National Library of Energy BETA

Sample records for 1 2009-2011 revision

  1. WindSENSE Project Summary: FY2009-2011

    SciTech Connect (OSTI)

    Kamath, C

    2011-09-25

    Renewable resources, such as wind and solar, are providing an increasingly larger percentage of our energy needs. To successfully integrate these intermittent resources into the power grid while maintaining its reliability, we need to better understand the characteristics and predictability of the variability associated with these power generation resources. WindSENSE, a three year project at Lawrence Livermore National Laboratory, considered the problem of scheduling wind energy on the grid from the viewpoint of the control room operator. Our interviews with operators at Bonneville Power Administration (BPA), Southern California Edison (SCE), and California Independent System Operator (CaISO), indicated several challenges to integrating wind power generation into the grid. As the percentage of installed wind power has increased, the variable nature of the generation has become a problem. For example, in the Bonneville Power Administration (BPA) balancing area, the installed wind capacity has increased from 700 MW in 2006-2007 to over 1300 MW in 2008 and more than 2600 MW in 2009. To determine the amount of energy to schedule for the hours ahead, operators typically use 0-6 hour ahead forecasts, along with the actual generation in the previous hours and days. These forecasts are obtained from numerical weather prediction (NWP) simulations or based on recent trends in wind speed in the vicinity of the wind farms. However, as the wind speed can be difficult to predict, especially in a region with complex terrain, the forecasts can be inaccurate. Complicating matters are ramp events, where the generation suddenly increases or decreases by a large amount in a short time (Figure 1, right panel). These events are challenging to predict, and given their short duration, make it difficult to keep the load and the generation balanced. Our conversations with BPA, SCE, and CaISO indicated that control room operators would like (1) more accurate wind power generation forecasts

  2. Radiological control manual. Revision 1

    SciTech Connect (OSTI)

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  3. FTCP Corrective Action Plan- Revision 1

    Broader source: Energy.gov [DOE]

    January 2007 FTCP Corrective Action Plan, Revision 1, which is Deliverable B for Commitment 13 in the Department of Energy (DOE) Implementation Plan to Improve Oversight of Nuclear Operations, issued in response to Defense Nuclear Facilities Safety Board Recommendation 2004- 1, Oversight of Complex, High-Hazard Nuclear Operations

  4. Hanford Site technical baseline database. Revision 1

    SciTech Connect (OSTI)

    Porter, P.E.

    1995-01-27

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available.

  5. Revisions

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2004-14 million barrels Revisions a Net of Sales b New Reservoir Proved d Change Net and and New Field Discoveries Total c Estimated Reserves from Adjustments Revisions Adjustments Acquisitions Extensions Discoveries in Old Fields Discoveries Production 12/31 Prior Year Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 2004 80 444 524 37 731 36 159 926 2,001 22,592 -514 2005 237 558 795 327 946 209 57 1,212

  6. Revisions

    U.S. Energy Information Administration (EIA) Indexed Site

    proved reserves of natural gas, wet after lease separation, 2001-14 billion cubic feet Revisions a Net of Sales b New Reservoir Proved d Change Net and and New Field Discoveries Total c Estimated Reserves from Adjustments Revisions Adjustments Acquisitions Extensions Discoveries in Old Fields Discoveries Production 12/31 Prior Year Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Total natural gas (billion cubic feet) 2001 1,849 -2,438 -589 2,715 17,183 3,668 2,898 23,749 20,642 191,743 5,233

  7. Core fluctuations test. Revision 1

    SciTech Connect (OSTI)

    Betts, W.S.

    1987-06-01

    Fluctuations were first encountered in the Fort St. Vrain reactor early in cycle 1 operation, during the initial rise from 40% to 70% power. Subsequent in-core tests and operation throughout cycles 1 and 2 demonstrated that fluctuations were repeatable, occurring at core pressure drops of between 2.5 psi and 4.0 psi, and that in each instance their characteristics were very similar. Subsequently, tests and analysis were done to understand the core fluctuation phenomenon. These efforts also lead to a design fix which stopped these fluctuations in the FSV reactor core. This fix required that keys be used in addition to the keys in the core support floor which already existed. This report outlines a test plan to validate that core fluctuations will not occur in the MHTGR core. 2 refs., 12 figs., 3 tabs.

  8. Revised DOE Acquisition Guide Chapter 71.1 Headquarters Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    71.1 Headquarters Business Clearance Process Revised DOE Acquisition Guide Chapter 71.1 Headquarters Business Clearance Process There was mention in the National Academy of Public ...

  9. Acquisition Planning: Revised DOE Acquisition Guide Chapter 7.1 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE Acquisition Guide Chapter 7.1 Acquisition Planning: Revised DOE Acquisition Guide Chapter 7.1 Acquisition Guide Chapter 7.1 is revised to remind the planner when planning for an interagency acquisition to perform a determination of best procurement approach, business case analysis and/or Economy Act determinations and findings, as applicable, in accordance with Federal Acquisition Regulation (FAR) 17.5 Interagency Acquisitions. Revisions to the guide chapter add to

  10. Master equipment list -- Phase 1. Revision 1

    SciTech Connect (OSTI)

    Jech, J.B.

    1995-04-28

    The purpose of this document is to define the system requirements for the Master Equipment List (MEL) Phase 1 project. The intended audience for this document includes Data Automation Engineering (DAE), Configuration Management Improvement and Control Engineering (CMI and CE), Data Administration Council (DAC), and Tank Waste Remedial System (TWRS) personnel. The intent of Phase 1 is to develop a user-friendly system to support the immediate needs of the TWRS labeling program. Phase 1 will provide CMI and CE the ability to administrate, distribute, and maintain key information generated by the labeling program. CMI and CE is assigning new Equipment Identification Numbers (EINs) to selected equipment in Tank Farms per the TWRS Data Standard ``Tank Farm Equipment Identification Number``. The MEL Phase 1 system will be a multi-user system available through the HLAN network. It will provide basic functions such as view, query, and report, edit, data entry, password access control, administration and change control. The scope of Phase 1 data will encompass all Tank Farm Equipment identified by the labeling program. The data will consist of fields from the labeling program`s working database, relational key references and pointers, safety class information, and field verification data.

  11. Microsoft Word - FINAL Class 1 Revise TRUPACT-III Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A.1 A-4 A-3 Item 1 Description: Revise the language in Attachment A1, "Container Storage," Section A1-1c(1) "TRUPACT-III Management" to address manual bolt removal from the ...

  12. Notice of Intent to Revise DOE O 457.1, Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-07

    Intent is to revise DOE O 457.1 and include the content of DOE M 457.1-1 as appendices to the revised order.

  13. Notice of Intent to Revise Department of Energy Guide 424.1-1B...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AU) is proposing to perform a full revision of DOE Guide 424.1-1B to incorporate lessons learned identified by DOE Program Offices since the Guide's last full revision in...

  14. Acquisition Planning: Revised DOE Acquisition Guide Chapter 7.1

    Broader source: Energy.gov [DOE]

    Acquisition Guide Chapter 7.1 is revised to update references to DOE orders from 413.3A to 413.3B and 430.2A to 436.1 and DOE manual 413.3-1 to DOE Guide 413.3-13. Revisions to references for the DOE orders and DOE Guide are identified by vertical lines in the left margin.

  15. Acquisition Planning: Revised DOE Acquisition Guide Chapter 7.1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Acquisition Guide Chapter 7.1 is revised to remind the planner when planning for an interagency acquisition to perform a determination of best procurement approach, business case analysis and/or Economy Act determinations and findings, as applicable, in accordance with Federal Acquisition Regulation (FAR) 17.5 Interagency Acquisitions. Revisions to the guide chapter add to references FAR 17.5 and related guide chapter 17.1. Also, two revisions in the chapter are identified by vertical lines in the left margin on pages 11 and 14.

  16. Microsoft Word - CHAP02ESH _REVISED1_3.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHAP02ESH _REVISED1_3.doc Microsoft Word - CHAP02ESH _REVISED1_3.doc Microsoft Word - CHAP02ESH _REVISED1_3.doc (183.77 KB) More Documents & Publications Regulatory Aspects of ISM COMMENTS� A:\CHAP05PERFASSM(REVISED).PDF�

  17. Revision to DOE Order 435.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management » Compliance » Revision to DOE Order 435.1 Revision to DOE Order 435.1 The Office of Environmental Management has primary responsibility, within DOE, for DOE Order 435.1, the self-regulation of radioactive waste management. As part of this responsibility, EM has decided to update the Order to incorporate several changes to the regulatory process that have taken place over the last decade as well as streamline the Order to improve management of the waste. A comprehensive

  18. Acquisition Planning: Revised DOE Acquisition Guide Chapter 7.1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Acquisition Guide Chapter 7.1 has been revised to remove the requirement of obtaining the Deputy Secretary's approval of any Acquisition Plan for a contract exceeding $100 million. (The requirement appeared in the BACKGROUND section under the paragraph "Review and Approval Levels.")

  19. ADMINISTRATIVE RECORDS SCHEDULE 1: PERSONNEL RECORDS (Revision...

    Broader source: Energy.gov (indexed) [DOE]

    programs, job vacancies, unemployment compensation, recruitment and employee health ADM 10.pdf More Documents & Publications Administrative Records Schedule 1 ADMINISTRATIVE...

  20. Notice of Intent to Revise DOE O 483.1, Cooperative Research and Development Agreements and DOE M 483.1-1, Cooperative Research and Development Agreements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-21

    Justification memorandum approving revision of the outdated DOE O 483.1 to incorporate DOE M 483.1-1 into the revised order.

  1. Microsoft Word - PMTO 16-003 Technical Proposal revision 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE CERCLA Structured Improvement Activity Revision Number: 1 Date: May 04, 2016 Start: May 09, 2016 Finish: September 30, 2016 1.0 DESCRIPTION MSA will provide subject matter experts to provide facilitation and project management support for Operating Excellence (OE) Structured Improvement Activities (SIA) for the Department of Energy Richland Operations Office CERCLA processes using Lean Six Sigma methodology. The subject matter experts will have training and background experience in project

  2. Desalination with carbon aerogel electrodes. Revision 1

    SciTech Connect (OSTI)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.; Thomson, S.L.; May, S.C.

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  3. Perspectives on reactor safety. Revision 1

    SciTech Connect (OSTI)

    Haskin, F.E.; Camp, A.L.; Hodge, S.A.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  4. International Energy: Subject Thesaurus. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The International Energy Agency: Subject Thesaurus contains the standard vocabulary of indexing terms (descriptors) developed and structured to build and maintain energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the International Energy Agency`s Energy Technology Data Exchange (ETDE) and (2) the International Atomic Energy Agency`s International Nuclear Information System (INIS) staff representing the more than 100 countries and organizations that record and index information for the international nuclear information community. ETDE member countries are also members of INIS. Nuclear information prepared for INIS by ETDE member countries is included in the ETDE Energy Database, which contains the online equivalent of the printed INIS Atomindex. Indexing terminology is therefore cooperatively standardized for use in both information systems. This structured vocabulary reflects thscope of international energy research, development, and technological programs. The terminology of this thesaurus aids in subject searching on commercial systems, such as ``Energy Science & Technology`` by DIALOG Information Services, ``Energy`` by STN International and the ``ETDE Energy Database`` by SilverPlatter. It is also the thesaurus for the Integrated Technical Information System (ITIS) online databases of the US Department of Energy.

  5. Nevada Test Site Radiological Control Manual. Revision 1

    SciTech Connect (OSTI)

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  6. Seismic analyses of equipment in 2736-Z complex. Revision 1

    SciTech Connect (OSTI)

    Ocoma, E.C.

    1995-04-01

    This report documents the structural qualification for the existing equipment when subjected to seismic loading in the Plutonium Storage Complex. It replaces in entirety Revision 0 and reconciles the U.S. Department of Energy (DOE) comments on Revision 0. The Complex consists of 2736-Z Building (plutonium storage vault), 2736-ZA Building (vault ventilation equipment building), and 2736-ZB Building (shipping/receiving, repackaging activities). The existing equipment structurally qualified in this report are the metal storage racks for 7 inch and lard cans in room 2 of Building 2736-Z; the cubicles, can holders and pedestals in rooms 1, 3, and 4 of Building 2736-Z; the ventilation duct including exhaust fans/motors, emergency diesel generator, and HEPA filter housing in Building 2736-ZA; the repackaging glovebox in Building 2736-ZB; and the interface duct between Buildings 2736-Z and 2736-ZA.

  7. A:\\ZAPPENDA1Matrix(FAR)(REVISED).PDF | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rix(FAR)(REVISED).PDF&0; More Documents & Publications Microsoft Word - Appendix A2006Jun A:ZAPPENDA3Matrix(DOEandOther)(REVISED).PDF&0; Acquisition Guide Chapter 1.0 -...

  8. EIS-0288-S1: Revision to EPA Notice of Availability Draft Supplemental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0288-S1: Revision to EPA Notice of Availability Draft Supplemental Environmental ... For more information: http:energy.govnode299827 Download Document EIS-0288-S1: ...

  9. Acquisition Planning: Revised Acquisition Letter 2009-03 and Revised DOE Acquisition Guide Chapter 7.1

    Broader source: Energy.gov [DOE]

    Acquisition Letter (AL) 2009-03 and Acquisition Guide Chapter 7.1 have been revised to move the guidance regarding who approves an Acquisition Plan for a contract exceeding $1 00 million from the AL to the Acquisition Guide. To reflect the changes, AL-2009-03 Revision 1 has replaced AL-2009-03 and the affected parts of Acquisition Guide Chapter 7.1 have been modified. Additional minor revisions to the Guide chapter were made: references to obsolete AL 96-09 and obsolete AL 2006-1 1 were deleted; the requirement to begin acquisition planning for an M&O contract at least 18 months prior to contract expiration was changed to 24 months; minor editorial changes were made to the Property Management section; and attachment 2's milestone schedule was conformed to the SEB Monthly Status Report format (that status report was established in March 201 0; see http://management.enernv.gov/docurnents/SEBMonthly Status Remrtinn Requirement.pdf).

  10. Approved Site Treatment Plan, Volumes 1 and 2. Revision 4

    SciTech Connect (OSTI)

    Helmich, E.H.; Molen, G.; Noller, D.

    1996-03-22

    The US Department of Energy, Savannah River Operations Office (DOE-SR), has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume 1. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore, pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021. Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW. The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information.

  11. Notice of Intent to Revise DOE O 452.1D, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-05

    NNSA is proposing revisions for the suite of directives in order to (1) revise requirements to improve NES processes and (2) align the directives with the requirements of DOE Order 251.1C, Departmental Directives Program.

  12. Microsoft Word - FINAL Class 1 Revise TRUPACT-III Management Language 05-20-11.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 24, 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of a Class 1 Permit Modification to the Hazardous Waste Facility Permit, Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is a Class 1 Permit Modification Notification to: * Revise TRUPACT-III Management Language * Revise Procedure Reference for the Bolting Station in Table E-1 We

  13. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    SciTech Connect (OSTI)

    Clark, E.

    2013-09-13

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 ?C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  14. Acquisition Letter 09 - Revision of Department of Energy (DOE) Order 350.1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Special H Clause | Department of Energy 9 - Revision of Department of Energy (DOE) Order 350.1 and Special H Clause Acquisition Letter 09 - Revision of Department of Energy (DOE) Order 350.1 and Special H Clause The purpose of Acquisition Letter (AL) 2013-09 is to communicate the revisions to Chapters IV, Compensation; Chapter V, Benefits; and Chapter VI, DOE Contractor Pension Plans of DOE Order 350.1, Contractor Human Resource Management Programs (approved on April 29, 2013), and

  15. 2009.1 Revision of the Evaluated Nuclear Data Library (ENDL2009.1)

    SciTech Connect (OSTI)

    Thompson, I. J.; Beck, B.; Descalles, M. A.; Mattoon, C.; Summers, N. C.

    2015-05-11

    LLNL’s Computational Nuclear Data and Theory Group have created a 2009.1 revised release of the Evaluated Nuclear Data Library (ENDL2009.1). This library is designed to support LLNL’s current and future nuclear data needs and will be employed in nuclear reactor, nuclear security and stockpile stewardship simulations with ASC codes. The ENDL2009 database was the most complete nuclear database for Monte Carlo and deterministic transport of neutrons and charged particles. It was assembled with strong support from the ASC PEM and Attribution programs, leveraged with support from Campaign 4 and the DOE/Office of Science’s US Nuclear Data Program. This document lists the revisions and fixes made in a new release called ENDL2009.1, by comparing with the existing data in the original release which is now called ENDL2009.0. These changes are made in conjunction with the revisions for ENDL2011.1, so that both the .1 releases are as free as possible of known defects.

  16. Revised DOE Acquisition Guide Chapter 42.1 Indirect Rate Administration (October 2010)

    Broader source: Energy.gov [DOE]

    The Office of Procurement and Assistant Management (OPAM) has issued the above Acquisition Guide Chapter. DOE Acquisition Guide Chapter 42.1 Indirect Rate Administration has been revised to provide the current references and requirements.

  17. Guidance document for revision of DOE Order 5820.2A, Radioactive Waste Technical Support Program. Revision 1

    SciTech Connect (OSTI)

    Kudera, D.E.; McMurtrey, C.D.; Meagher, B.G.

    1993-04-01

    This document provides guidance for the revision of DOE Order 5820.2A, ``Radioactive Waste Management.`` Technical Working Groups have been established and are responsible for writing the revised order. The Technical Working Groups will use this document as a reference for polices and procedures that have been established for the revision process. The overall intent of this guidance is to outline how the order will be revised and how the revision process will be managed. In addition, this document outlines technical issues considered for inclusion by a Department of Energy Steering Committee.

  18. Proposed Revision of the Decay Heat Standard ANSI/ANS-5.1-2005

    SciTech Connect (OSTI)

    Gauld, Ian C; Rapp, Michelle Brady; Schmittroth, F.; Wilson, W.

    2010-01-01

    The ANSI/ANS-5.1 [1] standard on decay heat in light water reactors is one of the most widely used standards for reactor design and safety analysis. The standard was last revised and issued in 2005. The 2005 revision included several important accomplishments, including incorporation of ENDF/B-VI nuclear data in the development of correction factors implemented in the standard, and revisions to the 'simplified method.' The status of the 2005 ANS-5.1 standard has been summarized previously [2]. Future revisions of the standard under consideration, as proposed by the working group, were to (a) improve the neutron capture effect specification, (b) include contributions from actinides not already addressed by the standard, and (c) specify values for the total recoverable decay energy Q for major fissionable elements. These items are carried over from recommendations by Dickens et al. [3] during development of the 1994 revision. The current working group has also identified the representation of decay heat uncertainties as an area for improvement. This paper discusses recent development activities to further improve and extend the utility of the ANS-5.1 decay heat standard. These developments are in progress, and this paper summarizes the status of the activities. The proposed revisions discussed in this paper are being considered by the working group for adoption in the next publication of the standard.

  19. Notice of Intent to Revise Department of Energy Guide 580.1-1, Personal Property Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-30

    The purpose of this revision is to remove outdated language and incorporate changes that support and provide additional guidance to DOE Order 580.1A, dated March 30, 2012, DOE Personal Property Management Program.

  20. Revised SRC-I project baseline. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    International Coal Refining Company (ICRC), in cooperation with the Commonwealth of Kentucky has contracted with the United States Department of Energy (DOE) to design, build and operate a first-of-its-kind plant demonstrating the economic, environmental, socioeconomic and technical feasibility of the direct coal liquefaction process known as SRC-I. ICRC has made a massive commitment of time and expertise to design processes, plan and formulate policy, schedules, costs and technical drawings for all plant systems. These fully integrated plans comprise the Project Baseline and are the basis for all future detailed engineering, plant construction, operation, and other work set forth in the contract between ICRC and the DOE. Volumes I and II of the accompanying documents constitute the updated Project Baseline for the SRC-I two-stage liquefaction plant. International Coal Refining Company believes this versatile plant design incorporates the most advanced coal liquefaction system available in the synthetic fuels field. SRC-I two-stage liquefaction, as developed by ICRC, is the way of the future in coal liquefaction because of its product slate flexibility, high process thermal efficiency, and low consumption of hydrogen. The SRC-I Project Baseline design also has made important state-of-the-art advances in areas such as environmental control systems. Because of a lack of funding, the DOE has curtailed the total project effort without specifying a definite renewal date. This precludes the development of revised accurate and meaningful schedules and, hence, escalated project costs. ICRC has revised and updated the original Design Baseline to include in the technical documentation all of the approved but previously non-incorporated Category B and C and new Post-Baseline Engineering Change Proposals.

  1. Standard technical specifications: Combustion engineering plants. Volume 1, Revision 1: Specifications

    SciTech Connect (OSTI)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  2. Hanford Facility dangerous waste permit application, general information. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The current Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, number DOE/RL-91-28) and a treatment, storage, and/or disposal Unit-Specific Portion, which includes documentation for individual TSD units (e.g., document numbers DOE/RL-89-03 and DOE/RL-90-01). Both portions consist of a Part A division and a Part B division. The Part B division consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. Documentation contained in the General Information Portion (i.e., this document, number DOE/RL-91-28) is broader in nature and applies to all treatment, storage, and/or disposal units for which final status is sought. Because of its broad nature, the Part A division of the General Information Portion references the Hanford Facility Dangerous Waste Part A Permit Application (document number DOE/RL-88-21), a compilation of all Part A documentation for the Hanford Facility.

  3. JM to Revise DOE O 320.1, Acquiring and Positioning Human Resources--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-17

    Withdrawn 3-25-15. The revision will update the order to transfer the requirements of Chapter V, Merit Promotion and incorporate any other policies relating to staffing and internal placement that were absent in the previous DOE 320.1 Order into the proposed DOE Order 335.1 Merit Promotion Pl an and Internal Placement Order.

  4. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    11 0 -2 0 0 -1 -1 Honduras 0 0 -1 0 0 -3 -3 India 0 0 0 8 0 2 2 Italy 0 0 0 3 0 16 16 Japan 0 0 0 0 0 1 1 Korea, South 0 0 0 1 0 4 4 Latvia 0 0 0 0 1 0 1 Lithuania 0 0 0 0 0 19...

  5. Notice of Intent to Revise Department of Energy O 361.1B, Acquisition Career Management Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-01-24

    In accordance with Department of Energy (DOE) Order DOE O 251.1C, Departmental Directives Program, paragraph 7, pages 1-12 the purpose is to revise DOE Order 361.1B to reflect updates and changes since the last revision, January 24, 2008. The changes will align the Order with current Federal and Departmental directives.

