 1987-2014 Sales 99,166 99,584 99,930 100,819 101,606 1998-2014 Transported 65 90 108 120 124 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 517 567 534 553 535 1967-2014 Industrial Number of Consumers 3,428 3,372 3,353 3,338 3,320 3,355 1987-2014 Sales 3,056 3,031

  16. Wisconsin Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    656,614 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1987-2014 Sales 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 163,843 164,173 165,002 165,657 166,845 167,901 1987-2014 Sales 163,060 163,905 164,575 165,718 166,750 1998-2014 Transported 1,113 1,097 1,082 1,127 1,151 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 558 501 528 465 596 637 1967-2014 Industrial Number of Consumers 6,396 6,413 6,376

  17. Wyoming Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    153,062 153,852 155,181 157,226 158,889 160,896 1987-2014 Sales 117,735 118,433 118,691 117,948 118,396 1997-2014 Transported 36,117 36,748 38,535 40,941 42,500 1997-2014 Commercial Number of Consumers 19,843 19,977 20,146 20,387 20,617 20,894 1987-2014 Sales 14,319 14,292 14,187 14,221 14,452 1998-2014 Transported 5,658 5,854 6,200 6,396 6,442 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 523 558 580 514 583 583 1967-2014 Industrial Number of Consumers 130 120 123 127 132 131

  18. Nebraska Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    512,551 510,776 514,481 515,338 527,397 522,408 1987-2014 Sales 442,413 446,652 447,617 459,712 454,725 1997-2014 Transported 68,363 67,829 67,721 67,685 67,683 1997-2014 Commercial Number of Consumers 56,454 56,246 56,553 56,608 58,005 57,191 1987-2014 Sales 40,348 40,881 41,074 42,400 41,467 1998-2014 Transported 15,898 15,672 15,534 15,605 15,724 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 569 568 468 555 567 1967-2014 Industrial Number of Consumers 7,863 7,912 7,955

  19. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    760,391 764,435 772,880 782,759 794,150 808,970 1987-2014 Sales 764,435 772,880 782,759 794,150 808,970 1997-2014 Commercial Number of Consumers 41,303 40,801 40,944 41,192 41,710 42,338 1987-2014 Sales 40,655 40,786 41,023 41,536 42,163 1998-2014 Transported 146 158 169 174 175 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 715 722 751 704 748 687 1967-2014 Industrial Number of Consumers 192 184 177 177 195 218 1987-2014 Sales 152 147 146 162 183 1998-2014 Transported 32 30 31

  20. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    96,924 95,361 97,400 99,738 98,715 99,146 1987-2014 Sales 95,360 97,400 99,738 98,715 99,146 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 16,937 16,645 17,186 17,758 17,298 17,421 1987-2014 Sales 15,004 15,198 15,429 14,685 14,527 1998-2014 Transported 1,641 1,988 2,329 2,613 2,894 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 587 505 517 458 532 540 1967-2014 Industrial Number of Consumers 155 306 362 466 403 326 1987-2014 Sales 31 25 30 35 45

  1. New Mexico Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of Consumers 48,846 48,757 49,406 48,914 50,163 55,689 1987-2014 Sales 45,679 46,104 45,298 46,348 51,772 1998-2014 Transported 3,078 3,302 3,616 3,815 3,917 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 506 516 507 509 534 461 1967-2014 Industrial Number of Consumers 471 438 360 121 123 116 1987-2014 Sales 390

  2. North Dakota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22,065 123,585 125,392 130,044 133,975 137,972 1987-2014 Sales 123,585 125,392 130,044 133,975 137,972 1997-2014 Transported 0 0 0 0 0 2004-2014 Commercial Number of Consumers 17,632 17,823 18,421 19,089 19,855 20,687 1987-2014 Sales 17,745 18,347 19,021 19,788 20,623 1998-2014 Transported 78 74 68 67 64 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 623 578 596 543 667 677 1967-2014 Industrial Number of Consumers 279 307 259 260 266 269 1987-2014 Sales 255 204 206 211 210

  3. Oklahoma Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 94,314 92,430 93,903 94,537 95,385 96,004 1987-2014 Sales 88,217 89,573 90,097 90,861 91,402 1998-2014 Transported 4,213 4,330 4,440 4,524 4,602 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 439 452 430 382 464 489 1967-2014 Industrial Number of Consumers 2,618 2,731 2,733 2,872 2,958 3,063 1987-2014

  4. Oregon Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    675,582 682,737 688,681 693,507 700,211 707,010 1987-2014 Sales 682,737 688,681 693,507 700,211 707,010 1997-2014 Commercial Number of Consumers 76,893 77,370 77,822 78,237 79,276 80,480 1987-2014 Sales 77,351 77,793 78,197 79,227 80,422 1998-2014 Transported 19 29 40 49 58 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 387 352 390 368 386 353 1967-2014 Industrial Number of Consumers 1,051 1,053 1,066 1,076 1,085 1,099 1987-2014 Sales 821 828 817 821 839 1998-2014 Transported