  6. Notice of Intent to Revise DOE O 200.1A, Information Technology Management--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-12-15

    Withdrawn 3-24-14. Although DOE O 200.1A was revised in December 2008, there have been significant changes in IT governance processes and Departmental use of new technologies such as Web 2.0 technologies since that time.

  7. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Gases 5,202 15,123 23,191 36,994 - -1,344 1,693 1,039 79,122 5,357 EthaneEthylene 148 107 0 0 - 0 0 0 255 0 PropanePropylene 3,359 17,172 20,262 36,150 - -1,318 0...

  8. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,395 949 6,731 1,029 744 1,773 Non OPEC 928,991 3,672 19,941 130,776 874 9,600 10,474 Angola 81,615 10 1,979 1,923 0 0 0 Argentina 2,486 1 2,703 167 0 646 646 Aruba 0 0 0 23,145 0...

  9. Revisions to ANSI Z136.1-2007 : safe use of lasers.

    SciTech Connect (OSTI)

    Snell, Jonathan

    2008-10-01

    The parent document and cornerstone of the Z136 series of laser safety standards, the revised ANSI Z136.1 (2007) provides guidance for the safe use of lasers and laser systems by defining control measures for each of the four laser classes. As a result of advances in laser devices and applications, new guidelines have been incorporated into this 2007 revision. The new revision should be obtained by all laser end users and is a must for users of class 3B and 4 lasers as it renders all previous editions obsolete. Since the ANSI Z136.1 standard is the foundation of laser safety programs for industrial, military, medical, and educational applications nationwide, revisions to the previous version can and will affect the training and practice of laser safety in these environments. Changes to the previous version include the addition of new laser hazard classification definitions, new requirements for refresher training, and changes to medical surveillance requirements. The ANSI Z136.1 (2007) standard provides an updated and thorough set of guidelines for implementing a safe laser program. In addition to these changes, the standard covers laser safety program provisions including the duties and responsibilities of the LSO, non-beam hazards, administrative/engineering control measures, definitions, optical density, nominal hazard zone (NHZ), MPEs, accessible emission limit (AEL), bioeffects, standard operating procedures (SOPs), and example calculations.

  10. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    0 0 662 0 0 0 Ecuador 68,516 0 0 0 0 0 0 Finland 0 0 0 0 0 0 0 Germany 0 0 0 198 0 0 0 Japan 0 0 0 176 0 209 209 Korea, South 0 0 41 0 0 1,444 1,444 Malaysia 2,417 0 90 1,443 0 43...

  11. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Refining Districts, 2005 East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 2.5 0.9 2.4 4.2 1.2 0.9 3.1 Finished Motor...

  12. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Pentanes Plus 30 - 1 -17 - 0 6 1 6 Liquefied Petroleum Gases 172 4 9 -141 - 0 9 1 34 EthaneEthylene 82 0 0 -76 - 0 0 0 6 PropanePropylene 57 8 7 -39 - 0 0 0 33 Normal Butane...

  13. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oxygenates 29,966 1,285 31,251 26,396 9,648 5,726 41,770 Other HydrocarbonsHydrogen 0 0 0 1,077 678 587 2,342 Oxygenates 29,966 1,285 31,251 25,319 8,970 5,139 39,428...

  14. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 1,605 9 0 1 1,627 9 0 Natural Gas Liquids and LRGs 17 41 64 101 - -4 5 3 220 Pentanes Plus 3 - 0 0 - 0 0 0 3 Liquefied Petroleum Gases 14 41 64 101 - -4 5 3 217 EthaneEthylene...

  15. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    8,039 6,932 14,971 Non OPEC 1,938,257 4,376 81,256 172,714 78,933 123,273 202,206 Angola 166,404 10 1,979 2,023 0 0 0 Argentina 20,608 1 2,831 788 0 3,353 3,353 Aruba 0 0 0...

  16. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 576 128 RBOB for Blending with Ether 0 0 0 0 0 0 120 0 RBOB for Blending with Alcohol 22 26 0 24 0 0 394 0 Conventional 0 315 0 0 1,359 0 1,718 495 CBOB for Blending with...

  17. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 0 0 576 131 RBOB for Blending with Ether 0 0 0 0 0 0 0 120 0 RBOB for Blending with Alcohol 22 26 0 24 0 0 0 3,617 31,128 Conventional 105 315 0 615 1,359 0 0 1,962 17,808 CBOB...

  18. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 14,825 298 15,123 33,928 1,840 2,446 38,214...

  19. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Total Net Input 199,173 1,285 200,458 117,409 24,041 20,032 161,482...

  20. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Petroleum Gases 62,852 1,440 3,251 -51,618 - -58 3,410 185 12,388 1,382 EthaneEthylene 29,950 0 0 -27,892 - -9 0 0 2,067 323 PropanePropylene 20,635 2,967 2,659...

  1. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 423 424 2,395 7 Liquefied Petroleum Gases 1,039 3,426 8,005 185 6,684 19,338 53 EthaneEthylene 0 0 0 0 0 0 0 PropanePropylene 206 544 7,332 12 5,589 13,683 37 Normal...

  2. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, 2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND,...

  3. ETA-HTP11 - Vehicle Verification - Revision 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vehicles shall be capable of completing all HEV America tests without repairs exceeding a ... Yes No NA 5.1 6.6 Concentrations of explosive gases in the battery box shall not be ...

  4. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    741 317 245 1,303 IsobutaneIsobutylene 206 7 213 155 55 184 394 Other HydrocarbonsHydrogenOxygenates 512 0 512 29 18 0 47 Other HydrocarbonsHydrogen 0 0 0 28 0 0 28...

  5. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - 14 - - - Natural Gas Liquids and LRGs 298 105 110 47 - -5 118 14 433 Pentanes Plus 33 - 1 25 - 0 48 4 7 Liquefied Petroleum Gases 265 105 109 22 - -4 70 9 426 Ethane...

  6. Waste management Quality Assurance Implementing Management Plan (QAIMP). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This report contains a summary of the groundwater and surface-water quality monitoring activities to be performed during the 1993 calendar year at the Department of Energy Y- 12 Plant in Oak Ridge, Tennessee (Figure 1). Monitoring activities will be performed in three hydrogeologic regimes: (1) the Bear Creek Hydrogeologic Regime (BCHR), (2) the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), and (3) the Chestnut Ridge Hydrogeologic Regime (CRHR). The BCHR and UEFPCHR are located within Bear Creek Valley (BCV) and the CRHR is located south of the Y-12 Plant on Chestnut Ridge (Figure 2).

  7. The mixed waste management facility. Project baseline revision 1.2

    SciTech Connect (OSTI)

    Streit, R.D.; Throop, A.L.

    1995-04-01

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  8. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 0 0 0 0 0 0 Israel 0 0 2 0 220 0 220 Italy 0 0 74 0 0 0 0 Jamaica 0 0 0 0 0 0 0 Japan 0 0 9 0 2 5 7 Korea, South 0 0 126 0 1 13 14 Lebanon 0 0 0 0 0 0 0 Mexico 0 0 10,916 0...

  9. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Natural Gas Liquids 359 5,914 6,273 26,874 4,786 77,174 108,834 Pentanes...

  10. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    95 Liquefied Petroleum Gases 14,528 24,908 905 0 - -17 14,218 6,684 19,456 3,094 EthaneEthylene 44 0 0 0 - -1 0 0 45 0 PropanePropylene 4,842 20,540 672 0 - 130 0 5,589 20,335...

  11. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Gases 96,786 38,214 39,774 8,116 - -1,564 25,650 3,426 155,378 28,105 EthaneEthylene 42,381 0 215 -20,104 - -929 0 0 23,421 2,622 PropanePropylene 36,474 39,477...

  12. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    221 0 17,018 47 Liquefied Petroleum Gases 23,191 39,774 52,534 3,251 905 119,655 328 Ethane 0 22 16 0 0 38 0 Ethylene 0 193 0 0 0 193 1 Propane 17,562 30,489 28,519 2,659 672...

  13. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    562 0 856,883 Commercial 1,023,499 - 2,216,850 - 24,198 27,275 2,590,947 562 - 172,339 Strategic Petroleum Reserve (SPR) - - 18,889 - - 8,944 - - - 684,544 Imports by SPR - - 0...

  14. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil 2,804 - 6,125 -1,796 66 99 7,098 2 0 Commercial 2,804 - 6,074 - 66 75 7,098 2 - Strategic Petroleum Reserve (SPR) - - 52 - - 25 - - - Imports by SPR - - 0 - - - - - -...

  15. Revised DOE Acquisition Guide Chapter 71.1 Headquarters Business Clearance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process | Department of Energy 71.1 Headquarters Business Clearance Process Revised DOE Acquisition Guide Chapter 71.1 Headquarters Business Clearance Process There was mention in the National Academy of Public Administration (NAPA) report titled "Managing at the Speed of Light - Improving Mission Support Performance" that Departmental procurement personnel don't understand the Business Clearance (BC) process. In an effort to address this issue, each Procurement Director (PD) and

  16. Attachment J-16 Portfolio Management Task Order 13-003 Revision 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J-16 Portfolio Management Task Order 13-003 Revision 1 Title: DOE-RL AMB HGET Training Approval Process SIA Date: August 6, 2013 Start: August 6, 2013 Finish: November 30, 2013 1.0 DESCRIPTION Mission Support Alliance (MSA) will provide subject matter experts to provide facilitation and project management support for an Operating Excellence (OE) Structured Improvement Activity (SIA) for the Department of Energy Richland (DOE-RL) Assistant Manager for Business and Financial Operations (AMB)

  17. Notice of Intent to Revise DOE O 313.1, Management and Funding of the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department's Overseas Presence - DOE Directives, Delegations, and Requirements JM-DOE O 313.1, Notice of Intent to Revise DOE O 313.1, Management and Funding of the Department's Overseas Presence by Laura Smiley In fiscal year 2014 the Department moved to funding the overseas presence via the Working Capital Fund (WCF) from the earlier, ad hoc, individual program office contribution schema. This new WCF approach needs to be reflected in the Order, as well as several administrative changes

  18. EM Quaility Assurance Program (EM-QA-001 Revision 1)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM-QA-001 Rev. 1 Issue Date 06/11/12 2 Project lifecycles including design, engineering, construction, commissioning, operation, and post-operation, e.g., surveillance and maintenance, deactivation, decommissioning, and environmental restoration. 3.0 APPLICABILITY The requirements contained within this document apply to EM HQ, EM Field/Project Offices, and EM contractors (including flow down to subcontractors, vendors, and suppliers) as applicable to the work being performed by each entity. Each

  19. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    0 175 374 7,010 6,188 13,198 Non OPEC 259,980 0 17,385 23,792 78,059 104,593 182,652 Angola 53,254 0 0 100 0 0 0 Argentina 0 0 128 621 0 2,707 2,707 Aruba 0 0 0 1,163 0 0 0...

  20. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  1. Water resources protection strategy: Revision 1, Attachment 4

    SciTech Connect (OSTI)

    1996-12-10

    The US Department of Energy (DOE) must provide a demonstration of compliance with the final US Environmental Protection Agency (EPA) ground water protection standards for inactive mill sites pursuant to 40 CFR Part 192. This plan outlines the proposed strategy to demonstrate compliance with the ground water standards at the Maybell, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This demonstration consists of (1) the ground water protection standard, (2) a performance assessment, (3) a closure performance demonstration, and (4) a performance monitoring and corrective action program.

  2. TRAC-P validation test matrix. Revision 1.0

    SciTech Connect (OSTI)

    Hughes, E.D.; Boyack, B.E.

    1997-09-05

    This document briefly describes the elements of the Nuclear Regulatory Commission`s (NRC`s) software quality assurance program leading to software (code) qualification and identifies a test matrix for qualifying Transient Reactor Analysis Code (TRAC)-Pressurized Water Reactor Version (-P), or TRAC-P, to the NRC`s software quality assurance requirements. Code qualification is the outcome of several software life-cycle activities, specifically, (1) Requirements Definition, (2) Design, (3) Implementation, and (4) Qualification Testing. The major objective of this document is to define the TRAC-P Qualification Testing effort.

  3. Current experiments in elementary particle physics. Revision 1-85

    SciTech Connect (OSTI)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  4. Technical bases DWPF Late Washing Facility. Revision 1

    SciTech Connect (OSTI)

    Fish, D.L.; Landon, L.F.

    1992-08-10

    A task force recommended that the technical feasibility of a ``Late Wash` facility be assessed [1]. In this facility, each batch of tetraphenylborate slurry from Tank 49 would be given a final wash to reduce the concentrations of nitrite and radiolysis products to acceptable levels. Laboratory-scale studies have demonstrated that d the nitrite content of the slurry fed to DWPF is reduced to 0.01 M or less (and at least a 4X reduction in concentration of the soluble species is attained), (1) the need for HAN during hydrolysis is eliminated (eliminating the production of ammonium ion during hydrolysis), (2) hydrolysis may be done with a catalyst concentration that will not exceed the copper solubility in glass and (3) the non-polar organic production during hydrolysis is significantly reduced. The first phase of an aggressive research and development program has been completed and all test results obtained to date support the technical feasibility of Late Washing. Paralleling this research and development effort is an aggressive design study directed by DWPF to scope and cost retrofitting the Auxiliary Pump Pit (APP) to enable performing a final wash of each batch of precipitate slurry before R is transferred into the DWPF Soft Processing Cell (SPC). An initial technical bases for the Late Wash Facility was transmitted to DWPF on June 15, 1992. Research and development activities are continuing directed principally at optimization of the cross-f low fitter decontamination methodology and pilot-scale validation of the recommended benzene stripping metodology.

  5. Nevada Test Site Radiation Protection Program - Revision 1

    SciTech Connect (OSTI)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  6. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  7. Waste Isolation Pilot Plant No-Migration Variance Petition. Revision 1, Volume 1

    SciTech Connect (OSTI)

    Hunt, Arlen

    1990-03-01

    The purpose of the WIPP No-Migration Variance Petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the facility for as long as the wastes remain hazardous. The DOE submitted the petition to the EPA in March 1989. Upon completion of its initial review, the EPA provided to DOE a Notice of Deficiencies (NOD). DOE responded to the EPA`s NOD and met with the EPA`s reviewers of the petition several times during 1989. In August 1989, EPA requested that DOE submit significant additional information addressing a variety of topics including: waste characterization, ground water hydrology, geology and dissolution features, monitoring programs, the gas generation test program, and other aspects of the project. This additional information was provided to EPA in January 1990 when DOE submitted Revision 1 of the Addendum to the petition. For clarity and ease of review, this document includes all of these submittals, and the information has been updated where appropriate. This document is divided into the following sections: Introduction, 1.0: Facility Description, 2.0: Waste Description, 3.0; Site Characterization, 4.0; Environmental Impact Analysis, 5.0; Prediction and Assessment of Infrequent Events, 6.0; and References, 7.0.

  8. 222-S Laboratory Quality Assurance Plan. Revision 1

    SciTech Connect (OSTI)

    Meznarich, H.K.

    1995-07-31

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.

  9. Non-Salado flow and transport position paper. Revision 1

    SciTech Connect (OSTI)

    Axness, C.; Beauheim, R.; Behl, Y.

    1994-12-15

    The US Department of Energy (DOE) is preparing to request the US Environmental Protection Agency (EPA) to certify compliance of the Waste Isolation Pilot Plant (WIPP) with long-term requirements of the environmental Radiation Protection Standards for Management and Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Waste (40 CFR Part 191). The DOE must also demonstrate compliance with the long-term requirements of the Land Disposal Restrictions of the Resource Conservation and Recovery Act (RCRA) (40 CFR Part 268.6). Sandia National Laboratories (SNL) has ben conducting iterative performance assessments (PAs) for the the WIPP to provide guidance to the project on the technical activities required to determine long-term performance of the WIPP disposal system. The most recent PA was conducted in 1992. The objectives of this paper are to: (1) Identify and describe the relationship between non-Salado hydrology and the array of scenarios that might be relevant to the long-term performance of the repository. (2) Identify and describe the array of conceptual and mechanistic models that are required to evaluate the scenarios for the purpose of compliance. (3) Identify and describe the data/information that are required to support the conceptual and mechanistic models.

  10. International energy: Research organizations, 1988--1992. Revision 1

    SciTech Connect (OSTI)

    Hendricks, P.; Jordan, S.

    1993-06-01

    This publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the US DOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). ETDE member countries are also members of the International Nuclear Information System (INIS). Nuclear organization names recorded for INIS by these ETDE member countries are also included in the ETDE Energy Database. Therefore, these organization names are cooperatively standardized for use in both information systems. This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases ``Energy Science & Technology`` on DIALOG and ``Energy`` on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 31,000 organizations that reported energy-related literature from 1988 to 1992 and updates the DOE Energy Data Base: Corporate Author Entries.

  11. Planning integration FY 1996 program plan. Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    This Multi-Year Program Plan (MAP) Planning Integration Program, Work Breakdown Structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes an agreement between RL and the performing contractors for the work to be performed. It was prepared by Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The MYPPs for the Hanford Site programs are to provide a picture from fiscal year (FY) 1996 through FY 2002. At RL Planning and Integration Division (PID) direction, only the FY 1996 Planning Integration Program work scope has been planned and presented in this MAP. Only those known significant activities which occur after FY 1996 are portrayed in this MAP. This is due to the uncertainty of who will be accomplishing what work scope when, following the award of the Management and Integration (M&I) contract.

  12. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  13. Foil fabrication for the ROMANO event. Revision 1

    SciTech Connect (OSTI)

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-06-13

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections.

  14. Notice of Intent to Revise Department of Energy Guide 424.1-1B, Implementation Guide for Use in Addressing Unreviewed Safety Questions Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-06

    The Office of Environment, Health, Safety and Security (AU) is proposing to perform a full revision of DOE Guide 424.1-1B to incorporate lessons learned identified by DOE Program Offices since the Guide's last full revision in 2006. In 2010 a limited revision to the Guide was conducted to incorporate a clarification on use of evaluation of the safety of the situation and consolidation of the potentially inadequate analysis process within the Guide.

  15. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    SciTech Connect (OSTI)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  16. Fiscal year 1998 Battelle performance evaluation agreement revision 1

    SciTech Connect (OSTI)

    DAVIS, T.L.

    1998-10-22

    Fiscal Year 1998 represents the second full year utilizing a results-oriented, performance-based contract. This document describes the critical outcomes, objectives, performance indicators, expected levels of performance, and the basis for the evaluation of the Contractors performance for the period October 1, 1997 through September 30, 1998, as required by Articles entitled Use of Objective Standards of Performance, Self Assessment and Performance Evaluation and Critical Outcomes Review of the Contract DE-AC08-76RLO1830. In partnership with the Contractor and other key customers, the Department of Energy (DOE) Richland Operations Office has defined six critical outcomes that same as the core for the Contractors performance evaluation. The Contractor also utilizes these outcomes as a basis for overall management of the Laboratory. As stated above six critical outcomes have been established for FY 1998. These outcomes are based on the following needs identified by DOE-HQ, RL and other customers of the Laboratory. Our Energy Research customer desires relevant, quality and cost effective science. Our Environmental Management customer wants technology developed, demonstrated, and deployed to solve environmental cleanup issues. To ensure the diversification and viability of the Laboratory as a National asset, RL and HQ alike want to increase the Science and Technical contributions of PNNL related to its core capabilities. RL wants improved leadership/management, cost-effective operations, and maintenance of a work environment, which fosters innovative thinking and high morale. RL and HQ alike desire compliance with environment, safety and health (ES and H) standards and disciplined conduct of operations for protection of the worker, environment, and the public, As with all of Hanford, DOE expects contribution of the Laboratory to the economic development of the Tri-Cities community, and the region, to build a new local economy that is less reliant on the Hanford mission

  17. Event reporting guidelines 10 CFR 50.72 and 50.73. Revision 1

    SciTech Connect (OSTI)

    Allison, D.P.; Harper, M.R.; Jones, W.R.; MacKinnon, J.B.; Sandin, S.S.

    1998-01-01

    Revision 1 to NUREG-1022 clarifies the immediate notification requirements of Title 10 of the Code of Federal Regulations, Part 50, Section 50.72 (10 CFR 50.72), and the 30-day written licensee event report (LER) requirements of 10 CFR 50.73 for nuclear power plants. This revision was initiated to improve the reporting guidelines related to 10 CFR 50.72 and 50.73 and to consolidate these guidelines into a single reference document. A first draft of this document was noticed for public comment in the Federal Register on october 7, 1991 (56 FR 50598). A second draft was noticed for comment in the Federal Register on February 7, 1994 (59 FR 5614). This document updates and supersedes NUREG-1022 and its Supplements 1 and 2 (published in September 1983, February 1984, and September 1985, respectively). It does not change the reporting requirements of 10 CFR 50.72 and 50.73.

  18. Notice of Intent to Revise DOE Order 442.1A, Department of Energy Employee Concerns Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-06-14

    Revisions to DOE O 442.1A will help to bring about greater consistency throughout the DOE complex in the approach to processing employee concerns, and to support safety conscious work environment efforts.

  19. Notice of Intent to Revise DOE Order 522.1, Pricing of Departmental Materials and Services

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-11-05

    The purpose is to provide administrative updates and implement a Secretarial decision to revise user facility pricing.

  20. Acquisition Guide Chapter 17.1 – Interagency Acquisitions, Interagency Transactions, and Interagency Agreements – Minor Revision

    Office of Energy Efficiency and Renewable Energy (EERE)

    Acquisition Guide Chapter 17.1 – Interagency Acquisitions, Interagency transactions, and Interagency Agreements is revised to add under the paragraph C Exclusions that Power Marketing Administration's activities performed under its power marketing authority, policies, and procedures are excluded from this DOE Acquisition Guide Chapter. The revised chapter is attached with this flash. All other attachments from Policy Flash 2012-32 remain the same.

  1. Engineering work plan for tank 241-C-103 vapor phase characterization (ECN 613188). Revision 1

    SciTech Connect (OSTI)

    Conrad, R.B.

    1994-10-05

    The tasks described by this work plan have been completed. The purpose of this revision it to document what actually occurred during the performance of this work plan. The scope was and is limited to phases 1 and 2 as described in the program plan, revision 1. Phases 1 and 2 include the tank 241-C-103 (C-103) vapor. For economic and as low as reasonably achievable (ALARA) reasons, we will limit our scope to characterize the C-103 vapor phase for the categories that could be expected to impact facility worker safety from a toxicological and flammability standpoint. In anticipation that a vapor treatment system may be required, categories necessary for design will also be included. It will be the intent of the C-103 vapor characterization program to: (1) identify the substances from the above list of categories that are applicable to the issues involving C-103, and (2) implement a phased plan which will develop the organic vapor phase characterization method and then characterize the organics and the other selected substances to the required quantitative certainty.