  5. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  6. Colorado Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,622,434 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 1986-2014 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1,690,576 1997-2014 Transported 5 5 5 5 5 1997-2014 Commercial Number of Consumers 145,624 145,460 145,837 145,960 150,145 150,235 1986-2014 Sales 145,236 145,557 145,563 149,826 149,921 1998-2014 Transported 224 280 397 319 314 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 429 396 383 355 392 386 1967-2014 Industrial Number of Consumers 5,084 6,232 6,529 6,906

  7. Delaware Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    9,006 150,458 152,005 153,307 155,627 158,502 1986-2014 Sales 150,458 152,005 153,307 155,627 158,502 1997-2014 Commercial Number of Consumers 12,839 12,861 12,931 12,997 13,163 13,352 1986-2014 Sales 12,706 12,656 12,644 12,777 12,902 1998-2014 Transported 155 275 353 386 450 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 910 948 810 772 849 890 1967-2014 Industrial Number of Consumers 112 114 129 134 138 141 1987-2014 Sales 40 35 29 28 28 1998-2014 Transported 74 94 105 110

  8. Florida Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    674,090 675,551 679,199 686,994 694,210 703,535 1986-2014 Sales 661,768 664,564 672,133 679,191 687,766 1997-2014 Transported 13,783 14,635 14,861 15,019 15,769 1997-2014 Commercial Number of Consumers 59,549 60,854 61,582 63,477 64,772 67,460 1986-2014 Sales 41,750 41,068 41,102 40,434 41,303 1998-2014 Transported 19,104 20,514 22,375 24,338 26,157 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 846 888 869 861 926 929 1967-2014 Industrial Number of Consumers 607 581 630 507 528

  9. Georgia Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    1,744,934 1,740,587 1,740,006 1,739,543 1,805,425 1,755,847 1986-2014 Sales 321,290 321,515 319,179 377,652 315,562 1997-2014 Transported 1,419,297 1,418,491 1,420,364 1,427,773 1,440,285 1997-2014 Commercial Number of Consumers 127,347 124,759 123,454 121,243 126,060 122,573 1986-2014 Sales 32,318 32,162 31,755 36,556 31,845 1998-2014 Transported 92,441 91,292 89,488 89,504 90,728 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 421 482 458 428 454 482 1967-2014 Industrial Number

  10. Hawaii Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    25,466 25,389 25,305 25,184 26,374 28,919 1987-2014 Sales 25,389 25,305 25,184 26,374 28,919 1998-2014 Commercial Number of Consumers 2,535 2,551 2,560 2,545 2,627 2,789 1987-2014 Sales 2,551 2,560 2,545 2,627 2,789 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 691 697 691 727 713 692 1980-2014 Industrial Number of Consumers 25 24 24 22 22 23 1997-2014 Sales 24 24 22 22 23 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 13,753 14,111 15,087 16,126 17,635 17,

  11. Idaho Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    42,277 346,602 350,871 353,963 359,889 367,394 1987-2014 Sales 346,602 350,871 353,963 359,889 367,394 1997-2014 Commercial Number of Consumers 38,245 38,506 38,912 39,202 39,722 40,229 1987-2014 Sales 38,468 38,872 39,160 39,681 40,188 1998-2014 Transported 38 40 42 41 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 412 390 433 404 465 422 1967-2014 Industrial Number of Consumers 187 184 178 179 183 189 1987-2014 Sales 108 103 105 109 115 1998-2014 Transported 76 75 74 74 74

  12. Iowa Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    875,781 879,713 883,733 892,123 895,414 900,420 1987-2014 Sales 879,713 883,733 892,123 895,414 900,420 1997-2014 Commercial Number of Consumers 98,416 98,396 98,541 99,113 99,017 99,182 1987-2014 Sales 96,996 97,075 97,580 97,334 97,409 1998-2014 Transported 1,400 1,466 1,533 1,683 1,773 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 576 525 526 442 572 579 1967-2014 Industrial Number of Consumers 1,626 1,528 1,465 1,469 1,491 1,572 1987-2014 Sales 1,161 1,110 1,042 1,074 1,135

  13. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers 84,715 84,446 84,874 84,673 84,969 85,867 1987-2014 Sales 78,310 78,559 78,230 78,441 79,231 1998-2014 Transported 6,136 6,315 6,443 6,528 6,636 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 384 377 378 301 391 425 1967-2014 Industrial Number of Consumers 7,793 7,664 7,954 7,970 7,877 7,429 1987-2014