  2. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    SciTech Connect (OSTI)

    Farnham, Irene; Krenzien, Susan

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  3. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  4. Genomic structure, promoter sequence, and revised translation of human homeobox gene HLX1

    SciTech Connect (OSTI)

    Kennedy, M.A.; Rayner, J.C.; Morris, C.M.

    1994-07-15

    The human homeobox gene HLX1 appears to be involved in hemopoietic development and may represent a candidate gene for various developmental or hemopoietic disorders. The authors have isolated genomic clones for the gene, determined its intron-exon organization, and confirmed its map location on chromosome 1q41-q42. The transcription initiation sites of HLX1 were identified, and DNA sequences upstream of these sites were established. Finally, several differences between the genomic sequence and the published cDNA sequence were noted. Translation based on this revised sequence gives rise to a putative protein with 86.5% homology to the product of the murine Hlx gene. 44 refs., 5 figs.

  5. REVISED-FINAL-1ST-QUARTER-FY-2013-SCORECARD-09-05-13.xlsx

    Office of Environmental Management (EM)

    REVISED MD-110 REFERENCE GUIDE SEPTEMBER 2015 BACKGROUND On August 5, 2015, the Equal Employment Opportunity Commission (EEOC) approved the first revision to its Management Directive 110 (MD-110) since 1999. The revised MD-110 provides federal agencies with updated Commission policies, procedures, and guidance relating to the federal sector complaint process as set forth in 29 C.F.R. Part 1614 and reflects new developments in case law, as the federal workplace and EEO practices have evolved. The

  6. Notice of Intent to Revise DOE O 200.1A, Information Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-21

    This revised Order is needed to clarify the roles and responsibilities, policies, and procedures for effectively managing IT investments to ensure mission success.

  7. Notice of Intent to Revise Department of Energy Order 456.1,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be updated by comparing it to nationalinternational consensus standards on nanomaterial safety that have been developed and revised since this order was last reviewed....

  8. Office of Environment, Safety and Health Assessments Protocol for Site Leads, April 2015 (Revision 1) – PROTOCOL – EA-31-01

    Broader source: Energy.gov [DOE]

    Office of Environment, Safety and Health Assessments Protocol for Site Leads, April 2015 (Revision 1) – PROTOCOL – EA-31-01

  9. Fast Flux Test Facility transition project resource loaded schedule. Revision 1

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1994-10-31

    Revision 1 of the Fast Flux Test Facility (FFTF) Transition Project Resource Loaded Schedule (RLS) provides detail to manage the major elements, project baseline and cost estimate for the FFF Transition Project within the Advanced Reactors Transition Program, comprised of Activity Data Sheets (ADS) 6640, 6641, and 6642. The scope includes all work in the Budget and Reporting categories of Program Integration (PI), Surveillance and Maintenance (S and M), and Deactivation/Compliance (D/C). The transition activities are necessary to bring the FFTF and related facilities to a safe deactivation state, while maintaining worker health and safety. The scope of ADS 6640 and 6642 is the FFTF Transition Project while the scope of ADS 6641 is the Hanford Site Nuclear Energy Legacies.

  10. Codes and standards and other guidance cited in regulatory documents. Revision 1

    SciTech Connect (OSTI)

    Ankrum, A.; Nickolaus, J.; Vinther, R.; Maguire-Moffitt, N.; Hammer, J.; Sherfey, L.; Warner, R.

    1994-08-01

    As part of the US Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program, Pacific Northwest Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. In addition to updating previous information, Revision 1 adds citations from the NRC Inspection Manual and the Improved Standard Technical Specifications. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC`s Bulletins, Information Notices, Circulars, Generic Letters, Policy Statements, Regulatory Guides, and the Standard Review Plan (NUREG-0800).

  11. Revised DOE Acquisition Guide Chapter 7 1.1 Headquarters Business Clearance Process (wrong document under this file name)

    Broader source: Energy.gov [DOE]

    There was mention in the National Academy of Public Administration (NAPA) report titled "Managing at the Speed of Light - Improving Mission Support Performance" that Departmental procurement personnel don't understand the Business Clearance (BC) process. In an effort to address this issue, each Procurement Director (PD) and Head of Contracting Activity (HCA) was ask to review Acquisition Guide Chapter 7 1.1 Headquarters Business Clearance Process and identify anything that was unclear, as well as recommend changes or ideas which could improve Acquisition Guide Chapter 71.1 and the understanding of the Business Clearance process. Attached is the revised Acquisition Guide Chapter 71.1 (May 20 10) which reflects the comments and suggestions received.

  12. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revised Manuscript 01 October 2012 Energy Levels of Light Nuclei A = 4 D.R. Tilley 1,2 and H.R. Weller 1,3 1 Traingle Universities Nuclear Laboratory, Durham, NC 27706, USA 2 Department of Physics, North Carolina State University, Raleigh, NC 27695, USA 3 Department of Physics, Duke University, Durham, NC 27706, USA G.M. Hale Los Alamos National Laboratory, Los Alamos, NM 87545, USA Abstract: A compilation of information on A = 4 was published in Nuclear Physics A541 (1992), p. 1. Information

  13. ADMINISTRATIVE RECORDS SCHEDULE 21:AUDIOVISUAL RECORDS (Revision...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIOVISUAL RECORDS (Revision 1) ADMINISTRATIVE RECORDS SCHEDULE 21:AUDIOVISUAL RECORDS (Revision 1) This schedule covers audiovisual and related records created by or for ...

  14. Technical assessment of TRUSAF for compliance with work place air sampling. Revision 1

    SciTech Connect (OSTI)

    Butler, J.D.

    1995-01-23

    The purpose of this Technical Work Document is to satisfy WHC-CM-1-6, the ``WHC Radiological Control Manual.`` This first revision of the original Supporting Document covers the period from January 1, 1994 to December 31, 1994. WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. this document also provides an evaluation of the compliance of the TRUSAF workplace air sampling program to the criteria, standards, and requirements and documents. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  15. Notice of Intent to Revise Department of Energy Order 350.1, Contractor Human Resources Management Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-10-19

    DOE O 350.1 establishes responsibilities, requirements, and cost allow-ability criteria for the management an oversight of contractor human resource management programs, is being revised to remove contractor requirements from Chapter IV, Compensation, Chapter V, Benefits, and Chapter VI Pensions

  16. Notice of Intent to Revise DOE P 470.1A, Safeguards and Security Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-06

    The proposed revision of this directive will realign this policy to create an integrated security enterprise that effectively protects the Department's assets to institute enterprise-wide solutions to common challenges across the complex.

  17. 309 Building fire protection analysis and justification for deactivation of sprinkler system. Revision 1

    SciTech Connect (OSTI)

    Conner, R.P.

    1997-06-25

    Provide a `graded approach` fire evaluation in preparation for turnover to Environmental Restoration Contractor for D&D. Scope includes revising 309 Building book value and evaluating fire hazards, radiological and toxicological releases, and life safety issues.

  18. Notice of Intent to Revise DOE O 430.1B, Real Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-02-04

    The proposed revision would update the existing order to enact the Asset Management Plan, institutionalize the recommendations of the Laboratory Operations Board (LOB) working groups on infrastructure, and incorporate government-wide real property policies and practives mandated since 2003.

  19. Addendum to Revision 1 of the Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Addendum Revision No. 1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-06-06

    This document is submitted as an addendum to the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 98: Frenchman Flat, Nevada Test Site (NTS), Nevada. The addendum was prepared to propose work activities in response to comments resulting from the U.S. Department of Energy's (DOE's) review of the draft Frenchman Flat CAU model of groundwater flow and contaminant transport completed in April 1999. The reviewers included an external panel of experts and the Nevada Division of Environmental Protection. As a result of the review, additional work scope, including new data-collection and modeling activities, has been identified for the Frenchman Flat CAU. The proposed work scope described in this addendum will be conducted in accordance with the revised Underground Test Area strategy contained in the December 2000 amendment to the Federal Facility Agreement and Consent Order. The Frenchman Flat CAU model is a group of interdependent models designed to predict the extent of contamination in groundwater due to the underground nuclear tests conducted within this CAU. At the time of the DOE review, the CAU model consisted of a CAU groundwater flow and transport model comprised of two major components: a groundwater flow model and a recharge model. The CAU groundwater flow model is supported by a hydrostratigraphic model and a recharge model, whereas the CAU transport model is supported by a source-term model. As part of the modeling activities proposed in this addendum, two new major components may be added to the Frenchman Flat CAU model: a total-system model and two local groundwater flow and transport models. The reviewers identified several issues relating to insufficiency of data and inadequacy of the modeling process that should be addressed to provide additional confidence in the modeling results with respect to the potential for contaminant migration to the Lower Carbonate Aquifer. The proposed additional work scope includes new data

  20. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    SciTech Connect (OSTI)

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  1. COL Application Content Guide for HTGRs: Revision to RG 1.206, Part 1 - Status Report

    SciTech Connect (OSTI)

    Wayne Moe

    2012-08-01

    A combined license (COL) application is required by the Nuclear Regulatory Commission (NRC) for all proposed nuclear plants. The information requirements for a COL application are set forth in 10 CFR 52.79, “Contents of Applications; Technical Information in Final Safety Analysis Report.” An applicant for a modular high temperature gas-cooled reactor (HTGR) must develop and submit for NRC review and approval a COL application which conforms to these requirements. The technical information necessary to allow NRC staff to evaluate a COL application and resolve all safety issues related to a proposed nuclear plant is detailed and comprehensive. To this, Regulatory Guide (RG) 1.206, “Combined License Applications for Nuclear Power Plants” (LWR Edition), was developed to assist light water reactor (LWR) applicants in incorporating and effectively formatting required information for COL application review (Ref. 1). However, the guidance prescribed in RG 1.206 presumes a LWR design proposal consistent with the systems and functions associated with large LWR power plants currently operating under NRC license.

  2. Feasibility study report for the 200-BP-1 operable unit. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This feasibility study (FS) examines a range of alternatives and provides recommendations for selecting a preferred altemative for remediating contamination at the 200-BP-1 operable unit. The 200-BP-1 operable unit is located in the center of the Hanford Site along the northern boundary of the 200 East Area. The 241-BY Tank Farm is located immediately to the south of the operable unit. 200-BP-1 is a source operable unit with contaminated soils associated primarily with nine inactive cribs (known as the 216-B cribs). These cribs were used for disposal of low-level radioactive liquid waste from U Plant uranium recovery operations, and waste storage tank condensate from the adjacent 241-BY Tank Farm. The cribs used for disposal of U Plant waste were in operation from 1955--1965, and the cribs used for disposal of tank condensate were in operation from 1965-1975. In addition to the cribs, four unplanned releases of radioactive materials have occurred within the operable unit. Contaminated surface soils associated with the unplanned releases have been consolidated over the cribs and covered with clean soil to reduce contaminant migration and exposure. Discharge of wastes to the cribs has resulted in soil and groundwater contamination. The groundwater is being addressed as part of the 200 East Aggregate Area groundwater operable unit. Contaminated soils at the site can be categorized by the types of contaminants, their distribution in the soil column, and the risk posed by the various potential exposure pathways. Below the clean soil cover, the near surface soils contain low-:levels of contamination with cesium-137, radium-226, strontium-90, thorium-228 and uranium. The lifetime incremental cancer risk associated with these soils if they were exposed at the surface is 9 {times} 10{sup 5}.

  3. APS beamline standard components handbook, Version 1.3. Revision 1

    SciTech Connect (OSTI)

    Hahn, U.; Shu, D.; Kuzay, T.M.

    1993-02-01

    This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

  4. Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

  5. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    SciTech Connect (OSTI)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-07-13

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

  6. Notice of Intent to Revise DOE G 226.1-2, Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04

    This revision will incorporate new content devoted to Federal oversight and evaluation of effectiveness of activity-level work planning and control (WP&C) at Hazard Category 1, 2, and 3 nuclear facilities.

  7. Vault Safety and Inventory System users manual, PRIME 2350. Revision 1

    SciTech Connect (OSTI)

    Downey, N.J.

    1994-12-14

    This revision is issued to request review of the attached document: VSIS User Manual, PRIME 2350, which provides user information for the operation of the VSIS (Vault Safety and Inventory System). It describes operational aspects of Prime 2350 minicomputer and vault data acquisition equipment. It also describes the User`s Main Menu and menu functions, including REPORTS. Also, system procedures for the Prime 2350 minicomputer are covered.

  8. Amendment1 - Revision1

    National Nuclear Security Administration (NNSA)

    will also include waste acceptance services to be performed at the NNSS and at waste generator sites across the DOE Complex. The Statements of Capabilities will assist the...

  9. Notice of Intent to Revise Department of Energy Order 151.1C, Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-06

    A revision is necessary for several to address the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2014-1 for DOE to update its emergency management directive and to address conflicts, omissions, deficiencies, and inconsistent interpretations within the existing DOE O 151.1C have been self-identified by the Office of Emergency Management, or revealed by field elements and program offices since the order was issued in 2005. To address these a series of over 50 Frequently Asked Questions (FAQs) was developed to be integrated into the updated order, and to Include more emphasis on emergency management requirements related to severe events.

  10. Notice of Intent to Revise Department of Energy Order 151.1C, Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    A revision is necessary for several to address the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2014-1 for DOE to update its emergency management directive and to address conflicts, omissions, deficiencies, and inconsistent interpretations within the existing DOE O 151.1C have been self-identified by the Office of Emergency Management, or revealed by field elements and program offices since the order was issued in 2005. To address these a series of over 50 Frequently Asked Questions (FAQs) was developed to be integrated into the updated order, and to Include more emphasis on emergency management requirements related to severe events.

  11. Notice of Intent to Revise DOE G 414.1-4, Safety Software Guide for Use with 10 CFR 830, Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-07-17

    The revision to DOE G 414.1-4 will conform to the revised DOE O 414.1D and incorporate new information and lessons learned since 2005, including information gained as a result of the February 2011, Government Accountability Office (GAO) report, GAO-11-143.

  12. Safety assessment of discharge chute isolation barrier preparation and installation. Revision 1

    SciTech Connect (OSTI)

    Meichle, R.H.

    1994-10-10

    This revision responds to RL comments and increases the discussion of the ``effective hazard categorization`` and the readiness review basis. The safety assessment is made for the activities for the preparation and installation of the discharge chute isolation barriers. The safety assessment includes a hazard assessment and comparison of potential accidents/events to those addressed by the current safety basis documentation. No significant hazards were identified. An evaluation against the USQ evaluation questions were made and the determination made that the activities do not represent a USQ. Hazard categorization techniques were used to provide a basis for readiness review classification.

  13. General statement of policy and procedures for NRC enforcement actions: Enforcement policy. Revision 1

    SciTech Connect (OSTI)

    1998-05-01

    This document includes the US Nuclear Regulatory Commission`s (NRC`s or Commission`s) revised General Statement of Policy and Procedure for Enforcement Actions (Enforcement Policy) as it was published in the Federal Register on May 13, 1998 (63 ER 26630). The Enforcement Policy is a general statement of policy explaining the NRC`s policies and procedures in initiating enforcement actions, and of the presiding officers and the Commission in reviewing these actions. This policy statement is applicable to enforcement matters involving the radiological health and safety of the public, including employees` health and safety, the common defense and security, and the environment.

  14. Human-system interface design review guideline -- Reviewer`s checklist: Final report. Revision 1, Volume 2

    SciTech Connect (OSTI)

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 2 is a complete set of the guidelines contained in Volume 1, Part 2, but in a checklist format that can be used by reviewers to assemble sets of individual guidelines for use in specific design reviews. The checklist provides space for reviewers to enter guidelines evaluations and comments.

  15. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Revised Guidance for Recruitment, Retention and Relocation Incentives Revised Guidance for Recruitment, Retention and Relocation Incentives 3Rs Revised Guidance.pdf (66.78 KB) CHCO Memo_3Rs Guidance_Attachment_05-12-2016_FINAL.pdf (181.71 KB) Responsible Contacts Tiffany Wheeler Human Resources Specialist E-mail tiffany.wheeler@hq.doe.gov Phone (202) 586-8481 More Documents & Publications Manager's Desk Reference on Human Capital Management Flexibilities DOE Handbook

  16. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  17. Preliminary environmental assessment for the Satellite Power System (SPS). Revision 1. Volume 2. Detailed assessment

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Department of Energy (DOE) is considering several options for generating electrical power to meet future energy needs. The satellite power system (SPS), one of these options, would collect solar energy through a system of satellites in space and transfer this energy to earth. A reference system has been described that would convert the energy to microwaves and transmit the microwave energy via directive antennas to large receiving/rectifying antennas (rectennas) located on the earth. At the rectennas, the microwave energy would be converted into electricity. The potential environmental impacts of constructing and operating the satellite power system are being assessed as a part of the Department of Energy's SPS Concept Development and Evaluation Program. This report is Revision I of the Preliminary Environmental Assessment for the Satellite Power System published in October 1978. It refines and extends the 1978 assessment and provides a basis for a 1980 revision that will guide and support DOE recommendations regarding future SPS development. This is Volume 2 of two volumes. It contains the technical detail suitable for peer review and integrates information appearing in documents referenced herein. The key environmental issues associated with the SPS concern human health and safety, ecosystems, climate, and electromagnetic systems interactions. In order to address these issues in an organized manner, five tasks are reported: (I) microwave-radiation health and ecological effects; (II) nonmicrowave health and ecological effectss; (III) atmospheric effects; (IV) effects on communication systems due to ionospheric disturbance; and (V) electromagnetic compatibility. (WHK)

  18. Notice of Intent to Revise DOE G 423.1-1A, Implementation Guide for Use in Developing Technical Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-05

    The purpose of this revision is to incorporate lessons learned as identified by DOE program offices.

  19. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    SciTech Connect (OSTI)

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.

  20. United States Nuclear Regulatory Commission staff practice and procedure digest. Commission, Appeal Board and Licensing Board decisions, July 1972-September 1985. Digest No. 4, Revision No. 1

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This Revision 1 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1985 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 1 replaces earlier editions and supplements and includes appropriate changes reflecting the admendments to the Rules of Practice effective through September 20, 1985.

  1. A spreadsheet-coupled SOLGAS: A computerized thermodynamic equilibrium calculation tool. Revision 1

    SciTech Connect (OSTI)

    Trowbridge, L.D.; Leitnaker, J.M.

    1995-07-01

    SOLGAS, an early computer program for calculating equilibrium in a chemical system, has been made more user-friendly, and several ``bells and whistles`` have been added. The necessity to include elemental species has been eliminated. The input of large numbers of starting conditions has been automated. A revised spreadsheet-based format for entering data, including non-ideal binary and ternary mixtures, simplifies and reduces chances for error. Calculational errors by SOLGAS are flagged, and several programming errors are corrected. Auxiliary programs are available to assemble and partially automate plotting of large amounts of data. Thermodynamic input data can be changed on line. The program can be operated with or without a co-processor. Copies of the program, suitable for the IBM-PC or compatibles with at least 384 bytes of low RAM, are available from the authors. This user manual contains appendices with examples of the use of SOLGAS. These range from elementary examples, such as, the relationships among water, ice, and water vapor, to more complex systems: phase diagram calculation of UF{sub 4} and UF{sub 6} system; burning UF{sub 4} in fluorine; thermodynamic calculation of the Cl-F-O-H system; equilibria calculations in the CCl{sub 4}--CH{sub 3}OH system; and limitations applicable to aqueous solutions. An appendix also contains the source code.

  2. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-20

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  3. Salt Repository Project site study plan for meteorology/air quality: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    The Site Study Plan for Meteorology/Air Quality describes a field program consisting of continuous measurements of wind speed and direction, temperature, humidity, dew point, and pressure neede for later modeling and dose calculations. These measurements will include upper level winds, vertical temperature structure, and vertical wind speed. All measurements will be made at a site located within the 9-m/sup 2/ site area but remote from the ESF. The SSP describes the need for each study; its design and design rationale; analysis, management, and use of data; schedule of field activities, organization of field personnel and sample management and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document. Although titled Meteorology/Air Quality, this SSP addresses only meteorology, as there are no air quality data needs in the SCP. A correction to the title will be made in a later revision. 27 refs., 6 figs., 3 tabs.

  4. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    SciTech Connect (OSTI)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    2015-01-01

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  5. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    SciTech Connect (OSTI)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    2015-01-01

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  6. Notice of Intent to Revise Department of Energy Order 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of DOE O 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest, dated 12-16-2010, as part of the the quadrennial review and recertification as required by DOE O 251.1C, Departmental Directives Program.

  7. United States Nuclear Regulatory Commission Staff Practice and Procedure Digest. Commission, Appeal Board and Licensing Board decisions, July 1972--March 1991: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This revision of the sixth edition of the NRC Practice and Procedure Digest contains a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period of July 1, 1972 to March 31, 1991, interpreting the NRC`s Rules of Practice in 10 CFR Part 2.

  8. Notice of Intent to Revise Department of Energy Integrated Safety Management Policy 450.4A, Order 450.2, and Guide 450.4-1C

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-11-05

    The proposed revisions will seamlessly integrate with the recently provided content in DOE G 226.1-2A, 2014, Federal Line Management Oversight of Department of Energy Nuclear Facilities, and HDBK 1211-2014,Activity-Level Work Planning and Control Implementation, addressing the activity-level work planning and control and safety culture features of ISM.

  9. Notice of Intent to Revise DOE O 331.1C, Chg 3, Employee Performance Management and Recognition Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The revision incorporates recommendations from the FY12 National Council on Federal Labor-Management Relation's "Goals-Engagement-Accountability-Results (GEAR)" report and program requirements currently contained in the DOE Supervisory/Non-Supervisory Employee Performance Management and Recognition Desk Reference (Desk Reference) such as the DOE Monetary Awards Scale, as well as program requirements that have been established via memoranda since the Order was revised in October 2010.

  10. Notice of Intent to Revise DOE O 331.1C Chg 3, Employee Performance Management and Recognition Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-03-20

    The revision incorporates recommendations from the FY12 National Council on Federal Labor-Management Relation's "Goals-Engagement-Accountability-Results (GEAR)" report and program requirements currently contained in the DOE Supervisory/Non-Supervisory Employee Performance Management and Recognition Desk Reference (Desk Reference) such as the DOE Monetary Awards Scale, as well as program requirements that have been established via memoranda since the Order was revised in October 2010.

  11. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Control modules -- Volume 1, Revision 4

    SciTech Connect (OSTI)

    Landers, N.F.; Petrie, L.M.; Knight, J.R.

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3 for the documentation of the data libraries and subroutine libraries.

  12. Notice of Intent to Revise DOE O 341.1, Federal Employee Health...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compensation claim, and make minor updates, e.g., for organizational titles and internet links. 15 NOV 23 - DOE O 341.1 Federal Employee Health Services.pdf -- PDF Document,...

  13. Test plan/procedure for the SPM-1 shipping container system. Revision 0

    SciTech Connect (OSTI)

    Flanagan, B.D.

    1995-07-01

    The 49 CFR 173.465 Type A packaging tests will verify that SPM-1 will provide adequate protection and pass as a Type A package. Test will determine that the handle of the Pig will not penetrate through the plywood spacer and rupture the shipping container. Test plan/procedure provides planning, pre-test, setup, testing, and post-testing guidelines and procedures for conducting the {open_quotes}Free Drop Test{close_quotes} procedure for the SPM-1 package.

  14. Tank characterization report for single-shell tak 241-C-112. Revision 1

    SciTech Connect (OSTI)

    Simpson, B.C.

    1997-06-11

    One major function of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (CR). This report and its appendixes serve as the CR for single-shell tank 24 1 -C- 1 12. The objectives of this report are: 1) to use characterization data in response to technical issues associated with tank 24 1 -C- 1 12 waste, and 2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling needs. The appendixes contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05 (Ecology et al. 1996).

  15. Hanford Waste Vitrification Plant Quality Assurance Program description: Overview and applications. Revision 3, Part 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This document (Parts 1 and 2) describes the requirements that must be implemented during the design and construction phases for the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository.

  16. Facility effluent monitoring plan for 242-A Evaporator facility. Revision 1

    SciTech Connect (OSTI)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  17. Savannah River Site Environmental Monitoring Plan. Volume 1, Section 1000 Addendum: Revision 3

    SciTech Connect (OSTI)

    Jannik, G.T.

    1994-10-01

    This document -- the Savannah River Site Environmental Monitoring Plan (SRS EM Plan) -- has been prepared according to guidance contained in the DOE 5400 Series orders, in 10 CFR 834, and in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and environmental Surveillance [DOE, 1991]. The SRS EM Plan`s purpose is to define the criteria, regulations, and guideline requirements with which SRS will comply. These criteria and requirements are applicable to environmental monitoring activities performed in support of the SRS Environmental Monitoring Program (SRS EM Program), WSRC-3Q1-2, Volume 1, Section 1100. They are not applicable to monitoring activities utilized exclusively for process monitoring/control. The environmental monitoring program requirements documented in the SRS EM Plan incorporate all applicable should requirements of DOE/EH-0173T and expand upon them to include nonradiological environmental monitoring program requirements.

  18. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    SciTech Connect (OSTI)

    Groth, B.D.

    1995-01-11

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  19. Sampling and analysis plan for Mount Plant D & D soils packages, Revision 1

    SciTech Connect (OSTI)

    1991-02-01

    There are currently 682 containers of soils in storage at Mound Plant, generated between April 1 and October 31, 1990 as a result of excavation of soils containing plutonium-238 at two ongoing Decontamination and Decommissioning (D&D) Program sites. These areas are known as Area 14, the waste transfer system (WTS) hillside, and Area 17, the Special Metallurgical (SM) Building area. The soils from these areas are part of Mound Plant waste stream number AMDM-000000010, Contaminated Soil, and are proposed for shipment to the Nevada Test Site (NTS) for disposal as low-level radioactive waste. The sealed waste packages, constructed of either wood or metal, are currently being stored in Building 31 and at other locations throughout the Mound facility. At a meeting in Las Vegas, Nevada on October, 26, 1990, DOE Nevada Operations Office (DOE-NV) and NTS representatives requested that the Mound Plant D&D soils proposed for shipment to NTS be sampled for Toxicity Characteristic Leaching Procedure (TCLP) constituents. On December 14, 1990, DOE-NV also requested that additional analyses be performed on the soils from one of the soils boxes for polychlorinated biphenyls (PCBs), particle size distribution, and free liquids. The purpose of this plan is to document the proposed sampling and analyses of the packages of D&D soils produced prior to October 31, 1990. In order to provide a thorough description of the soils excavated from the WTS and SM areas, sections 1.1 and 1.2 provide historical Information concerning the D&D soils, including waste stream evaluations and past sampling data.

  20. Quality assurance plan for the Basic Environmental Compliance and Monitoring Program (BECAMP). Revision 1

    SciTech Connect (OSTI)

    Essington, E.H.

    1993-11-01

    This quality assurance plan (QAP) is designed ensure that the methodologies and the data used for environmental cleanup and treatment studies at the Nevada Test Site are both usable and defensible. The QAP serves two purposes in this regard: (1) to guide the preparation of procedures for carrying out the tasks of the Basic Environmental compliance and Monitoring program (BECAMP); and (2) to help management track the progress of those tasks.

  1. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    SciTech Connect (OSTI)

    Olsen, P.A.

    1994-09-21

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ``US Department of Energy Radiological Control Manual`` as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms` workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  2. Technology development in support of the TWRS process flowsheet. Revision 1

    SciTech Connect (OSTI)

    Washenfelder, D.J.

    1995-10-11

    The Tank Waste Remediation System is to treat and dispose of Hanford`s Single-Shell and Double-Shell Tank Waste. The TWRS Process Flowsheet, (WHC-SD-WM-TI-613 Rev. 1) described a flowsheet based on a large number of assumptions and engineering judgements that require verification or further definition through process and technology development activities. This document takes off from the TWRS Process Flowsheet to identify and prioritize tasks that should be completed to strengthen the technical foundation for the flowsheet.

  3. Safety equipment list for 241-C-106 waste retrieval, Project W-320: Revision 1

    SciTech Connect (OSTI)

    Conner, J.C.

    1994-11-15

    The goals of the C-106 sluicing operation are: (1) to stabilize the tank by reducing the heat load in the tank to less than 42 MJ/hr (40,000 Btu/hour), and (2) to initiate demonstration of single-shell tank (SST) retrieval technology. The purpose of this supporting document (SD) is as follows: (1) to provide safety classifications for items (systems, structures, equipment, components, or parts) for the waste retrieval sluicing system (WRSS), and (2) to document and methodology used to develop safety classifications. Appropriate references are made with regard to use of existing systems, structures, equipments, components, and parts for C-106 single-shell transfer tank located in the C Tank Farm, and 241-AY-102 (AY-102) double shell receiver tanks (DST) located in the Aging Waste Facility (AWF). The Waste Retrieval Sluicing System consists of two transfer lines that would connect the two tanks, one to carry the sluiced waste slurry to AY-102, and the other to return the supernatant liquid to C-106. The supernatant, or alternate fluid, will be used to mobilize waste in C-106 for the sluicing process. The equipment necessary for the WRSS include pumps in each tank, sluicers to direct the supernatant stream in C-106, a slurry distributor in AY-102, HVAC for C-106, instrumentation and control devices, and other existing components as required.

  4. UMTRA Surface Project management action process document. Final report: Revision 1

    SciTech Connect (OSTI)

    1996-04-01

    A critical mission of the US Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC) from the late 1940s into the 1970s. Among these facilities are the 24 former uranium mill sites designed in the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.) Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designated sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project only; a separate MAP document has been prepared for the UMTRA Ground Water Project.

  5. Volume generation of negative ions in high density hydrogen discharges. Revision 1

    SciTech Connect (OSTI)

    Hiskes, J.R.; Karo, A.M.

    1983-11-11

    An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high energy (E > 20 eV) electron collisions provide for H/sub 2/ vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length, R. The optimum extracted current densities occur for electron densities near nR = 10/sup 13/ electrons cm/sup -2/ and for gas densities, N/sub 2/R, in the range 10/sup 14/ to 10/sup 15/ molecules cm/sup -2/. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient, ..gamma.., and scale length, R. As ..gamma.. ranges from 0.1 to 1.0 and for system scale lengths of one centimeter, extracted current densities range from 8.0 to 80. mA cm/sup -2/.

  6. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 6,428 -1 179 553 167 161 8 0 0 204 5,851 Lower 48 States 52,062 1,397

  7. FY 93 thermal loading systems study final report: Volume 2. Revision 1

    SciTech Connect (OSTI)

    1994-08-29

    The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ``too hot`` and the loading regime that is ``too cold``, to (2) ``grade`` or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 2 consists of 10 appendices which contain the following: Waste Stream Analysis; Waste Package Design Inputs; Subsurface Design Inputs; Thermal-Hydrologic Model Inputs; Near-Field Calculations; Far-Field; Reliability of Electronics as a Function of Temperature; Cost Analysis Details; Geochemistry; and Areas of Uncertainty in Thermal Loading.

  8. Waste analysis plan for confirmation or completion of Tank Farms backlog waste designation. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    On January 23, 1992, waste management problems in the Tank Farms were acknowledged through an Unusual Occurrence (UO) Report No. RL-WHC-TANKFARM-19920007 (DOE-RL 1992). On March 10, 1993, the Washington State Department of Ecology (Ecology) issued Order 93NM-201 (Order) to the US Department of Energy, Richland Operations Office (DOE-RL) and the Westinghouse Hanford Company (Westinghouse Hanford) asserting that ``DOE-RL and Westinghouse Hanford have failed to designate approximately 2,000 containers of solid waste in violation of WAC 173-303170(l)(a) and the procedures of WAC 173-303-070`` (Ecology 1993). On June 30, 1993, a Settlement Agreement and Order Thereon (Settlement Agreement) among Ecology, DOE-RL, and Westinghouse Hanford was approved by the Pollution Control Hearings Board (PCHB). Item 3 of the Settlement Agreement requires that DOE-RL and Westinghouse Hanford submit a waste analysis plan (WAP) for the waste subject to the Order by September 1, 1993 (PCHB 1993). This WAP satisfies the requirements of Item 3 of the Order as amended per the Settlement Agreement. Item 3 states: ``Within forty (40) calendar days of receipt of this Order, DOE-RL and WHC provide Ecology with a waste analysis plan for review and approval detailing the established criteria and procedures for waste inspection, segregation, sampling, designation, and repackaging of all containers reported in item No. 1. The report shall include sampling plan criteria for different contaminated media, i.e., soils, compactable waste, high-efficiency particular air (HEPA) filters, etc., and a schedule for completing the work within the time allowed under this Order.``

  9. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

  10. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    SciTech Connect (OSTI)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  12. Information management fiscal year 1996 site support program plan, WBS 6.4. Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    In the recent past, information resource management (IRM) was a neatly separable component of the overall DOE mission, concerned primarily with procuring and implementing automatic data processing (ADP) systems. As the DOE missions have shifted from producing product to managing processes, those clear lines have blurred. Today, IRM is firmly embedded in all aspects of the DOE mission. BCS Richland, Inc., (BCSR) provides IRM for the Hanford Site. The main focus in executing this mission is to meet customer goals by providing high-quality, timely, and cost-effective electronic communication, computing, and information services. Information resources provide the US Department of Energy, Richland Operations Office (RL) and the Hanford Site contractors the ability to generate, store, access, and communicate information quickly, reliably, and cost effectively. BCSR plans, implements, and operates electronic communication, computing and information management systems that enable effective operation of the Hanford Site. Five strategic initiatives to encompass the vision provide guidance and focus to the information technology (IT) direction for developing the BCSR program plan. These strategic initiatives are the program vision and are as follows: primary focus; fast response; accessible information; world class information management infrastructure; powerful desktop. The business directions that guide the development of the BCSR Program Plan are: (1) emphasize providing cost-effective and value-added communication, computing, and information systems products and services to the Site missions; (2) strengthen the alignment of products and services with Site projects and programs and eliminate duplications Sitewide; (3) focus on the effective resolution of critical Site information management (IM) issues.

  13. "INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, REVISION 1, ANN ARBOR, MICHIGAN

    SciTech Connect (OSTI)

    ALTIC, NICK A

    2013-08-01

    At the NRC?s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM?s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM?s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGL{sub W}. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGL{sub W} values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  14. External Peer Review Team Report Underground Testing Area Subproject for Frenchman Flat, Revision 1

    SciTech Connect (OSTI)

    Sam Marutzky

    2010-09-01

    An external peer review was conducted to review the groundwater models used in the corrective action investigation stage of the Underground Test Area (UGTA) subproject to forecast zones of potential contamination in 1,000 years for the Frenchman Flat area. The goal of the external peer review was to provide technical evaluation of the studies and to assist in assessing the readiness of the UGTA subproject to progress to monitoring activities for further model evaluation. The external peer review team consisted of six independent technical experts with expertise in geology, hydrogeology,'''groundwater modeling, and radiochemistry. The peer review team was tasked with addressing the following questions: 1. Are the modeling approaches, assumptions, and model results for Frenchman Flat consistent with the use of modeling studies as a decision tool for resolution of environmental and regulatory requirements? 2. Do the modeling results adequately account for uncertainty in models of flow and transport in the Frenchman Flat hydrological setting? a. Are the models of sufficient scale/resolution to adequately predict contaminant transport in the Frenchman Flat setting? b. Have all key processes been included in the model? c. Are the methods used to forecast contaminant boundaries from the transport modeling studies reasonable and appropriate? d. Are the assessments of uncertainty technically sound and consistent with state-of-the-art approaches currently used in the hydrological sciences? 3. Are the datasets and modeling results adequate for a transition to Corrective Action Unit monitoring studies—the next stage in the UGTA strategy for Frenchman Flat? The peer review team is of the opinion that, with some limitations, the modeling approaches, assumptions, and model results are consistent with the use of modeling studies for resolution of environmental and regulatory requirements. The peer review team further finds that the modeling studies have accounted for uncertainty

  15. Notice of Intent to Revise DOE Order 227.1, Independent Oversight Program, 08-03-11

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-27

    This directive is proposed for revision to reflect the establishment of the Office of Enterprise Assessments (EA) by Secretary Moniz in May 2014, and the Secretary's expectations for the enterprise-wide internal management assessment function performed by EA as articulated in his June 27, 2014, memorandum to all Departmental Elements.

  16. Notice of Intent to Revise DOE O 227.1, Independent Oversight Program, 08-30-11

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This directive is proposed for revision to reflect the establishment of the Office of Enterprise Assessments (EA) by Secretary Moniz in May 2014, and the Secretary's expectations for the enterprise-wide internal management assessment function performed by EA as articulated in his June 27, 2014, memorandum to all Departmental Elements.

  17. Notice of Intent to Revise Department of Energy Order 460.1C, Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of Department of Energy (DOE} Order (O} 460.lC, Packaging and Transportation Safety as part of the quadrennial review and recertification required by DOE O 251.lC, Departmental Directives Program.

  18. Notice of Intent to Revise DOE G 414.1-1B, Management and Independent Assessments Guide for Use with 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18

    This memorandum provides justification for revising DOE G 414.1-1B, Management and Independent Assessments Guide for Use With 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A, Implementation of Department of Energy Oversight Policy.

  19. Heating Oil and Propane Update - Revision report

    Gasoline and Diesel Fuel Update (EIA)

    Revision reports Revision report 2015-2016 Revision report 2014-2015

  20. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease condensate proved reserves, reserves changes, and production, 2014 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 0 0 1 0 0 1 0 0 0 0 2 Lower 48 States 3,149 -76 712 618 318 407 591 13 12 326 3,546 Alabama 14 1 0 1 0 0 0 0 0 1 13

  1. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Functional modules F1--F8 -- Volume 2, Part 1, Revision 4

    SciTech Connect (OSTI)

    Greene, N.M.; Petrie, L.M.; Westfall, R.M.; Bucholz, J.A.; Hermann, O.W.; Fraley, S.K.

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. The manual is divided into three volumes: Volume 1--for the control module documentation; Volume 2--for functional module documentation; and Volume 3--for documentation of the data libraries and subroutine libraries.

  2. Evaluation of severe accident risks: Methodology for the containment, source term, consequence, and risk integration analyses; Volume 1, Revision 1

    SciTech Connect (OSTI)

    Gorham, E.D.; Breeding, R.J.; Brown, T.D.; Harper, F.T.; Helton, J.C.; Murfin, W.B.; Hora, S.C.

    1993-12-01

    NUREG-1150 examines the risk to the public from five nuclear power plants. The NUREG-1150 plant studies are Level III probabilistic risk assessments (PRAs) and, as such, they consist of four analysis components: accident frequency analysis, accident progression analysis, source term analysis, and consequence analysis. This volume summarizes the methods utilized in performing the last three components and the assembly of these analyses into an overall risk assessment. The NUREG-1150 analysis approach is based on the following ideas: (1) general and relatively fast-running models for the individual analysis components, (2) well-defined interfaces between the individual analysis components, (3) use of Monte Carlo techniques together with an efficient sampling procedure to propagate uncertainties, (4) use of expert panels to develop distributions for important phenomenological issues, and (5) automation of the overall analysis. Many features of the new analysis procedures were adopted to facilitate a comprehensive treatment of uncertainty in the complete risk analysis. Uncertainties in the accident frequency, accident progression and source term analyses were included in the overall uncertainty assessment. The uncertainties in the consequence analysis were not included in this assessment. A large effort was devoted to the development of procedures for obtaining expert opinion and the execution of these procedures to quantify parameters and phenomena for which there is large uncertainty and divergent opinions in the reactor safety community.

  3. Acquisition Letter 09 - Revision of Department of Energy (DOE...

    Office of Environmental Management (EM)

    9 - Revision of Department of Energy (DOE) Order 350.1 and Special H Clause Acquisition Letter 09 - Revision of Department of Energy (DOE) Order 350.1 and Special H Clause The ...

  4. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves, reserves changes, and production, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 12,392 1,796 3,299 1,020 442 680 395 0 0 1,404 15,696 Alabama 413 641 42 40 0 0 0

  5. Hanford Site Environmental Restoration Program 1994 fiscal year work plan. Work breakdown structure 2.0: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-22

    Site Management System (SMS) guidance requires a Fiscal Year Work Plan (FYWP) to be prepared for the Environmental Restoration (ER) Mission Area and all related programs. This revision is a complete update to cover the FY 1994 time period. This document describes the overall ER Missions Area and provides FYWP appendices for each of the following five program areas: Remedial Action (RA); Decontamination and Decommissioning (D&D); Project Management and Support (PM&S); Surveillance and Maintenance (S&M); and Disposal Facilities (DF).

  6. RELAP5/MOD3 code manual: Summaries and reviews of independent code assessment reports. Volume 7, Revision 1

    SciTech Connect (OSTI)

    Moore, R.L.; Sloan, S.M.; Schultz, R.R.; Wilson, G.E.

    1996-10-01

    Summaries of RELAP5/MOD3 code assessments, a listing of the assessment matrix, and a chronology of the various versions of the code are given. Results from these code assessments have been used to formulate a compilation of some of the strengths and weaknesses of the code. These results are documented in the report. Volume 7 was designed to be updated periodically and to include the results of the latest code assessments as they become available. Consequently, users of Volume 7 should ensure that they have the latest revision available.

  7. Outcomes of Patients With Revised Stage I Clear Cell Sarcoma of Kidney Treated in National Wilms Tumor Studies 1-5

    SciTech Connect (OSTI)

    Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu [Northwestern University, Chicago, Illinois (United States); Perlman, Elizabeth J. [Northwestern University, Chicago, Illinois (United States)] [Northwestern University, Chicago, Illinois (United States); Seibel, Nita L. [Cancer Therapy and Evaluation Program, Bethesda, Maryland (United States)] [Cancer Therapy and Evaluation Program, Bethesda, Maryland (United States); Ritchey, Michael [Phoenix Children's Hospital, Phoenix, Arizona (United States)] [Phoenix Children's Hospital, Phoenix, Arizona (United States); Dome, Jeffrey S. [Children's National Medical Center, Washington, District of Columbia (United States)] [Children's National Medical Center, Washington, District of Columbia (United States); Grundy, Paul E. [University of Alberta, Edmonton, AB (Canada)] [University of Alberta, Edmonton, AB (Canada)

    2013-02-01

    Purpose: To report the clinical outcomes of children with revised stage I clear cell sarcoma of the kidney (CCSK) using the National Wilms Tumor Study Group (NWTS)-5 staging criteria after multimodality treatment on NWTS 1-5 protocols. Methods and Materials: All CCSK patients enrolled in the National Wilms Tumor Study Group protocols had their pathology slides reviewed, and only those determined to have revised stage I tumors according to the NWTS-5 staging criteria were included in the present analysis. All patients were treated with multimodality therapy according to the NWTS 1-5 protocols. Results: A total of 53 children were identified as having stage I CCSK. All patients underwent primary surgery with radical nephrectomy. The chemotherapy regimens used were as follows: regimen A, C, F, or EE in 4 children (8%); regimen DD or DD4A in 33 children (62%); regimen J in 4 children (8%); and regimen I in 12 children (22%). Forty-six patients (87%) received flank radiation therapy (RT). Seven children (13%) did not receive flank RT. The median delay between surgery and the initiation of RT was 9 days (range, 3-61). The median RT dose was 10.8 Gy (range, 10-36). The flank RT doses were as follows: 10.5 or 10.8 Gy in 25 patients (47%), 11-19.9 Gy in 2 patients (4%), 20-29.9 Gy in 9 patients (17%), and 30-40 Gy in 10 patients (19%). The median follow-up for the entire group was 17 years (range, 2-36). The relapse-free and cancer-specific survival rate was 100% at the last follow-up examination. Conclusions: The present results have demonstrated that children with revised stage I CCSK using the NWTS-5 staging criteria have excellent survival rates despite the use of varying RT doses and chemotherapy regimens in the NWTS 1-5 protocols.

  8. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    SciTech Connect (OSTI)

    Roscha, V.

    1994-11-29

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  9. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41 1956KO1A Koudijs, Ph.D. Thesis, Univ. of Utrecht (1956) 1956MA18 H. Mark and C. Goodman, Phys. Rev. 101 (1956) 768 1956NA1B Naggiar, Roclawski-Conjeaud, Szteinsznaider and...

  10. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    62 1957GR1D Groshev and Demidov, Sov. J. At. Energy 3 (1957) 853 1957HA1K S.S. Hanna and L. Meyer-Schutzmeister, Phys. Rev. 108 (1957) 1644 1957HE1C Hebbard, Ph.D.Thesis, Univ. of...

  11. EM Quality Assurance Program (EM-QA-001 Revision 0)

    Broader source: Energy.gov [DOE]

    Previous revision of the Environmental Management Quality Assurance Program. The program is the EM management system to ensure we"do work correctly." This document has been superseded by Revision 1...