  14. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    785,005 778,985 772,892 767,396 765,957 769,418 1986-2014 Sales 778,985 772,892 767,396 765,957 769,418 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 67,674 68,163 67,696 67,252 67,136 67,806 1986-2014 Sales 68,017 67,561 67,117 67,006 67,677 1998-2014 Transported 146 135 135 130 129 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 359 397 371 320 377 406 1967-2014 Industrial Number of Consumers 3,057 3,039 2,988 3,045 3,143 3,244 1986-2014 Sales 2,758

  15. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    120,124 121,166 121,736 122,983 124,411 126,416 1986-2014 Sales 121,166 121,736 122,983 124,411 126,416 1997-2014 Commercial Number of Consumers 13,215 12,998 13,027 13,133 13,246 13,399 1986-2014 Sales 12,673 12,724 13,072 13,184 13,336 1998-2014 Transported 325 303 61 62 63 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 1,258 1,225 1,489 1,515 1,411 1,338 1967-2014 Industrial Number of Consumers 3 3 5 3 3 1 1987-2014 Sales 2 2 3 2 1 1998-2014 Transported 1 3 0 1 0 1998-2014

  16. Arizona Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,130,047 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1986-2014 Sales 1,138,448 1,146,280 1,157,682 1,171,997 1,186,788 1997-2014 Transported 0 6 6 6 6 1997-2014 Commercial Number of Consumers 57,191 56,676 56,547 56,532 56,585 56,649 1986-2014 Sales 56,510 56,349 56,252 56,270 56,331 1998-2014 Transported 166 198 280 315 318 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 564 577 558 581 538 1967-2014 Industrial Number of Consumers 390 368 371 379 383 386 1987-2014

  17. Arkansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    557,355 549,970 551,795 549,959 549,764 549,034 1986-2014 Sales 549,970 551,795 549,959 549,764 549,034 1997-2014 Commercial Number of Consumers 69,043 67,987 67,815 68,765 68,791 69,011 1986-2014 Sales 67,676 67,454 68,151 68,127 68,291 1998-2014 Transported 311 361 614 664 720 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 527 592 590 603 692 734 1967-2014 Industrial Number of Consumers 1,025 1,079 1,133 990 1,020 1,009 1986-2014 Sales 580 554 523 513 531 1998-2014 Transported

  18. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shatters records in first year of accelerated shipping effort October 3, 2012 Los Alamos National Laboratory shatters records in first year of accelerated shipping effort Volume, Number of Shipments Surpass Goals LOS ALAMOS, NEW MEXICO, October 3, 2012-In the first year of an effort to accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP), Los Alamos National Laboratory shattered its own record with 59 more shipments than planned, and became one of the largest

  19. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In memoriam: Michael Welcome 1957 - 2014 RIP Almgren CCSE Low Mach Number Models in Computational Astrophysics Ann Almgren Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory NUG 2014: NERSC@40 February 4, 2014 Collaborators: John Bell, Chris Malone, Andy Nonaka, Stan Woosley, Michael Zingale Almgren CCSE Introduction We often associate astrophysics with explosive phenomena: novae supernovae gamma-ray bursts X-ray bursts Type Ia Supernovae Largest

  20. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  1. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  2. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of

  3. Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System

    SciTech Connect (OSTI)

    Bucourt, Maximilian de, E-mail: mdb@charite.de; Streitparth, Florian, E-mail: florian.streitparth@charite.de; Collettini, Federico [Charite-University Medicine, Department of Radiology (Germany); Guettler, Felix [Jena University, Department of Radiology (Germany); Rathke, Hendrik; Lorenz, Britta; Rump, Jens; Hamm, Bernd [Charite-University Medicine, Department of Radiology (Germany); Teichgraeber, U. K. [Jena University, Department of Radiology (Germany)

    2012-02-15

    Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SD {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.

  4. Property:Number of Plants Included in Planned Estimate | Open...

    Open Energy Info (EERE)

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  5. Property:NumberOfLEDSTools | Open Energy Information

    Open Energy Info (EERE)

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  6. Property:Number of Color Cameras | Open Energy Information

    Open Energy Info (EERE)

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  7. Health Code Number (HCN) Development Procedure

    SciTech Connect (OSTI)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  8. The numbers will follow | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The numbers will follow September 26, 2008 As all of you well know, the safety performance of Jefferson Lab, our laboratory, has been nothing short of stellar over the past couple of years. To cap it all, you were subjected to what is usually rated as the toughest of the sit-down examinations, the HSS audit. Not only did you exceed expectations, but you did so by a large margin. A basis for this great result, as documented by the HSS team, was the engagement and commitment of the workforce, the