  12. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil and lease condensate proved reserves, reserves changes, and production, 2014 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 2,898 1 239 196 125 187 35 0 0 182 2,857 Lower 48 States 33,622 439 5,789 5,416 2,350 2,641 4,986 164 219

  13. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil proved reserves, reserves changes, and production, 2014 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 2,898 1 238 196 125 186 35 0 0 182 2,855 Lower 48 States 30,473 515 5,077 4,798 2,032 2,234 4,395 151 207 2,692 33,530 Alabama

  14. Notice of Intent to Revise DOE O 475.2A, Identifying Classified Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-03-06

    The revision will incorporate changes that were identified during the 1-year review after initial issuance

  15. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 March 2013 Energy Levels of Light Nuclei A = 13 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A449 (1986), p. 1. This version of A = 13 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  16. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 November 2008 Energy Levels of Light Nuclei A = 16 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 16 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  17. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 March 2016 Energy Levels of Light Nuclei A = 18 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A190 (1972), p. 1. This version of A = 18 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  18. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 April 2016 Energy Levels of Light Nuclei A = 19 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A300 (1978), p. 1. This version of A = 19 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  19. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UNAM 5 (1982) 1 1982DO01 K.G.R. Doss, P.D. Barnes, N. Colella, S.A. Dytman, R.A. Eisenstein, C. Ellegaard, F. Takeutchi, W.R. Wharton, J.F. Amann, R.H. Pehl et al, Phys. Rev....

  20. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See also (1986GU1D, 1986PO13) and (1983ANZQ, 1985PO10; theor.). 19 C (Fig. 8) 19 C has been observed in the 0.8 GeV proton bombardment of thorium (1986VI09) and in the ...

  1. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See also (1989PO1K, 1990LO11). 19 C (Fig. 4) 19 C has been observed in the 0.8 GeV proton bombardment of thorium (1986VI09, 1988WO09) and in the fragmentation of 66 MeVA argon ...

  2. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rev. 82 (1951) 305, DA12 1951RO16 W.D. Roseborough, J.J.G. McCue, W.M. Preston and C. Goodman, Phys. Rev. 83 (1951) 1133 1951YA1A Yaffe and Stevens, Can. J. Phys. 29 (1951) 186;...

  3. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 November 2010 Energy Levels of Light Nuclei A = 6 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A490 (1988), p. 1. This version of A = 6 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the

  4. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 February 2011 Energy Levels of Light Nuclei A = 9 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A490 (1988), p. 1. This version of A = 9 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the

  5. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 October 2013 Energy Levels of Light Nuclei A = 10 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A413 (1984), p. 1. This version of A = 10 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and Introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the

  6. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 October 2012 Energy Levels of Light Nuclei A = 13 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A523 (1991), p. 1. This version of A = 13 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the

  7. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2012 Energy Levels of Light Nuclei A = 15 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A523 (1991), p. 1. This version of A = 15 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the

  8. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 November 2013 Energy Levels of Light Nuclei A = 18 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A392 (1983), p. 1. This version of A = 18 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the

  9. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  10. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-19

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  11. Notice of Intent to Revise Department of Energy Order 456.1, Admin Chg 1, The Safe Handling of Unbound Engineered Nanoparticles, dated February 14, 2013

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-14

    This order will be updated by comparing it to national/international consensus standards on nanomaterial safety that have been developed and revised since this order was last reviewed. Additionally, it will be reviewed by representatives of affected DOE elements to include consideration of the recommendations from the external review completed by the DOE Office of Inspector General audit report, "Follow-up Audit of Nanoscale Material Safety at the Department's Laboratories," [Draft, April 2015].

  12. Notice of Intent to Revise Department of Energy Order 456.1, Admin Chg 1, The Safe Handling of Unbound Engineered Nanoparticles

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This order will be updated by comparing it to national/international consensus standards on nanomaterial safety that have been developed and revised since this order was last reviewed. Additionally, it will be reviewed by representatives of affected DOE elements to include consideration of the recommendations from the external review completed by the DOE Office of Inspector General audit report, "Follow-up Audit of Nanoscale Material Safety at the Department's Laboratories," [Draft, April 2015].

  13. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2008 Energy Levels of Light Nuclei A = 5 T. Lauritsen a and F. Ajzenberg-Selove b a California Institute of Technology, Pasadena, California b University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics 78 (1966), p. 1. This version of A = 5 differs from the published version in that we have corrected some errors discov- ered after the article went to press. Figures and introductory tables have been omitted from

  14. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 January 2016 Energy Levels of Light Nuclei A = 5 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A227 (1974), p. 1. This version of A = 5 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  15. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 September 2014 Energy Levels of Light Nuclei A = 5 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A320 (1979), p. 1. This version of A = 5 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  16. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2010 Energy Levels of Light Nuclei A = 5 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A490 (1988), p. 1. This version of A = 5 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  17. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 September 2008 Energy Levels of Light Nuclei A = 6 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 6 differs from the published version in that we have corrected some errors discov- ered after the article went to press. Figures and Introductory tables have been omitted

  18. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 August 2008 Energy Levels of Light Nuclei A = 6 T. Lauritsen a and F. Ajzenberg-Selove b a California Institute of Technology, Pasadena, California b University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics 78 (1966), p. 1. This version of A = 6 differs from the published version in that we have corrected some errors discov- ered after the article went to press. Figures and introductory tables have been omitted from

  19. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 January 2016 Energy Levels of Light Nuclei A = 6 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A227 (1974), p. 1. This version of A = 6 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC format.

  20. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 September 2014 Energy Levels of Light Nuclei A = 6 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A320 (1979), p. 1. This version of A = 6 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  1. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 August 2013 Energy Levels of Light Nuclei A = 6 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A413 (1984), p. 1. This version of A = 6 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the TUNL/NNDC

  2. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 September 2008 Energy Levels of Light Nuclei A = 7 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 7 differs from the published version in that we have corrected some errors discov- ered after the article went to press. Figures and introductory tables have been omitted

  3. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 August 2008 Energy Levels of Light Nuclei A = 7 T. Lauritsen a and F. Ajzenberg-Selove b a California Institute of Technology, Pasadena, California b University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics 78 (1966), p. 1. This version of A = 7 differs from the published version in that we have corrected some errors discov- ered after the article went to press. Figures and introductory tables have been omitted from

  4. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 February 2016 Energy Levels of Light Nuclei A = 7 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A227 (1974), p. 1. This version of A = 7 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  5. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 September 2014 Energy Levels of Light Nuclei A = 7 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A320 (1979), p. 1. This version of A = 7 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  6. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 September 2013 Energy Levels of Light Nuclei A = 7 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A413 (1984), p. 1. This version of A = 7 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and Introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL

  7. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 April 2013 Energy Levels of Light Nuclei A = 7 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A490 (1988), p. 1. This version of A = 7 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  8. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 August 2008 Energy Levels of Light Nuclei A = 8 T. Lauritsen a and F. Ajzenberg-Selove b a California Institute of Technology, Pasadena, California b University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics 78 (1966), p. 1. This version of A = 8 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and ntroductory tables have been omitted from

  9. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 February 2016 Energy Levels of Light Nuclei A = 8 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A227 (1974), p. 1. This version of A = 8 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  10. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 September 2014 Energy Levels of Light Nuclei A = 8 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A320 (1979), p. 1. This version of A = 8 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  11. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 September 2013 Energy Levels of Light Nuclei A = 8 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A413 (1984), p. 1. This version of A = 8 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and Introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL

  12. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2011 Energy Levels of Light Nuclei A = 8 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A490 (1988), p. 1. This version of A = 8 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  13. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 October 2008 Energy Levels of Light Nuclei A = 9 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 9 differs from the published version in that we have corrected some errors discov- ered after the article went to press. Figures and introductory tables have been omitted from

  14. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 September 2008 Energy Levels of Light Nuclei A = 9 T. Lauritsen a and F. Ajzenberg-Selove b a California Institute of Technology, Pasadena, California b University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics 78 (1966), p. 1. This version of A = 9 differs from the published version in that we have corrected some errors discov- ered after the article went to press. Figures and introductory tables have been omitted

  15. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 February 2016 Energy Levels of Light Nuclei A = 9 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A227 (1974), p. 1. This version of A = 9 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  16. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 September 2014 Energy Levels of Light Nuclei A = 9 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A320 (1979), p. 1. This version of A = 9 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC

  17. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 October 2013 Energy Levels of Light Nuclei A = 9 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A413 (1984), p. 1. This version of A = 9 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and Introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL

  18. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 October 2008 Energy Levels of Light Nuclei A = 10 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 10 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  19. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 September 2008 Energy Levels of Light Nuclei A = 10 T. Lauritsen a and F. Ajzenberg-Selove b a California Institute of Technology, Pasadena, California b University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics 78 (1966), p. 1. This version of A = 10 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  20. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 March 2016 Energy Levels of Light Nuclei A = 10 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A227 (1974), p. 1. This version of A = 10 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC format.

  1. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 October 2014 Energy Levels of Light Nuclei A = 10 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A320 (1979), p. 1. This version of A = 10 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  2. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 May 2012 Energy Levels of Light Nuclei A = 10 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 5-10 was published in Nuclear Physics A490 (1988), p. 1. This version of A = 10 differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  3. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 February 2009 Energy Levels of Light Nuclei A = 11 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 11 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  4. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    05 February 2009 Energy Levels of Light Nuclei A = 11 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A114 (1968), p. 1. This version of A = 11 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted

  5. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 October 2015 Energy Levels of Light Nuclei A = 11 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A248 (1975), p. 1. This version of A = 11 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  6. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 July 2014 Energy Levels of Light Nuclei A = 11 F. Ajzenberg-Selove and C.L. Busch University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A336 (1980), p. 1. This version of A = 11 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the

  7. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 May 2013 Energy Levels of Light Nuclei A = 11 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A433 (1985), p. 1. This version of A = 11 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  8. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 June 2012 Energy Levels of Light Nuclei A = 11 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A506 (1990), p. 1. This version of A = 11 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers are in the NNDC/TUNL format. (References

  9. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 August, 2015 Energy Levels of Light Nuclei A = 12 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 12 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  10. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 July 2015 Energy Levels of Light Nuclei A = 12 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A114 (1968), p. 1. This version of A = 12 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from

  11. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 February 2016 Energy Levels of Light Nuclei A = 12 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A248 (1975), p. 1. This version of A = 12 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  12. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 January 2016 Energy Levels of Light Nuclei A = 12 F. Ajzenberg-Selove and C.L. Busch University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A336 (1980), p. 1. This version of A = 12 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the

  13. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 May 2016 Energy Levels of Light Nuclei A = 12 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A433 (1985), p. 1. This version of A = 12 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  14. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02 June 2016 Energy Levels of Light Nuclei A = 12 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 11-12 was published in Nuclear Physics A506 (1990), p. 1. This version of A = 12 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers are in the NNDC/TUNL format. (References

  15. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 February 2009 Energy Levels of Light Nuclei A = 13 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 13 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  16. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08 August 2016 Energy Levels of Light Nuclei A = 13 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A152 (1970), p. 1. This version of A = 13 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  17. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 July 2015 Energy Levels of Light Nuclei A = 13 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A268 (1976), p. 1. This version of A = 13 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  18. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 July 2015 Energy Levels of Light Nuclei A = 13 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A360 (1981), p. 1. This version of A = 13 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL

  19. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 August 2016 Energy Levels of Light Nuclei A = 14 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A152 (1970), p. 1. This version of A = 14 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  20. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 August 2015 Energy Levels of Light Nuclei A = 14 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A268 (1976), p. 1. This version of A = 14 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  1. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 April 2014 Energy Levels of Light Nuclei A = 14 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A360 (1981), p. 1. This version of A = 14 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL

  2. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 April 2013 Energy Levels of Light Nuclei A = 14 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A449 (1986), p. 1. This version of A = 14 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  3. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 June 2008 Energy Levels of Light Nuclei A = 15 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A152 (1970), p. 1. This version of A = 15 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  4. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Energy Levels of Light Nuclei A = 15 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A268 (1976), p. 1. This version of A = 15 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  5. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 May 2014 Energy Levels of Light Nuclei A = 15 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A360 (1981), p. 1. This version of A = 15 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL

  6. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 April 2013 Energy Levels of Light Nuclei A = 15 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13-15 was published in Nuclear Physics A449 (1986), p. 1. This version of A = 15 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  7. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 May 2016 Energy Levels of Light Nuclei A = 16 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A166 (1971), p. 1. This version of A = 16 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  8. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 May 2015 Energy Levels of Light Nuclei A = 16 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A281 (1977), p. 1. This version of A = 16 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  9. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 June 2014 Energy Levels of Light Nuclei A = 16 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A375 (1982), p. 1. This version of A = 16 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  10. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 January 2013 Energy Levels of Light Nuclei A = 16 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A460 (1986), p. 1. This version of A = 16 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  11. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 November 2008 Energy Levels of Light Nuclei A = 17 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 17 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  12. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Energy Levels of Light Nuclei A = 17 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A166 (1971), p. 1. This version of A = 17 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  13. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 July 2015 Energy Levels of Light Nuclei A = 17 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A281 (1977), p. 1. This version of A = 17 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  14. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Energy Levels of Light Nuclei A = 17 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A375 (1982), p. 1. This version of A = 17 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL format.

  15. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 January 2013 Energy Levels of Light Nuclei A = 17 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A460 (1986), p. 1. This version of A = 17 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  16. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 March 2015 Energy Levels of Light Nuclei A = 18 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A300 (1978), p. 1. This version of A = 18 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  17. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 December 2012 Energy Levels of Light Nuclei A = 18 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A475 (1987), p. 1. This version of A = 18 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  18. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 November 2008 Energy Levels of Light Nuclei A = 19 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 19 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  19. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    04 April 2016 Energy Levels of Light Nuclei A = 19 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A190 (1972), p. 1. This version of A = 19 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  20. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 January 2014 Energy Levels of Light Nuclei A = 19 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A392 (1983), p. 1. This version of A = 19 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  1. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 February 2009 Energy Levels of Light Nuclei A = 20 F. Ajzenberg-Selove a and T. Lauritsen b a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 b California Institute of Technology, Pasadena, California Abstract: An evaluation of A = 5-24 was published in Nuclear Physics 11 (1959), p. 1. This version of A = 20 differs from the published version in that we have corrected some errors dis- covered after the article went to press. Figures and introductory tables have been omitted

  2. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2016 Energy Levels of Light Nuclei A = 20 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A190 (1972), p. 1. This version of A = 20 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  3. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 February 2015 Energy Levels of Light Nuclei A = 20 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A300 (1978), p. 1. This version of A = 20 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  4. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2014 Energy Levels of Light Nuclei A = 20 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A392 (1983), p. 1. This version of A = 20 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

  5. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 November 2012 Energy Levels of Light Nuclei A = 20 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 18-20 was published in Nuclear Physics A475 (1987), p. 1. This version of A = 20 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL

  6. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 May, 2012 Energy Levels of Light Nuclei A = 11 J.H. Kelley a,b , E. Kwan a,c , J.E. Purcell a,d , C.G. Sheu a,c , and H.R. Weller a,c a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 b Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 c Department of Physics, Duke University, Durham, NC 27708-0305 d Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 Abstract: An evaluation of A = 11 was published in Nuclear Physics

  7. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 May 2014 Energy Levels of Light Nuclei A = 16 D.R. Tilley a,b , H.R. Weller a,c and C.M. Cheves a,c a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA b Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA c Department of Physics, Duke University, Durham, NC 27708-0305, USA Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A564 (1993), p. 1. This version of A = 16 differs from the published version in that we have corrected

  8. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 November 2014 Energy Levels of Light Nuclei A = 17 D.R. Tilley a,b , H.R. Weller a,c and C.M. Cheves a,c a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA b Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA c Department of Physics, Duke University, Durham, NC 27708-0305, USA Abstract: An evaluation of A = 16-17 was published in Nuclear Physics A564 (1993), p. 1. This version of A = 17 differs from the published version in that we have

  9. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 November 2014 Energy Levels of Light Nuclei A = 18 D.R. Tilley a,b , H.R. Weller a,c and C.M. Cheves a,c , R.M. Chasteler a,c a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA b Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA c Department of Physics, Duke University, Durham, NC 27708-0305, USA Abstract: An evaluation of A = 18-19 was published in Nuclear Physics A595 (1995), p. 1. This version of A = 18 differs from the published version

  10. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  11. Validation of nuclear criticality safety software and 27 energy group ENDF/B-IV cross sections. Revision 1

    SciTech Connect (OSTI)

    Lee, B.L. Jr.; D`Aquila, D.M.

    1996-01-01

    The original validation report, POEF-T-3636, was documented in August 1994. The document was based on calculations that were executed during June through August 1992. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This revision is written to clarify the margin of safety being used at Portsmouth for nuclear criticality safety calculations. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Lockheed Martin Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. For calculations of Portsmouth systems using the specified codes and systems covered by this validation, a maximum k{sub eff} including 2{sigma} of 0.9605 or lower shall be considered as subcritical to ensure a calculational margin of safety of 0.02. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  12. 2008 MERRTT Revision Letter

    Office of Environmental Management (EM)

    Preparedness Program (TEPP) is pleased to announce the release of the 2008 Modular Emergency Response Radiological Transportation Training (MERRTT). This revision replaces...

  13. ,"Texas Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  14. ,"Texas Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  15. ,"New Mexico Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  16. ,"New Mexico Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  17. Summary of monitoring station component evaluation project 2009-2011.

    SciTech Connect (OSTI)

    Hart, Darren M.

    2012-02-01

    Sandia National Laboratories (SNL) is regarded as a center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for ground-based nuclear explosion monitoring (GNEM) systems. This project will sustain and enhance our component evaluation capabilities. In addition, new sensor technologies that could greatly improve national monitoring system performance will be sought and characterized. This work directly impacts the Ground-based Nuclear Explosion Monitoring mission by verifying that the performance of monitoring station sensors and instrumentation is characterized and suitable to the mission. It enables the operational monitoring agency to deploy instruments of known capability and to have confidence in operational success. This effort will ensure that our evaluation capabilities are maintained for future use.

  18. Technical Review Report for the Model 9978-96 Package Safety Analysis Report for Packaging (S-SARP-G-00002, Revision 1, March 2009)

    SciTech Connect (OSTI)

    West, M

    2009-03-06

    This Technical Review Report (TRR) documents the review, performed by Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the Department of Energy (DOE), on the 'Safety Analysis Report for Packaging (SARP), Model 9978 B(M)F-96', Revision 1, March 2009 (S-SARP-G-00002). The Model 9978 Package complies with 10 CFR 71, and with 'Regulations for the Safe Transport of Radioactive Material-1996 Edition (As Amended, 2000)-Safety Requirements', International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9978 Packaging is designed, analyzed, fabricated, and tested in accordance with Section III of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME B&PVC). The review presented in this TRR was performed using the methods outlined in Revision 3 of the DOE's 'Packaging Review Guide (PRG) for Reviewing Safety Analysis Reports for Packages'. The format of the SARP follows that specified in Revision 2 of the Nuclear Regulatory Commission's Regulatory Guide 7.9, i.e., 'Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material'. Although the two documents are similar in their content, they are not identical. Formatting differences have been noted in this TRR, where appropriate. The Model 9978 Packaging is a single containment package, using a 5-inch containment vessel (5CV). It uses a nominal 35-gallon drum package design. In comparison, the Model 9977 Packaging uses a 6-inch containment vessel (6CV). The Model 9977 and Model 9978 Packagings were developed concurrently, and they were referred to as the General Purpose Fissile Material Package, Version 1 (GPFP). Both packagings use General Plastics FR-3716 polyurethane foam as insulation and as impact limiters. The 5CV is used as the Primary Containment Vessel (PCV) in the Model 9975-96 Packaging. The Model 9975-96 Packaging also has the 6CV as its Secondary Containment Vessel (SCV). In comparison, the Model 9975

  19. EM Quality Assurance Policy, Revision 0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy, Revision 0 EM Quality Assurance Policy, Revision 0 Previous EM policy on the use of the corporate Quality Assurance Program (EM-QA-001 Rev. 0). This document has been superseded by Revision 1 of the policy, but is still in use at some EM sites. EM Quality Assurance Policy, Revision 0 (259.04 KB) More Documents & Publications Line Management Understanding of QA and Oversight EM Quality Assurance Program (EM-QA-001 Revision 0) QA Corporate Board Meeting - February 2010 (Teleconference)

  20. Notice of Intent to Revise DOE O 481.1C, Strategic Partnerships Projects (formerly known as Work for Others (Non-Department of Energy Funded Work))

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The revision will propose reduction in requirements, increased delegation of management responsibilities to program organizations, reduction in data collection and reporting requirements as well as increased use of available real time financial data for reporting activities.

  1. Notice of Intent to Revise DOE O 481.1C, Strategic Partnerships Projects [formerly known as Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-03

    The revision will propose reduction in requirements, increased delegation of management responsibilities to program organizations, reduction in data collection and reporting requirements as well as increased use of available real time financial data for reporting activities.

  2. Environmental Regulatory Compliance Plan for Site Characterization; Yucca Mountain Site, Nevada Research and Development Area, Nevada: Revision 1

    SciTech Connect (OSTI)

    1988-12-01

    The DOE is committed to conduct its operations in an environmentally safe and sound manner, and will comply with applicable environmental statutes and regulations. These objectives are described in DOE Order 5400.1 (Environmental Protection Program Requirements). This document -- the Environmental Regulatory Compliance Plan (ERCP) -- is one method of implementing the policy set forth in DOE Order 5400.1 and the NWPA. The ERCP describes the plan by which the DOE will comply with applicable Federal environmental statutes and regulations. The ERCP also discusses how DOE will address State and local environmental statutes and regulations. 180 refs., 27 figs., 1 tab.

  3. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1. Bid schedule, special conditions, specifications, and subcontract drawings

    SciTech Connect (OSTI)

    1995-10-01

    This volume contains: bidding requirements; terms and conditions; specifications for Division 1 -- general requirements; specifications for Division 2 -- sitework; specifications for Divisions 5 -- metals; subcontract drawings, (general, Union Carbide processing site, North Continent processing site, and Burro Canyon disposal site).

  4. Notice of Intent to Revise DOE O 329.1, Excepted Service Authorities for EJ and EK Pay Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-21

    DOE O 329.1 establishes requirements and responsibilities for the employment and compensation of individuals when using the EJ and EK excepted service authorities that are unique to the Department of Energy.

  5. SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND...

    Office of Environmental Management (EM)

    N E T SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT ... (1) natural hazard phenomenon (earthquake, wind, flooding and precipitation) and ...

  6. Long-term climate change assessment study plan for the Hanford Site Permanent Isolation Barrier Development Program. Revision 1

    SciTech Connect (OSTI)

    Petersen, K.L.; Chatters, J.C.; Waugh, W.J.

    1993-05-01

    The Hanford Site Permanent Isolation Barrier Development Program (Barrier Development Program) was organized to develop the technology needed to provide an in-place disposal capability for low-level nuclear waste for the US Department of Energy at the Hanford Site in south-central Washington. The goal of the Barrier Development Program is to provide defensible evidence that final barrier design(s) will adequately control water infiltration, plant and animal intrusion, and wind and water erosion for a minimum of 1,000 yr; to isolate wastes from the accessible environment; and to use markers to warn inadvertent human intruders. Evidence for barrier performance will be obtained by conducting laboratory experiments, field tests, computer modeling, and other studies that establish confidence in the barrier`s ability to meet its 1,000-yr design life.

  7. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  8. Microsoft Word - AL 2010-07 Acquistion Letters Remaining in Effect May 2010 revision 1 June 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    No. AL 2010-07 Rev. 1 Acquisition Regulation Date 06/01/2010 ACQUISITION LETTER This Acquisition Letter is issued under the authority of the DOE and NNSA Senior Procurement Executives. Acquisition Letters (AL) that remain in effect are identified below. All other previously issued ALs have been superseded by a formal rule-making, incorporated into other guidance, and/or canceled. * * * * * * * * * * * * * * * * ACQUISITION LETTERS REMAINING IN EFFECT NUMBER DATE SUBJECT 93-4 04/07/1993 Displaced

  9. Microsoft Word - U Isotope Report_4-8-14 to 1-6-15_Revised.docx

    Office of Legacy Management (LM)

    Rocky Flats Water Samples Collected Over the Period 4/8/14 to 1/6/15 and Submitted to LBNL John N. Christensen Report date 2/26/15 Seven surface water samples were submitted by Stoller Newport News Nuclear to Lawrence Berkeley National Laboratory for uranium (U) isotopic analysis. The samples include three composite samples from the WALPOC location; three composite samples from GS10; and one composite sample from the SW093 location. These samples were collected during the period from April 2014

  10. Directory of Certificates of Compliance for radioactive materials packages: Report of NRC approved packages. Volume 1, Revision 18

    SciTech Connect (OSTI)

    1995-10-01

    The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance Number is included at the front of Volumes 1 and 2. An alphabetical listing by user name is included in the back of Volume 3 of approved QA programs. The reports include a listing of all users of each package design and approved QA programs prior to the publication date.

  11. Evaluation of geotechnical monitoring data from the ESF North Ramp Starter Tunnel, April 1994 to June 1995. Revision 1

    SciTech Connect (OSTI)

    1995-11-01

    This report presents the results of instrumentation measurements and observations made during construction of the North Ramp Starter Tunnel (NRST) of the Exploratory Studies Facility (ESF). The information in this report was developed as part of the Design Verification Study, Section 8.3.1.15.1.8 of the Yucca Mountain Site Characterization Plan (DOE 1988). The ESF is being constructed by the US Department of Energy (DOE) to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. The Design Verification Studies are performed to collect information during construction of the ESF that will be useful for design and construction of the potential repository. Four experiments make up the Design Verification Study: Evaluation of Mining Methods, Monitoring Drift Stability, Monitoring of Ground Support Systems, and The Air Quality and Ventilation Experiment. This report describes Sandia National Laboratories` (SNL) efforts in the first three of these experiments in the NRST.

  12. Development and evaluation of a HEPA filter for increased strength and resistance to elevated temperature. Revision 1

    SciTech Connect (OSTI)

    Gilbert, H.; Bergman, W.; Fretthold, J.K.

    1993-01-01

    We have completed a preliminary study of an improved HEPA filter for increased strength and resistance to elevated temperature to improve the reliability of the standard deep pleated HEPA filter under accident conditions. The improvements to the HEPA filter consist of a silicone rubber sealant and a new HEPA medium reinforced with a glass cloth. Three prototype filters were built and evaluated for temperature and pressure resistance and resistance to rough handling. The temperature resistance test consisted of exposing the HEPA filter to 1,000 scan (1,700 m{sup 3}/hr) at 700{degrees}F (371{degrees}C) for five minutes.The pressure resistance test consisted of exposing the HEPA filter to a differential pressure of 10 in. w.g. (2.5 kPa) using a water saturated air flow at 95{degrees}F (35{degrees}C). For the rough handling test, we used a vibrating machine designated the Q110. DOP filter efficiency tests were performed before and after each of the environmental tests. In addition to following the standard practice of using a separate new filter for each environmental test, we also subjected the same filter to the elevated temperature test followed by the pressure resistance test. The efficiency test results show that the improved HEPA filter is significantly better than the standard HEPA filter. Further studies are recommended to evaluate the improved HEPA filter and to assess its performance under more severe accident conditions.

  13. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

  14. OSHA's approach to risk assessment for setting a revised occupational exposure standard for 1,3-butadiene

    SciTech Connect (OSTI)

    Grossman, E.A.; Martonik, J. )

    1990-06-01

    In its 1980 benzene decision (Industrial Union Department, ALF-CIO v. American Petroleum Institute, 448 U.S. 607 (1980)), the Supreme Court ruled that before he can promulgate any permanent health or safety standard, the Secretary (of Labor) is required to make a threshold finding that a place of employment is unsafe--in the sense that significant risks are present and can be lessened by a change in practices (448 U.S. at 642). The Occupational Safety and Health Administration (OSHA) has interpreted this to mean that whenever possible, it must quantify the risk associated with occupational exposure to a toxic substance at the current permissible exposure limit (PEL). If OSHA determines that there is significant risk to workers' health at its current standard, then it must quantify the risk associated with a variety of alternative standards to determine at what level, if any, occupational exposure to a substance no longer poses a significant risk. For rulemaking on occupational exposure to 1,3-butadiene, there are two studies that are suitable for quantitative risk assessment. One is a mouse inhalation bioassay conducted by the National Toxicology Program (NTP), and the other is a rat inhalation bioassay conducted by Hazelton Laboratories Europe. Of the four risk assessments that have been submitted to OSHA, all four have used the mouse and/or rat data with a variety of models to quantify the risk associated with occupational exposure to 1,3-butadiene. In addition, OSHA has performed its own risk assessment using the female mouse and female rat data and the one-hit and multistage models.

  15. Updated users' guide for SAMMY: multilevel R-matrix fits to neutron data using Bayes' equations. Revision 1

    SciTech Connect (OSTI)

    Larson, N.M.

    1985-04-01

    In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of neutron data at the Oak Ridge Electron Linear Accelerator. Since that time, SAMMY has undergone significant modifications: (1) User-friendly options have been incorporated to streamline common operations and to protect a run from common user errors. (2) The Reich-Moore formalism has been extended to include an optional logarithmic parameterization of the external R-matrix, for which any or all parameters may be varied. (3) The ability to vary sample thickness, effective temperature, matching radius, and/or resolution-broadening parameters has been incorporated. (4) To avoid loss of information (i.e., computer round-off errors) between runs, the ''covariance file'' now includes precise values for all variables. (5) Unused but correlated variables may be included in the analysis. Because of these and earlier changes, the 1980 SAMMY manual is now obsolete. This report is intended to be complete documentation for the current version of SAMMY. In August of 1984 the users' guide for version P of the multilevel multichannel R-matrix code SAMMY was published. Recently, major changes within SAMMY have led to the creation of version O, which is documented in this report. Among these changes are: (1) an alternative matrix-manipulation method for use in certain special cases; (2) division of theoretical cross-section generation and broadening operations into separate segments of the code; (3) an option to use the multilevel Breit-Wigner approximation to generate theoretical cross sections; (4) new input options; (5) renaming all temporary files as SAM...DAT; (6) more sophisticated use of temporary files to maximize the number of data points that may be analyzed in a single run; and (7) significant internal restructing of the code in preparation for changes described here and for planned future changes.

  16. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  17. Phase II Documentation Overview of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Greg Ruskauff

    2010-04-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Subproject to assess and evaluate radiologic groundwater contamination resulting from underground nuclear testing at the NTS. These activities are overseen by the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended March 2010). For Frenchman Flat, the UGTA Subproject addresses media contaminated by the underground nuclear tests, which is limited to geologic formations within the saturated zone or 100 meters (m) or less above the water table. Transport in groundwater is judged to be the primary mechanism of migration for the subsurface contamination away from the Frenchman Flat underground nuclear tests. The intent of the UGTA Subproject is to assess the risk to the public from the groundwater contamination produced as a result of nuclear testing. The primary method used to assess this risk is the development of models of flow and contaminant transport to forecast the extent of potentially contaminated groundwater for the next 1,000 years, establish restrictions to groundwater usage, and implement a monitoring program to verify protectiveness. For the UGTA Subproject, contaminated groundwater is that which exceeds the radiological standards of the Safe Drinking Water Act (CFR, 2009) the State of Nevada’s groundwater quality standard to protect human health and the environment. Contaminant forecasts are expected to be uncertain, and groundwater monitoring will be used in combination with land-use control to build confidence in model results and reduce risk to the public. Modeling forecasts of contaminant transport will provide the basis for negotiating a compliance boundary for the Frenchman Flat Corrective Action Unit (CAU). This compliance boundary represents a regulatory-based distinction between groundwater contaminated or not contaminated by underground testing. Transport modeling simulations

  18. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1

    SciTech Connect (OSTI)

    1995-12-01

    As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  20. Hydrogeologic subdivision of the Wolfcamp series and Pennsylvanian system of the Swisher Study Area, Texas: Revision 1: Topical report

    SciTech Connect (OSTI)

    Siminitz, P.C.; Warman, E.A.

    1987-08-01

    The Pennsylvanian-Wolfcamp section in the Palo Duro Basin includes brine aquifers that are considered to be the most important ground- water flow paths in the deep-basin system. This report provides summary documentation of studies that subdivide the section into hydrogeologic units based on their judged relative capacities for transmitting water. This particular study area comprises eight counties in Texas, including Swisher County. Underground patterns of rock distribution are delineated from a hydrologic perspective and at a level of detail appropriate for numerical modeling of regional ground-water flow. Hydrogeologic units are defined and characterized so that appropriate porosity and permeability values can be assigned to each during construction of the numerical models and so that modelers can combine units where necessary. Hydrogeologic units have been defined as mappable, physically continuous rock bodies that function in bulk as water-transmitting or water-retarding units relative to adjacent rocks. Interpretations are made primarily from geophysical logs. Hydrologic characteristics are assessed on the basis of properties typically associated with certain lithologies (e.g., sandstones are more pervious than shales) and on the basis of gross variations in effective porosity (particularly in carbonate sequences). 15 refs., 52 figs., 1 tab.

  1. Hydrogeologic subdivision of the Wolfcamp Series and Pennsylvanian System of the Deaf Smith study area, Texas: Revision 1, Topical report

    SciTech Connect (OSTI)

    Siminitz, P.C.; Warman, E.A.

    1987-07-01

    The Pennsylvanian-Wolfcamp section in the Palo Duro Basin includes brine aquifers that are considered to be the most important ground-water flow paths in the deep-basin system. This particular study area comprises eight counties in Texas, centered in Potter County (and including Deaf Smith County). Underground patterns of rock distribution are delineated from a hydrologic perspective and at a level of detail appropriate for numerical modeling of regional ground-water flow. In this study, hydrogeologic units have been defined as mappable, physically continuous rock bodies that function in bulk as water-transmitting or water-retarding units relative to adjacent rocks. Interpretations are made primarily from geophysical logs. Hydrologic characteristics are assessed on the basis of properties typically associated with certain lithologies (e.g., sandstones are more pervious than shales) and on the basis of gross variations in effective porosity (particularly in carbonate sequences). In this report, the Pennsylvanian-Wolfcamp section is subdivided into 41 hydrogeologic units. These units do not constitute a classical or definitive breakdown of the Pennyslvanian-Wolfcamp section. 12 refs., 87 figs., 1 tab.

  2. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  3. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    SciTech Connect (OSTI)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  4. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Revision 1

    SciTech Connect (OSTI)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-05-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  5. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  6. Microcomputer-based instrument for the detection and analysis of precession motion in a gas centrifuge machine. Revision 1

    SciTech Connect (OSTI)

    Paulus, S.S.

    1986-03-01

    The Centrifuge Procession Analyzer (CPA) is a microcomputer-based instrument which detects precession motion in a gas centrifuge machine and calculates the amplitude and frequency of precession. The CPA consists of a printed circuit board which contains signal-conditioning circuitry and a 24-bit counter and an INTEL iSBC 80/24 single/board computer. Pression motion is detected by monitoring a signal generated by a variable reluctance pick-up coil in the top of the centrifuge machine. This signal is called a Fidler signal. The initial Fidler signal triggers a counter which is clocked by a high-precision, 20.000000-MHz, temperature-controlled, crystal oscillator. The contents of the counter are read by the computer and the counter reset after every ten Fidler signals. The speed of the centrifuge machine and the amplitude and frequency of precession are calculated and the results are displayed on a liquid crystal display on the front panel of the CPA. The report contains results from data generated by a Fidler signal simulator and data taken when the centrifuge was operated under three test conditions: (1) nitrogen gas during drive-up, steady state, and drive-down; (2) xenon gas during slip test, steady state, and the addition of gas; and (3) no gas during steady state. The qualitative results were consistent with experience with centrifuge machines using UF/sub 6/ in that the amplitude of precession increased and the frequency of precession decreased during drive-up, drive-down and the slip check. The magnitude of the amplitude and frequency of precession were proportional to the molecular weight of the gases in steady state.

  7. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  8. Corrrective action decision document for the Cactus Spring Waste Trenches (Corrective Action Unit No. 426). Revision No. 1

    SciTech Connect (OSTI)

    1997-06-01

    The Corrective Action Decision Document (CADD) for the Cactus Spring Waste Trenches (Corrective Action Unit [CAU] No. 426) has been prepared for the US Department of Energy`s (DOE) Nevada Environmental Restoration Project. This CADD has been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996, stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Cactus Spring Waste Trenches Corrective Action Site (CAS) No. RG-08-001-RG-CS is included in CAU No. 426 (also referred to as the {open_quotes}trenches{close_quotes}); it has been identified as one of three potential locations for buried, radioactively contaminated materials from the Double Tracks Test. The trenches are located on the east flank of the Cactus Range in the eastern portion of the Cactus Spring Ranch at the Tonopah Test Range (TTR) in Nye County, Nevada, on the northern portion of Nellis Air Force Range. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The trenches were dug for the purpose of receiving waste generated during Operation Roller Coaster, primarily the Double Tracks Test. This test, conducted in 1963, involved the use of live animals to assess the biological hazards associated with non-nuclear detonation of plutonium-bearing devices (i.e., inhalation uptake of plutonium aerosol). The CAS consists of four trenches that received solid waste and had an overall impacted area of approximately 36 meters (m) (120 feet [ft]) long x 24 m (80 ft) wide x 3 to 4.5 m (10 to 15 ft) deep. The average depressions at the trenches are approximately 0.3 m (1 ft) below land surface.

  9. Notice of Intent to Revise DOE O 452.2D, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-05

    NNSA is proposing revisions for the suite of directives in order to (1) revise requirements to improve NES processes and (2) align the directives with the requirements of DOE Order 251.1C, Departmental Directives Program.

  10. Quality Assurance Policy, Revision 1

    Office of Environmental Management (EM)

    Definition Rating Index (PDRI) Project Definition Rating Index (PDRI) The Office of Environmental Management (EM) Project Definition Rating Index (EM-PDRI) is a modification of a commercially developed planning tool that has been tested by an EM team specifically for EM's projects. EM-PDRI Team members represent a number of EM sites, and have already used this project planning tool successfully. The EM-PDRI examines a wide range of project factors related to cost, scope, and schedule, and

  11. Addendum to the Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada (Revision 1), December 2002 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 06-25-01, CP-1 Heating Oil Release. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to

  12. Issue a New Department of Energy Acquisition Guide Chapter 6.5 Competition Advocate Responsibilities and Revise Pages in Chapters 6.1 and 7.1.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is a new chapter of the DOE Acquisition Guide entitled Competition Advocate Responsibilities. It provides a comprehensive overview of the topic. The new chapter necessitates page changes to Chapters 6.1 and 7.1.

  13. Policy Flash 2013-62 Acquisition Letter 09 - Revision of Department...

    Energy Savers [EERE]

    Acquisition Letter 09 - Revision of Department of Energy (DOE) Order 350.1 and Special H Clause Policy Flash 2013-62 Acquisition Letter 09 - Revision of Department of Energy...

  14. Policy Flash 2013-62 Acquisition Letter 09 - Revision of Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Letter 09 - Revision of Department of Energy (DOE) Order 350.1 and Special H Clause Policy Flash 2013-62 Acquisition Letter 09 - Revision of Department of Energy (DOE) Order...

  15. FTCP Corrective Action Plan- Revision 2

    Broader source: Energy.gov [DOE]

    March 2009 FTCP Corrective Action Plan, Revision 2, which is Deliverable B for Commitment 13 in the Department of Energy (DOE) Implementation Plan to Improve Oversight of Nuclear Operations, issued in response to Defense Nuclear Facilities Safety Board Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations

  16. NMED Revised LANL Consent Order Draft March 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised LANL Consent Order Draft March 2016 NMED Revised LANL Consent Order Draft March 2016 Topic: Secretary Ryan Flynn, NMED and Katie Roberts, NMED: presented on the Revised LANL Consent Order NMED LANL CO - March 30, 2016 (1.61 MB

  17. On Line Enrichment Monitor (OLEM) UF6 Tests for 1.5" Sch40 SS Pipe, Revision 1

    SciTech Connect (OSTI)

    March-Leuba, José A.; Garner, Jim; Younkin, Jim; Simmons, Darrell W.

    2016-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants while working within budgetary constraints. The “Model Safeguards Approach for Gas Centrifuge Enrichment Plants” (GCEPs) developed by the IAEA Division of Concepts and Planning in June 2006, defines the three primary Safeguards objectives to be the timely detection of: 1) diversion of significant quantities of natural (NU), depleted (DU) or low-enriched uranium (LEU) from declared plant flow, 2) facility misuse to produce undeclared LEU product from undeclared feed, and 3) facility misuse to produce enrichments higher than the declared maximum, in particular, highly enriched uranium (HEU). The ability to continuously and independently (i.e. with a minimum of information from the facility operator) monitor not only the uranium mass balance but also the 235U mass balance in the facility could help support all three verification objectives described above. Two key capabilities required to achieve an independent and accurate material balance are 1) continuous, unattended monitoring of in-process UF6 and 2) monitoring of cylinders entering and leaving the facility. The continuous monitoring of in-process UF6 would rely on a combination of load-cell monitoring of the cylinders at the feed and withdrawal stations, online monitoring of gas enrichment, and a high-accuracy net weight measurement of the cylinder contents. The Online Enrichment Monitor (OLEM) is the instrument that would continuously measure the time-dependent relative uranium enrichment, E(t), in weight percent 235U, of the gas filling or being withdrawn from the cylinders. The OLEM design concept combines gamma-ray spectrometry using a collimated NaI(Tl) detector with gas pressure and temperature data to calculate the enrichment of the UF6

  18. Environmental Restoration Program project management plan for the DOE Oak Ridge Field Office Major System Acquisition OR-1. Revision 1, Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    In the early 1940s, the Manhattan Project was conducted in a regulatory and operational environment less sophisticated than today. Less was known of the measures needed to protect human health and safety and the environment from the dangers posed by radioactive and hazardous wastes, and experience in dealing with these hazardous materials has grown slowly. Certain hazards were recognized and dealt with from the beginning. However, the techniques used, though standard practices at the time, are now known to have been inadequate. Consequently, the DOE has committed to an aggressive program for cleaning up the environment and has initiated an Environmental Restoration Program involving all its field offices. The objective of this program is to ensure that inactive and surplus DOE facilities and sites meet current standards to protect human health and the environment. The objective of these activities is to ensure that risks posed to human health and safety and the environment by inactive sites and surplus facilities contaminated with radioactive, hazardous, and/or mixed wastes are either eliminated or reduced to prescribed safe levels. This Project Management Plan for Major System Acquisition OR-1 Project documents, communicates, and contributes to the evolution of, the management organizations, systems, and tools necessary to carry out effectively the long-range complex cleanup of the DOE sites on the Oak Ridge Reservation, and at the Paducah, Kentucky, and Piketon, Ohio, uranium enrichment plants managed by the Department of Energy Oak Ridge Field Office; the cleanup of off-site contamination resulting from past releases; and the Decontamination and Decommissioning of surplus DOE facilities at these installations.

  19. Revised Manuscript May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revised Manuscript May 20, 2014 Energy Levels of Light Nuclei A = 3 J.E. Purcell a,b , J.H. Kelley a,c , E. Kwan a,d , C.G. Sheu a,d and H.R. Weller a,d a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 b Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 c Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 d Department of Physics, Duke University, Durham, NC 27708-0305 Abstract: A compilation of experimental and

  20. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post

  1. Notice of Intent to Revise Department of Energy Policy 434.1A, Conduct and Approval of Select Agent and Toxin Work at Department of Energy Sites

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-09-24

    A new United States Government (USG) policy for institutional oversight of life sciences dual use research of concern (DURC) became effective September 24, 2015. This policy is complementary to the March 2012 USG Policy for DURC and addresses institutional oversight of DURC for federally funded studies that involve 15 select pathogens and toxins. Institutional oversight will include policies, practices, and procedures to ensure DURC is identified and risk mitigation measures are implemented, where applicable. Institutional oversight of DURC is a critical component of a comprehensive oversight system since institutions are the most familiar with the life sciences research conducted in their facilities. Revisions will include minor administrative changes, as well as an additional sentence to consider the 2015 USG DURCPolicy and a reference to the new USG Policy in the references section. The USG Institutional DURCOversight Policy is available at www.phe.gov/s3/dualuse.

  2. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  6. New Mexico Crude Oil + Lease Condensate Reserves Revision Increases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. Revision to the Procurement Strategy Panel (PSP) Briefing Process

    Office of Energy Efficiency and Renewable Energy (EERE)

    This flash and the attached Acquisition Guide 7.1 revises the PSP process, which is an alternate to a written acquisition plan for procurements expected to exceed $100M.

  9. Revised Merit Review Guide for Financial Assistance

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the revised Merit Review Guide for Financial Assistance. Revisions include reformatting and updating of the information presented in the Guide and Attachments.

  10. Nevada Revised Statutes | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Revised Statutes Citation Nevada Revised Statutes (2014). Retrieved...

  11. Oregon Revised Statutes | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oregon Revised Statutes Citation Oregon Revised Statutes (2014). Retrieved...

  12. Appendix A: Comments and Responses on the Draft Revised FONSI

    National Nuclear Security Administration (NNSA)

    Appendix A: Comments and Responses on the Draft Revised FONSI Comments and Responses on the Draft Revised FONSI Comment Number EA Section Commenter Comment Response 1 General J Moore Curious if the streams in the area of the bannister complex have been examined for pollutants and if any clean up of those are included in these plans? I have a particular interest in Dyke Branch as my property backs up to it. Can you provide recent water quality results? The Draft Revised FONSI was drafted to

  13. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    SciTech Connect (OSTI)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.; Thoms, Robert L.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

  14. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 7,383 -25 268 690 167 195 146 0 0 305 6,805 Lower 48 States 346,611 4,930 55,060 53,654

  15. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 955 -24 89 137 0 34 138 0 0 101 954 Lower 48 States 294,549 3,533 41,975 44,047

  16. Coal within a revised energy perspective

    SciTech Connect (OSTI)

    Darmstadter, J.

    2006-07-15

    The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

  17. Comments on the Revised Consent Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments on the Revised Consent Order Comments on the Revised Consent Order Presentation by NMED Secretary Ryan Flynn "Comments Received on LANL Order on Consent." Comments RCO - May 18, 2016 (1.81 MB) More Documents & Publications Los Alamos Legacy Cleanup Contract Draft Request for Proposal Memorandums of Understanding Between the Department of Energy and the Buckman Direct Diversion Board Regarding Water Quality Monitoring and Surface Water Protection NNSA Supplemental

  18. Coal Data Publication Revision Policy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    impact: WHAT happens next to the database and in our coal reports: Respondent provides data that are clearly incorrect or revised data for any period in the current reporting year. ...

  19. Revised Guide for Financial Assistance

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is a revised Guide for Financial Assistance. The Guide has been updated to reflect changes to web sites, organization names, systems, and DOE policies and practices since the guide was last issued.

  20. GETEM Manuals and Revision Notes

    Broader source: Energy.gov [DOE]

    Please refer to these manuals and revision notes prior to downloading and running the Geothermal Electricity Technology Evaluation Model (GETEM). Because this is a beta version, you are urged to...

  1. System Plan Revision 5 + 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Revision 7 General Overview DaBrisha Smith (DOEORP) April 10, 2013 System Plan 101 * What is System Planning - A process used by organizations to design, analyze and define ...

  2. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.1 The Shortwave (SW) Clear-Sky Detection and Fitting Algorithm: Algorithm Operational Details and Explanations Revision 1, January 2004 C. N. Long and K. L. Gaustad Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research C. N. Long and K. L. Gaustad, December 2000, ARM TR-004.1 Contents 1.

  3. Revisions to the Facility Safety Order and DOE-STD-1066 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Revisions to the Facility Safety Order and DOE-STD-1066 Revisions to the Facility Safety Order and DOE-STD-1066 May 15, 2012 Presenter: Jim Bisker, Fire Protection Program Manager, Office of Health, Safety and Security (HS-32) Topics Covered: Facility Safety Order Revisions Order 420.1 C Specifics DOE-STD-1066 Fire Protection Program Specifics Revisions to the Facility Safety Order and DOE-STD-1066 (412.73 KB) More Documents & Publications DOE Order 420.1C Briefing DOE O 420.1B/1C

  4. Microsoft Word - CCP-TP-002-Revision 26

    Office of Environmental Management (EM)

    CCP-TP-002 Revision 26 CCP Reconciliation of DQOs and Reporting Characterization Data ... of DQOs and Reporting Characterization Data Page 2 of 36 RECORD OF REVISION Revision ...

  5. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 159,115 12,113 27,643 26,199 5,029 7,657 35,401

  6. Microsoft PowerPoint - 13 DOE PM Workshop UPF Presentation revised - Harry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peters [Compatibility Mode] | Department of Energy 13 DOE PM Workshop UPF Presentation revised - Harry Peters [Compatibility Mode] Microsoft PowerPoint - 13 DOE PM Workshop UPF Presentation revised - Harry Peters [Compatibility Mode] Microsoft PowerPoint - 13 DOE PM Workshop UPF Presentation revised - Harry Peters [Compatibility Mode] (1.2 MB) More Documents & Publications The Process, Methods and Tool Used To Integrate Safety During Design of a Category 2 Nuclear Facility Independent

  7. Attachment 2: Solicitation for Offers with New and Revised Green Lease Text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 2: Solicitation for Offers with New and Revised Green Lease Text Attachment 2: Solicitation for Offers with New and Revised Green Lease Text Solicitation for Offers Paragraphs with New and Revised Green Lease Text (101.59 KB) More Documents & Publications Attachment 1: Green Lease Policies and Procedures for Lease Acquisition Attachment 4: Unrevised SFO Paragraphs Reissued Green Lease Policies and Procedures for Lease Acquisition

  8. Original","Revised","Data

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Distillate","Residential","New Jersey","NJ" "Sales","No. 1 Distillate","Residential","New York","NY",442,442 "Sales","No. 1 Distillate","Residential","Pennsylvania","PA",327,32...

  9. Record of Technical Change 1 for Corrective Action Decision Document/Closure Report for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Krauss, Mark J; Birney, Cathleen

    2005-04-01

    Downgrade the FFACO UR at CAU 554, CAS 23-02-08, USTs 23-115-1,2,3/Spill 530-90-002 to an Administrative UR.

  10. EIS-0218: Revised Record of Decision

    Office of Energy Efficiency and Renewable Energy (EERE)

    Revision of the Record of Decision for a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel

  11. Acquisition Career Management Program Handbook, Partial Revision...

    Broader source: Energy.gov (indexed) [DOE]

    Procurement and Assistance Management SUBJECT: Acquisition Career Management Program Handbook, Partial Revision of Chapter 11, Contracting Officer's Representative SUMMARY: The...

  12. Pending Revision: 8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For wire rope slings, see Section 9.0. Wire rope that has been removed from a crane or ... of the rope divided by the rated load. 8.2.1.1 Hoists and Overhead Crane Wire Ropes. ...

  13. Original","Revised","Data

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Residential","Massachusetts","MA",678,678 "Sales","No. 1 Distillate","Residential","New Hampshire","NH",731,731 "Sales","No. 1 Distillate","Residential","Rhode Island","RI",46,46 ...

  14. Revised OMB Circular A-76 (Revised November 14, 2002) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy OMB Circular A-76 (Revised November 14, 2002) Revised OMB Circular A-76 (Revised November 14, 2002) Revised OMB Circular A-76 (Revised November 14, 2002) (246.94 KB) More Documents & Publications Operating Guidelines Appendix A B.DOC� DOE HR Guidebook 12_15_05.DOC� Operating Guidelines Appendix C D.DOC�

  15. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  16. Report for Batch Leach Analyses on Sediments at 100-HR-3 Operable Unit, Boreholes C7620, C7621, C7622, C7623, C7626, C7627, C7628, C7629, C7630, and C7866. Revision 1.

    SciTech Connect (OSTI)

    Lindberg, Michael J.

    2012-04-25

    This is a revision to a previously released report. This revision contains additional analytical results for the sample with HEIS number B2H4X7. Between November 4, 2010 and October 26, 2011 sediment samples were received from 100-HR-3 Operable Unit for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL. Samples were received with a chain of custody (COC) and were analyzed according to the sample identification numbers supplied by the client. All Samples were refrigerated upon receipt until prepared for analysis. All samples were received with custody seals intact unless noted in the Case Narrative. Holding time is defined as the time from sample preparation to the time of analyses. The prescribed holding times were met for all analytes unless noted in the Case Narrative. All reported analytical results meet the requirements of the CAW or client specified SOW unless noted in the case narrative. Due to the requirements of the statement of work and sampling events in the field, the 28 day and the 48 hr requirements cannot be met. The statement of work requires samples to be selected at the completion of the borehole. It is not always possible to complete a borehole and have the samples shipped to the laboratory within the hold time requirements. Duplicate

  17. TAURUS: an interactive post-processor for the analysis codes NIKE3D, DYNA3D, TACO3D, and GEMINI. Revision 1

    SciTech Connect (OSTI)

    Brown, B.E.; Hallquist, J.O.

    1984-05-01

    This report provides a user's manual for the post-processor, TAURUS. TAURUS reads the binary plot files generated by the two and three dimensional finite element codes currently used at LLNL and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS is operational on the CRAY-1, 7600, and VAX computers.

  18. Test plan for the M-100 container, (model M-101/7A/12/90) docket 96-43-7A, type A container. Revision 1

    SciTech Connect (OSTI)

    Kelly, D.L.

    1997-07-22

    This report concerns the packaging configurations being tested by the U.S. DOE and its contractors, and according to U.S. DOT specification 7A Type A (DOT-7A) requirements. The objective of this Test Plan is to describe the testing for the qualification of the M-100 Container, Model M-101/7A/12/90 as a DOT-7A Type A packaging. This packaging system is designed to ship Type A solid radioactive materials, normal form, Form Number 1, Form Number 2, and Form Number 3.

  19. REVISED FINAL REPORT – INDEPENDENT VERIFICATION SURVEY ACTIVITIES AT THE SEPARATIONS PROCESS RESEARCH UNIT SITES, NISKAYUNA, NEW YORK – DCN 0496-SR-06-1

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-10-10

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  20. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 415: Project 57 No. 1 Plutonium Dispersion (NTTR), Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick; Burmeister, Mark

    2014-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 415, Project 57 No. 1 Plutonium Dispersion (NTTR). CAU 415 is located on Range 4808A of the Nevada Test and Training Range (NTTR) and consists of one corrective action site: NAFR-23-02, Pu Contaminated Soil. The CAU 415 site consists of the atmospheric release of radiological contaminants to surface soil from the Project 57 safety experiment conducted in 1957. The safety experiment released plutonium (Pu), uranium (U), and americium (Am) to the surface soil over an area of approximately 1.9 square miles. This area is currently fenced and posted as a radiological contamination area. Vehicles and debris contaminated by the experiment were subsequently buried in a disposal trench within the surface-contaminated, fenced area and are assumed to have released radiological contamination to subsurface soils. Potential source materials in the form of pole-mounted electrical transformers were also identified at the site and will be removed as part of closure activities.

  1. Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1994--FY 2001. Environmental Restoration Program, September 1993 Revision

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993.

  2. Corrective Action Investigation Plan for Corrective Action Unit 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada, with ROTC 1 Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick K.

    2013-07-01

    Corrective Action Unit (CAU) 567 is located in Areas 1, 3, 5, 20, and 25 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 567 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 567, which comprises the following corrective action sites (CASs): • 01-23-03, Atmospheric Test Site T-1 • 03-23-25, Seaweed E Contamination Area • 05-23-07, A5b RMA • 20-23-08, Colby Mud Spill • 25-23-23, J-11 Soil RMA These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on May 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 567. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 567 releases are nuclear test operations and other NNSS operations. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2

    SciTech Connect (OSTI)

    Krauss, Mark J

    2007-03-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

  4. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Irene Farnham and Sam Marutzky

    2011-07-01

    Water Act radiological standards at any time within 1,000 years. An external peer review of the groundwater flow and contaminant transport model was completed, and the model was accepted by NDEP to allow advancement to the CADD/CAP stage. The CADD/CAP stage focuses on model evaluation to ensure that existing models provide adequate guidance for the regulatory decisions regarding monitoring and institutional controls. Data-collection activities are identified and implemented to address key uncertainties in the flow and contaminant transport models. During the CR stage, final use restriction boundaries and CAU regulatory boundaries are negotiated and established; a long-term closure monitoring program is developed and implemented; and the approaches and policies for institutional controls are initiated. The model evaluation process described in this plan consists of an iterative series of five steps designed to build confidence in the site conceptual model and model forecasts. These steps are designed to identify data-collection activities (Step 1), document the data-collection activities in the 0CADD/CAP (Step 2), and perform the activities (Step 3). The new data are then assessed; the model is refined, if necessary; the modeling results are evaluated; and a model evaluation report is prepared (Step 4). The assessments are made by the modeling team and presented to the pre-emptive review committee. The decision is made by the modeling team with the assistance of the pre-emptive review committee and concurrence of NNSA/NSO to continue data and model assessment/refinement, recommend additional data collection, or recommend advancing to the CR stage. A recommendation to advance to the CR stage is based on whether the model is considered to be sufficiently reliable for designing a monitoring system and developing effective institutional controls. The decision to advance to the CR stage or to return to step 1 of the process is then made by NDEP (Step 5).

  5. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 465, Hydronuclear, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 465 comprises the following four corrective action sites (CASs) located in Areas 6 and 27 of the Nevada National Security Site: (1) 00-23-01, Hydronuclear Experiment; (2) 00-23-02, Hydronuclear Experiment; (3) 00-23-03, Hydronuclear Experiment; (4) 06-99-01, Hydronuclear. The sites will be investigated based on the data quality objectives (DQOs) developed on July 6, 2011, by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 465. For CAU 465, two potential release components have been identified. The subsurface release component includes potential releases of radiological and nonradiological contaminants from the subsurface hydronuclear experiments and disposal boreholes. The surface release component consists of other potential releases of radiological and nonradiological contaminants to surface soils that may have occurred during the pre- and post-test activities. This plan provides the methodology for collection of the necessary information for closing each CAS component. There is sufficient information and process knowledge from historical documentation, contaminant characteristics, existing regional and site groundwater models, and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 465 using the SAFER process. For potential subsurface releases, flow and transport models will be developed to integrate existing data into a conservative

  6. Pahute Mesa Well Development and Testing Analyses for Wells ER-20-7, ER-20-8 #2, and ER-EC-11, Revision 1

    SciTech Connect (OSTI)

    Greg Ruskauff

    2011-12-01

    This report analyzes the following data collected from ER-20-7, ER-20-8 No.2, and ER-EC-11 during WDT operations: (1) Chemical indicators of well development (Section 2.0); (2) Static hydraulic head (Section 3.0); (3) Radiochemistry and geochemistry (Section 4.0); (4) Drawdown observed at locations distal to the pumping well (Section 5.0); and (5) Drilling water production, flow logs, and temperature logs (Section 6.0). The new data are further considered with respect to existing data as to how they enhance or change interpretations of groundwater flow and transport, and an interim small-scale conceptual model is also developed and compared to Phase I concepts. The purpose of well development is to remove drilling fluids and drilling-associated fines from the formation adjacent to a well so samples reflecting ambient groundwater water quality can be collected, and to restore hydraulic properties near the well bore. Drilling fluids can contaminate environmental samples from the well, resulting in nonrepresentative measurements. Both drilling fluids and preexisting fines in the formation adjacent to the well can impede the flow of water from the formation to the well, creating artifacts in hydraulic response data measured in the well.

  7. Framework for a Risk-Informed Groundwater Compliance Strategy for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Marutzky, Sam

    2010-09-01

    Note: This document was prepared before the NTS was renamed the Nevada National Security Site (August 23, 2010); thus, all references to the site herein remain NTS. Corrective Action Unit (CAU) 98, Frenchman Flat, at the Nevada Test Site (NTS) was the location of ten underground nuclear tests between 1965 and 1971. As a result, radionuclides were released in the subsurface in the vicinity of the test cavities. Corrective Action Unit 98 and other CAUs at the NTS and offsite locations are being investigated. The Frenchman Flat CAU is one of five Underground Test Area (UGTA) CAUs at the NTS that are being evaluated as potential sources of local or regional impact to groundwater resources. For UGTA sites, including Frenchman Flat, contamination in and around the test cavities will not be remediated because it is technologically infeasible due to the depth of the test cavities (150 to 2,000 feet [ft] below ground surface) and the volume of contaminated groundwater at widely dispersed locations on the NTS. Instead, the compliance strategy for these sites is to model contaminant flow and transport, estimate the maximum spatial extent and volume of contaminated groundwater (over a period of 1,000 years), maintain institutional controls, and restrict access to potentially contaminated groundwater at areas where contaminants could migrate beyond the NTS boundaries.

  8. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Chapter D, Appendix D1 (beginning), Revision 3

    SciTech Connect (OSTI)

    Lappin, A. R.

    1993-03-01

    The Waste Isolation Pilot Plant (WIPP), which is designed for receipt, handling, storage, and permanent isolation of defense-generated transuranic wastes, is being excavated at a depth of approximately 655 m in bedded halites of the Permian Salado Formation of southeastern New Mexico. Site-characterization activities at the present WIPP site began in 1976. Full construction of the facility began in 1983, after completion of ``Site and Preliminary Design Validation`` (SPDV) activities and reporting. Site-characterization activities since 1983 have had the objectives of updating or refining the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in WIPP performance assessment. This report has four main objectives: 1. Summarize the results of WIPP site-characterization studies carried out since the spring of 1983 as a result of specific agreements between the US Department of Energy and the State of New Mexico. 2. Summarize the results and status of site-characterization and facility-characterization studies carried out since 1983, but not specifically included in mandated agreements. 3. Compile the results of WIPP site-characterization studies into an internally consistent conceptual model for the geologic, hydrologic, geochemical, and structural behavior of the WIPP site. This model includes some consideration of the effects of the WIPP facility and shafts on the local characteristics of the Salado and Rustler Formations. 4. Discuss the present limitations and/or uncertainties in the conceptual geologic model of the WIPP site and facility. The objectives of this report are limited in scope, and do not include determination of whether or not the WIPP Project will comply with repository-performance criteria developed by the US Environmental Protection Agency (40CFR191).

  9. Implementation of the Resource Disincentive in 40 CFR part 191.14 (e) at the Waste Isolation Pilot Plant. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    In 1986, the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) (DOE-WPO) prepared a strategy for complying with the Environmental Protection Agency`s (EPA`s) Standards for the management of transuranic (TRU) waste. Section 3.2.2.2 of the DOE`s report addressed compliance with the Assurance Requirements found in 40 CFR {section} 191.14. One of the Assurance Requirements addresses the selection of repository sites that contain recoverable natural resources. This report documents that the site selection process for the WIPP facility did indeed comply with the natural resource disincentive requirement in 40 CFR {section} 191,14(e) at the time selected and therefore complies with the standard at this time. Thus, it shall be shown that it is reasonably certain that the WIPP site provides better overall protection than practical alternatives that were available when the site was selected. It is important to point out here, and it will be discussed later in the report, that the resource disincentive requirement is a preliminary siting criterion that requires further evaluation of sites that have resources (i.e, hydrocarbons, minerals and groundwater) in the vicinity or on the site. This further evaluation requires that for sites that do have resources, a qualitative determination must be made that the site will provide better overall protection than practical alternatives. The purpose of this report is not to provide a quantitative evaluation for selection of the WIPP site. A further discussion on the difference between the qualitative analysis required under 40 CFR {section} 191.14(e) and the quantitative analysis under other sections of 40 CFR 191 is provided in {section}2.1 of this report.

  10. Clean Air Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  11. Polychlorinated Biphenyls (PCBs) in Catfish and Carp Collected from the Rio Grande Upstream and Downstream of Los Alamos National Laboratory: Revision 1

    SciTech Connect (OSTI)

    Gilbert J. Gonzales Philip R. Fresquez

    2008-05-12

    Concern has existed for years that the Los Alamos National Laboratory (LANL), a complex of nuclear weapons research and support facilities, has released polychlorinated biphenyls (PCBs) to the environment that may have reached adjacent bodies of water through canyons that connect them. In 1997, LANL's Ecology Group began measuring PCBs in fish in the Rio Grande upstream and downstream of ephemeral streams that cross LANL and later began sampling fish in Abiquiu and Cochiti reservoirs, which are situated on the Rio Chama and Rio Grande upstream and downstream of LANL, respectively. In 2002, we electroshocked channel catfish (Ictalurus punctatus) and common carp (Carpiodes carpio) in the Rio Grande upstream and downstream of LANL and analyzed fillets for PCB congeners. We also sampled soils along the Rio Chama and Rio Grande drainages to discern whether a background atmospheric source of PCBs that could impact surface water adjacent to LANL might exist. Trace concentrations of PCBs measured in soil (mean = 4.7E-05 {micro}g/g-ww) appear to be from background global atmospheric sources, at least in part, because the bimodal distribution of low-chlorinated PCB congeners and mid-chlorinated PCB congeners in the soil samples is interpreted to be typical of volatilized PCB congeners that are found in the atmosphere and dust from global fallout. Upstream catfish (n = 5) contained statistically (P = 0.047) higher concentrations of total PCBs (mean = 2.80E-02 {micro}g/g-ww) than downstream catfish (n = 10) (mean = 1.50E-02 {micro}g/g-ww). Similarly, upstream carp (n = 4) contained higher concentrations of total PCBs (mean = 7.98E-02 {micro}g/g-ww) than downstream carp (n = 4) (3.07E-02 {micro}g/g-ww); however, the difference was not statistically significant (P = 0.42). The dominant PCB homologue in all fish samples was hexachlorobiphenyls. Total PCB concentrations in fish in 2002 are lower than 1997; however, differences in analytical methods and other uncertainties exist. A

  12. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2008-07-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys

  13. Addendum to the Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2006, Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 01-25-01, AST Release • CAS 03-25-03, Mud Plant AST Diesel Release These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to

  14. Revised accident source terms for light-water reactors

    SciTech Connect (OSTI)

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  15. mitrescu-c revised

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 LIRAD Analysis of Equatorial Cirrus at the TWP (Manus Island and Nauru) CART Sites C. Mitrescu, R. T. Austin, C.M.R. Platt, and G. L. Stephens Colorado State University Fort Collins, Colorado Introduction The purpose of this work is to obtain high-cloud emittance and optical depth over the Tropical Western Pacific (TWP) (Manus Island and Nauru) Cloud and Radiation Testbed (CART) sites on a routine basis using the lidar/radiometer (LIRAD) method. Current operation of the micropulse lidar

  16. Microsoft Word - DOE-EA-1707D_Revised_Predecisional_EA Closure_NRDWL-SWL08232011.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7D REVISED PREDECISIONAL DRAFT AUGUST 2011 Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL), Hanford Site, Richland, Washington U.S. Department of Energy Richland Operations Office Richland, Washington 99352 DOE/EA-1707D REVISED PREDECISIONAL DRAFT AUGUST 2011 DOE/EA-1707D REVISED PREDECISIONAL DRAFT iii AUGUST 2011 Contents 1 1 Introduction and Purpose and Need

  17. Parallel programming with PCN. Revision 1

    SciTech Connect (OSTI)

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  18. Comprehensive Epidemiologic Data Resource. Revision 1

    SciTech Connect (OSTI)

    1995-05-01

    The Department of Energy has established the Comprehensive Epidemiologic Data Resource (CEDR) as a public-use data base with the goal of broadening independent access to data collected during studies of the health effects of exposure to radiation and other physical or chemical agents associated with the production of nuclear materials. This catalog is intended for use by any individual interested in obtaining information about, or access to, CEDR data. This catalog provides information that will help users identify and request data file sets of interest.

  19. Heat exchanger restart evaluation. Revision 1

    SciTech Connect (OSTI)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  20. Technical Assistance Contractor management plan. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) as the prime contractor and three teaming partner subcontractors: Roy F. Weston, Inc. (RFW), AGRA Earth and Environmental, Inc. (AGRA), and Geraghty and Miller, Inc. (G and M). The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both Surface and Ground Water Projects. The TAC team supports the DOE in completing surface remedial action and initiating ground water remediation work for start-up, characterization, compliance planning, design, construction oversight, and remedial operations. The TAC provides the DOE UMTRA Project Team with a dedicated management, scientific, and technical resource base in Albuquerque, New Mexico, which is supplemented by corporate resources. A carefully developed and maintained staff of technical experts is available to assess, analyze, develop, and execute cost-effective solutions to the demanding technical and institutional problems presented by the UMTRA Project.

  1. Programming in Fortran M. Revision 1

    SciTech Connect (OSTI)

    Foster, I.T.; Olson, R.D.; Tuecke, S.J.

    1993-10-01

    Fortran M is a small set of extensions to Fortran that supports a modular approach to the construction of sequential and parallel programs. Fortran M program use channels to plug together processes which may be written in Fortran M or Fortran 77. Processes communicate by sending and receiving messages on channels. Channels and processes can be created dynamically, but programs remain deterministic unless specialized nondeterministic constructs are used. Fortran M programs can execute on a range of sequential, parallel, and networked computers. This report incorporates both a tutorial introduction to Fortran M and a users guide for the Fortran M compiler developed at Argonne National Laboratory. The Fortran M compiler, supporting software, and documentation are made available free of charge by Argonne National Laboratory, but are protected by a copyright which places certain restrictions on how they may be redistributed. See the software for details. The latest version of both the compiler and this manual can be obtained by anonymous ftp from Argonne National Laboratory in the directory pub/fortran-m at info.mcs.anl.gov.

  2. A:\\1FRONT(REVISED).PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and traffic management, patents law, real and personal property management, ... Report (1995), and DOE's Contract Reform Team Report (1994) all have one thing in common. ...

  3. Reported Significant Observation (RSO) studies. Revision 1

    SciTech Connect (OSTI)

    Eicher, R.W.

    1992-12-01

    The Reported Significant Observation (RSO) study used in the field of safety is an information-gathering technique where employee-participants describe situations they have personally witnessed involving good and bad practices and safe and unsafe conditions. This information is useful in the risk assessment process because it focuses on hazards and thereby facilitates their elimination. However, RSO cannot be the only component in a risk assessment program. Used by the Air Force in their aviation psychology program and further developed by John C. Flanagan, RSO is more commonly known as the ``Critical Incident Technique.`` However, the words ``Critical`` and ``Incident`` had other connotations in nuclear safety, prompting early users within the Aerojet Nuclear Company to coin the more fitting title of ``Reported Significant Observations.`` The technique spread slowly in the safety field primarily because the majority of users were researchers interested in after-the-fact data, with application to everyday problems and behavioral factors. RSO was formally recognized as a significant hazard reduction tool during the development of the Management Oversight and Risk Tree (MORT) program for the US Atomic Energy Commission. The Department of Energy (DOE) has, in turn, adopted MORT for its system safety program, and this has resulted in RSO being a modern and viable technique for DOE contractor safety programs.

  4. Organic complexant topical report. Revision 1

    SciTech Connect (OSTI)

    Meacham, J.E.; and others

    1997-06-26

    This document reviews the current understanding of hazards associated with the storage of organic complexant salts in Hanford Site high-level waste tanks. Two distinct hazards were evaluated: spontaneous self- accelerating decomposition reactions in the bulk material (bulk runaway) and ignition followed by condensed phase propagation (point source ignition). Results from the bulk runaway assessment showed that bulk runaway is not credible for all tanks except C-106. However, speciation of the organic in C-106 shows that it is almost all in the form of low energy oxalate, and there is little potential for a bulk runaway. Additional testing and evaluation would be necessary to definitely conclude that there is no potential for bulk runaway; therefore, controls are currently required for his tank. Temperature monitoring and controls (water addition and active ventilation) are adequate to prevent bulk runaway in C-106.

  5. FFCAct Clearinghouse, Directory of abstracts. Revision 1

    SciTech Connect (OSTI)

    Harwood, T.

    1994-05-01

    The Federal Facility Compliance Act (FFCAct) Clearinghouse is a card catalog of information about the FFCAct and its requirements for developing Site Treatment Plans (STP). The information available in the clearinghouse includes abstracts describing computer applications, technical reports, and a list of technical experts. Information can be accessed for use in responding to FFCAct requirements, and the clearinghouse provides search capabilities on particular topics and issues related to STP development. Appendix A includes: contacts from each site, for which contact has been made, who are developing STPs; the FFCAct Clearinghouse Fact Sheet and; additional hard copy forms to be used to populate the database. This report contains 50 abstracts related to the Radioactive Waste Technical Support Program.

  6. Needs assessment activity report. Revision 1

    SciTech Connect (OSTI)

    1994-11-01

    As part of a Transportation Management Division task (TMD), the Packaging Programs and Testing Group within Westinghouse Hanford Company (WHC) has assessed the packaging needs of some of the mid- and small-sized US Department of Energy (DOE) sites by visiting them and meeting with their transportation and packaging personnel. To date, ten DOE facilities have been visited. As a result, these sites have been informed of some of the packaging activities that TMD has sponsored and is sponsoring, have been appraised of possible upcoming changes to transportation regulations, have discussed their short-term packaging needs, and have shared unique packaging they have developed which may be of use to other DOE facilities. Program successes include developing a questionnaire that discusses the potential impact of US Department of Transportation (DOT) Docket HM-169A, Transportation Regulations; Compatibility with Regulations of the International Atomic Energy Agency; Notice of Proposed Rule (DOT 1989), discovery of a need for a reusable Type A liquid sample packaging and starting its development within another TMD task, coordinating resources between Fermi Laboratory and Argonne National Laboratory, and widening the distribution of WHC-EP-0558, Test and Evaluation Document for DOT Specification 7A Type A Packaging (WHC 1994).

  7. Laser driven hydrodynamic instability experiments. Revision 1

    SciTech Connect (OSTI)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-02-17

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.

  8. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect (OSTI)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  9. Health Physics Positions Data Base: Revision 1

    SciTech Connect (OSTI)

    Kerr, G.D.; Borges, T.; Stafford, R.S.; Lu, P.Y.; Carter, D.

    1994-02-01

    The Health Physics Positions (HPPOS) Data Base of the Nuclear Regulatory Commission (NRC) is a collection of NRC staff positions on a wide range of topics involving radiation protection (health physics). It consists of 328 documents in the form of letters, memoranda, and excerpts from technical reports. The HPPOS Data Base was developed by the NRC Headquarters and Regional Offices to help ensure uniformity in inspections, enforcement, and licensing actions. Staff members of the Oak Ridge National Laboratory (ORNL) have assisted the NRC staff in summarizing the documents during the preparation of this NUREG report. These summaries are also being made available as a {open_quotes}stand alone{close_quotes} software package for IBM and IBM-compatible personal computers. The software package for this report is called HPPOS Version 2.0. A variety of indexing schemes were used to increase the usefulness of the NUREG report and its associated software. The software package and the summaries in the report are written in the context of the {open_quotes}new{close_quotes} 10 CFR Part 20 ({section}{section}20.1001--20.2401). The purpose of this NUREG report is to allow interested individuals to familiarize themselves with the contents of the HPPOS Data Base and with the basis of many NRC decisions and regulations. The HPPOS summaries and original documents are intended to serve as a source of information for radiation protection programs at nuclear research and power reactors, nuclear medicine, and other industries that either process or use nuclear materials.

  10. Building America Performance Analysis Procedures: Revision 1

    SciTech Connect (OSTI)

    2004-06-01

    To measure progress toward multi-year research goals, cost and performance trade-offs are evaluated through a series of controlled field and laboratory experiments supported by energy analysis techniques using test data to calibrate simulation models.

  11. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  12. Project Charter (MSA-143). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1986-07-01

    Public Law 95-604, ``The Uranium Mill Tailings Radiation Control Act of 1978`` as amended assigns to DOE, other Federal agencies, and involved States and Indian tribes, responsibilities for remedial actions at 22 inactive uranium mill tailings sites listed in the Act, and for any other sites designated by the Secretary prior to November 8, 1979. The objective of the UMTRA Project is to provide remedial action at the mill tailings sites and associated vicinity properties in order to stabilize and control the tailings in a safe and environmentally sound manner and to eliminate potential health hazards caused by residual levels of uranium decay products that exceed EPA standards. A total of 24 uranium mill tailings sites. This Project Charter delineates the respective responsibilities and authorities of (The Office of Nuclear Energy) (NE) and (Albuquerque Operations Office) (AL), and defines the terms and conditions for management of the UMTRA Project. Supplementary Project management documents which have been and are being developed pursuant to this Charter include a Project Plan (PP), a Project Management Plan (PMP) and other plans governing the accomplishment of the Project mission Evolution of the program will require updates of the Project Plan and Project Management Plan.

  13. Genomic definition of species. Revision 1

    SciTech Connect (OSTI)

    Crkvenjakov, R.; Dramanac, R.

    1992-06-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called (species) genome. The definition of species based on chromosomes, genes, or genome common to its member organisms has been implied or mentioned in passing numerous times. Some population biologists think that members of species have similar ``homeostatic genotypes,`` which are to a degree resistant to mutation or environmental change in the production of a basic phenotype.

  14. NMED Presentation on Revised Consent Order

    Broader source: Energy.gov [DOE]

    At the November 12, 2015 Special NNMCAB Meeting NMED Secretary Ryan Flynn provided a presentation on the Revisions to the 2005 Order on Consent.

  15. 1

    National Nuclear Security Administration (NNSA)

    56 Page 2 of 2 The purpose of this modification is to revise and replace the following: A. Part I, Section H, Clause H-6, Parent Organization's Oversight Plan, Paragraph (c), the first sentence is deleted and replaced with the following: The estimated cost for the Parent Organization's Oversight Plan for FY11 (October 1, 2010 - September 30, 2011) is NTE $2,599,106.00. B. Part I, Section H, Clause H-31, Service Contract Act of 1965 (41 U.S.C. 351), is replaced with: H-31 SERVICE CONTRACT ACT OF

  16. EIS-0286: Notice of Revised Scope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Revised Scope EIS-0286: Notice of Revised Scope Hanford Site Solid (Radioactive and Hazardous) Waste Program The U.S. Department of Energy (DOE) has decided to revise the...

  17. Oklahoma Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,016 969 1,211 1980's 1,303 1,371 2,520 1,891 1,611 1,648 1,963 2,047 2,280 1,732 1990's 1,542 1,456 1,263 1,008 932 1,049 1,602 1,282 1,997 2,251 2000's 1,331 1,895 1,513 2,843 1,912 2,945 1,868 1,366 2,580 3,592 2010's 3,474 6,856 7,731 5,031 4,585 - = No Data Reported; -- = Not Applicable; NA = Not

  18. NATIONAL EVALUATION OF THE WEATHERIZATION ASSISTANCE PROGRAM DURING THE ARRA PERIOD: PROGRAM YEARS 2009-2011

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M; Schmoyer, Richard L; Eisenberg, Joel Fred; Ternes, Mark P; Schweitzer, Martin; Hendrick, Timothy P

    2012-08-01

    This report describes the third major evaluation of the Program, encompassing program years 2009 to 2011. In this report, this period of time is referred to as the ARRA Period. This is a special period of time for the Program because the American Recovery and Reinvestment Act (ARRA) of 2009 has allocated $5 billion of funding for the Program. In normal program years, WAP s annual appropriation is in the range of $200-250 million, supporting the weatherization of approximately 100,000 homes. With the addition of ARRA funding during these program years, the expectation is that weatherization activity will exceed 300,000 homes per year. In addition to saving energy and reducing low-income energy bills, expanded WAP funding is expected to stimulate the economy by providing new jobs in the weatherization field and allowing low-income households to spend more money on goods and services by spending less on energy.

  19. Notice of Intent to Revise DOE M 470.4-6

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-06

    The proposed revision of this manual will convert the requirements to and new order, DOE O 470.6, and cancel DOE M 470.4-6, Chg 1.

  20. Revisions to the Stratigraphy and Volcanology of the Post-0.5...

    Open Energy Info (EERE)

    Revisions to the Stratigraphy and Volcanology of the Post-0.5 Ma Units and the Volcanic Section of VC-1 Core Hole, Valles Caldera, New Mexico Jump to: navigation, search OpenEI...

  1. SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND...

    Office of Environmental Management (EM)

    Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer PDF icon Summary of Revised ...

  2. Solar Position Algorithm for Solar Radiation Applications (Revised...

    Office of Scientific and Technical Information (OSTI)

    Solar Position Algorithm for Solar Radiation Applications (Revised) Citation Details In-Document Search Title: Solar Position Algorithm for Solar Radiation Applications (Revised) ...

  3. DOE Requests Information on Potential New or Revised Categorical...

    Energy Savers [EERE]

    DOE Requests Information on Potential New or Revised Categorical Exclusions DOE Requests Information on Potential New or Revised Categorical Exclusions December 22, 2009 - 10:33am...

  4. Attachment 2: Solicitation for Offers with New and Revised Green...

    Energy Savers [EERE]

    Attachment 2: Solicitation for Offers with New and Revised Green Lease Text Attachment 2: Solicitation for Offers with New and Revised Green Lease Text PDF icon Solicitation for...

  5. EA-1947: Draft Revised Finding of No Significant Impact | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1947: Draft Revised Finding of No Significant Impact EA-1947: Draft Revised Finding of No Significant Impact Transfer of the Kansas City Plant, Kansas City, Missouri The National ...

  6. New York Dry Natural Gas Reserves Revision Decreases (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decreases (Billion Cubic Feet) New York Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases New York Dry Natural Gas Proved Reserves Dry ...

  7. New Mexico Dry Natural Gas Reserves Revision Increases (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Increases (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases New Mexico Dry Natural Gas Proved Reserves Dry ...

  8. New York Dry Natural Gas Reserves Revision Increases (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Increases (Billion Cubic Feet) New York Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases New York Dry Natural Gas Proved Reserves Dry ...

  9. New Mexico Dry Natural Gas Reserves Revision Decreases (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decreases (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases New Mexico Dry Natural Gas Proved Reserves Dry ...

  10. Commercial Grade Dedication Record (ANL-746 Revised) | Department...

    Energy Savers [EERE]

    Record (ANL-746 Revised) Commercial Grade Dedication Record (ANL-746 Revised) A sample of a process to recorddocument CGD activities. Forms are included. Commercial Grade...

  11. Virginia Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases Virginia Dry Natural Gas Proved Reserves Dry ...

  12. Virginia Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases Virginia Dry Natural Gas Proved Reserves Dry ...

  13. West Virginia Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases West Virginia Dry Natural Gas Proved Reserves ...

  14. North Dakota Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases North Dakota Dry Natural Gas Proved Reserves ...

  15. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases North Dakota Dry Natural Gas Proved Reserves ...

  16. Forrestal Garage Parking Guidelines, Revised August 12, 2010...

    Office of Environmental Management (EM)

    Forrestal Garage Parking Guidelines, Revised August 12, 2010 Forrestal Garage Parking Guidelines, Revised August 12, 2010 Forrestal Garage Parking Guidelines PDF icon Forrestal...

  17. Attachment 2: Solicitation for Offers with New and Revised Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Solicitation for Offers with New and Revised Green Lease Text Attachment 2: Solicitation for Offers with New and Revised Green Lease Text Solicitation for Offers Paragraphs with ...

  18. Acquisition Career Management Handbook Change – Revised Contracting Officer's Representative Certification (COR)

    Broader source: Energy.gov [DOE]

    A recent review of the January 2009 issue of the Department of Energy (DOE) Acquisition Career Management Program (ACMP) Handbook identified many areas that require an update. Although the ACMP Handbook revisions are underway, the Office of Management and Budget (OMB), Office of Federal Procurement Policy (OFPP) issued OFPP Memorandum, “Revisions to the Federal Acquisition Certification for Contracting Officer’s Representatives (FAC-COR),” dated September 6, 2011. This OFPP Memorandum requires that agencies implement the revised FAC-COR certifications effective January 1, 2012.

  19. TRUPACT-III Content Codes (TRUCON-III), Revision 2, July 2012

    Office of Environmental Management (EM)

    WIPP 11-3458 Rev. 2 TRUPACT-III CONTENT CODES (TRUCON-III) Revision 2 July 2012 This document supersedes DOE/WIPP 10-3458, Revision 1 DOE/WIPP 11-3458 Rev. 2 TRUPACT-III CONTENT CODES (TRUCON-III) Revision 2 July 2012 Approved by: [Signature on File] Date:_ 12 July 2012 _ J. R. Stroble, Director, Office of the National TRU Program DOE/WIPP 11-3458 Rev. 2, July 2012 3 This document has been submitted as required to: U.S. Department of Energy Office of Scientific and Technical Information PO Box

  20. Louisiana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,419 1,962 1,414 1,555 4,434 1990's 1,663 1,696 1,222 1,527 1,239 1,404 975 1,360 2,034 2,297 2000's 1,277 1,696 1,853 1,159 1,229 849 1,417 1,104 1,376 3,105 2010's 3,184 5,843 12,816 3,787 3,389 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. On June 21, 2011, the HASQARD Focus Group approved the following revision to Sec

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 21, 2011, the HASQARD Focus Group approved the following revision to Section 10 in Volume 1 of the HASQARD replacing the original Section 10 found in Revision 3 of HASQARD in its entirety: 10.0 ASSESSMENTS Assessments document how the organization determines the suitability and effectiveness of the implemented quality system and the performance of the programs to which the quality system applies. Assessments may be performed by agencies or groups that are not under the control of laboratory

  2. Contractor Performance Assessment Reporting System (CPARS) Web Based Training Classes- Revision

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Policy Flash updates and revises Policy Flash 2010-32. The DOE Acquisition Career Manager (ACM) has approved Continuous Learning Points (CLPs) for Contractor Performance Assessment Reporting System (CPARS) web based training classes. See the attachment for list of classes, which now includes Federal Awardee Performance and Integrity Information System (FAPIIS) training and revises the continuous learning points (CLP) from 1 CLP to 2 CLPs for two hour classes.

  3. Arkansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 76 48 1980's 116 61 87 181 146 105 180 215 118 202 1990's 100 163 182 98 147 107 96 205 596 761 2000's 207 128 114 148 200 122 101 321 1,249 1,912 2010's 1,072 631 1,754 560 171 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  4. High Level Waste System Plan Revision 9

    SciTech Connect (OSTI)

    Davis, N.R.; Wells, M.N.; Choi, A.S.; Paul, P.; Wise, F.E.

    1998-04-01

    Revision 9 of the High Level Waste System Plan documents the current operating strategy of the HLW System at SRS to receive, store, treat, and dispose of high-level waste.

  5. Notice of Intent to Revise Personnel Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-02

    The order is being revised to clarify the responsibilities for adjudicating dual citizens and make consultation with the Office of Intelligence and Counterintelligence (IN) mandatory in dual citizen cases.

  6. Section 311 Revised Template August 2012

    Broader source: Energy.gov [DOE]

    Attached are 3 revised templates for sending the Section 311 notices to Congress as prescribed in Acquisition Letter (AL) 2012-07 and Financial Assistance Letter (FAL) 2012-01.

  7. Section 311 Revised Template January 4 2013

    Broader source: Energy.gov [DOE]

    Attached are 3 revised templates for sending the Section 311 notices to Congress as prescribed in Acquisition Letter (AL) 2012-07 and Financial Assistance Letter (FAL) 2012-01.

  8. Section 311 Revised Template January 24 2013

    Broader source: Energy.gov [DOE]

    Attached are 3 revised templates for sending the Section 311 notices to Congress as prescribed in Acquisition Letter (AL) 2012-07 and Financial Assistance Letter (FAL) 2012-01.

  9. Standards Development and Revision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards Development and Revision Standards Development and Revision Beginning in the 1970s, Congress enacted a series of laws that established or directed the Department of Energy (DOE) to establish energy efficiency standards for certain appliances and commercial equipment. In addition, DOE is required to review existing standards for covered products at least once every six years and to set standards at levels that achieve the maximum improvement in energy efficiency that is

  10. Revised FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1

    SciTech Connect (OSTI)

    Erika Bailey

    2011-10-27

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education (ORISE

  11. Revision of the DELFIC Particle Activity Module

    SciTech Connect (OSTI)

    Hooper, David A; Jodoin, Vincent J

    2010-09-01

    The Defense Land Fallout Interpretive Code (DELFIC) was originally released in 1968 as a tool for modeling fallout patterns and for predicting exposure rates. Despite the continual advancement of knowledge of fission yields, decay behavior of fission products, and biological dosimetry, the decay data and logic of DELFIC have remained mostly unchanged since inception. Additionally, previous code revisions caused a loss of conservation of radioactive nuclides. In this report, a new revision of the decay database and the Particle Activity Module is introduced and explained. The database upgrades discussed are replacement of the fission yields with ENDF/B-VII data as formatted in the Oak Ridge Isotope Generation (ORIGEN) code, revised decay constants, revised exposure rate multipliers, revised decay modes and branching ratios, and revised boiling point data. Included decay logic upgrades represent a correction of a flaw in the treatment of the fission yields, extension of the logic to include more complex decay modes, conservation of nuclides (including stable nuclides) at all times, and conversion of key variables to double precision for nuclide conservation. Finally, recommended future work is discussed with an emphasis on completion of the overall radiation physics upgrade, particularly for dosimetry, induced activity, decay of the actinides, and fractionation.

  12. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect (OSTI)

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  13. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 37 117 62 1980's 293 414 55 176 80 111 51 281 86 87 1990's 112 204 161 337 172 69 125 293 645 801 2000's 177 805 207 188 475 186 218 1,113 379 1,342 2010's 872 813 1,349 484 752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Oklahoma Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 962 1,026 1980's 1,293 1,262 2,374 2,189 2,245 2,357 2,158 2,251 2,538 1,984 1990's 1,803 1,710 1,988 1,554 1,580 1,892 1,886 2,396 2,995 3,029 2000's 2,498 1,458 2,159 2,892 2,173 3,064 1,515 2,115 2,786 2,894 2010's 3,224 5,142 4,153 4,118 6,573 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 220 637 1980's 760 749 632 1,205 553 598 1,631 771 1,410 1,237 1990's 743 934 996 907 1,146 2,369 1,193 1,191 1,918 3,857 2000's 1,339 1,860 1,295 2,072 2,853 2,160 1,339 4,832 5,316 5,281 2010's 4,880 3,271 1,781 3,800 2,235 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  17. Corrective Action Investigation Plan for Corrective Action Unit 527: Horn Silver Mine, Nevada Test Site, Nevada: Revision 1 (Including