  9. Mo Year Report Period: EIA ID NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S.

  10. Experimental Stations by Number | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Experimental Stations by Number Beam Line by Techniques Photon Source Parameters Station Type Techniques Energy Range Contact Person Experimental Station 1-5 X-ray Materials Small-angle X-ray Scattering (SAXS) focused 4600-16000 eV Christopher J. Tassone Tim J. Dunn Experimental Station 2-1 X-ray Powder diffraction Thin film diffraction Focused 5000 - 14500 eV Apurva Mehta Charles Troxel Jr Experimental Station 2-2 X-ray X-ray Absorption Spectroscopy 1000-40000 eV Ryan Davis

  11. OMB Control Number: 1910-5165

    Energy Savers [EERE]

    OMB Control Number: 1910-5165 Expires: xx/xx/201x SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this Semi-Annual Davis-Bacon Enforcement Report to your site DOE/NNSA Contractor Human Resource Division (CHRD) Office. If you do not have a DOE/NNSA CHRD Office, please submit the report to: DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All

  12. What's Behind the Numbers? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What's Behind the Numbers? Dr. Richard Newell Dr. Richard Newell What does this mean for me? New website shows data on the why's, when's and how's of crude oil prices. Among the most visible prices that consumers may see on a daily basis are the ones found on the large signs at the gasoline stations alongside our streets and highways. The biggest single factor affecting gasoline prices is the cost of crude oil, the main raw material for gasoline production, which accounts for well over half the

  13. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  14. Michigan Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,169,026 3,152,468 3,153,895 3,161,033 3,180,349 3,192,807 1987-2014 Sales 2,952,550 2,946,507 2,939,693 2,950,315 2,985,315 1997-2014 Transported 199,918 207,388 221,340 230,034 207,492 1997-2014 Commercial Number of Consumers 252,017 249,309 249,456 249,994 250,994 253,127 1987-2014 Sales 217,325 213,995 212,411 213,532 219,240 1998-2014 Transported 31,984 35,461 37,583 37,462 33,887 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 649 611 656 578 683 736 1967-2014 Industrial

  15. New Jersey Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,635,324 2,649,282 2,659,205 2,671,308 2,686,452 2,705,274 1987-2014 Sales 2,556,514 2,514,492 2,467,520 2,428,664 2,482,281 1997-2014 Transported 92,768 144,713 203,788 257,788 222,993 1997-2014 Commercial Number of Consumers 234,125 234,158 234,721 237,602 236,746 240,083 1987-2014 Sales 200,680 196,963 192,913 185,030 186,591 1998-2014 Transported 33,478 37,758 44,689 51,716 53,492 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 771 775 817 735 726 842 1967-2014 Industrial

  16. Ohio Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,253,184 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 1987-2014 Sales 1,418,217 1,352,292 855,055 636,744 664,015 1997-2014 Transported 1,822,402 1,883,868 2,389,219 2,634,330 2,619,854 1997-2014 Commercial Number of Consumers 270,596 268,346 268,647 267,793 269,081 269,758 1987-2014 Sales 92,621 85,877 51,308 35,966 37,035 1998-2014 Transported 175,725 182,770 216,485 233,115 232,723 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 594 583 601 543 625 679 1967-2014

  17. California Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    0,510,950 10,542,584 10,625,190 10,681,916 10,754,908 10,781,720 1986-2014 Sales 10,469,734 10,545,585 10,547,706 10,471,814 10,372,973 1997-2014 Transported 72,850 79,605 134,210 283,094 408,747 1997-2014 Commercial Number of Consumers 441,806 439,572 440,990 442,708 444,342 443,115 1986-2014 Sales 399,290 390,547 387,760 387,806 385,878 1998-2014 Transported 40,282 50,443 54,948 56,536 57,237 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 561 564 558 572 574 536 1967-2014

  18. Illinois Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,839,438 3,842,206 3,855,942 3,878,806 3,838,120 3,868,501 1987-2014 Sales 3,568,120 3,594,047 3,605,796 3,550,217 3,570,339 1997-2014 Transported 274,086 261,895 273,010 287,903 298,162 1997-2014 Commercial Number of Consumers 294,226 291,395 293,213 297,523 282,743 294,391 1987-2014 Sales 240,197 241,582 244,480 225,913 235,097 1998-2014 Transported 51,198 51,631 53,043 56,830 59,294 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 757 680 735 632 816 837 1967-2014 Industrial

  19. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  20. U.S. Natural Gas Number of Commercial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) - Sales (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,823,842 4,599,494 2000's 4,576,873 4,532,034 4,588,964 4,662,853 4,644,363 4,698,626 4,733,822 2010's 4,584,884 4,556,220 4,518,745 4,491,326 4,533,729 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: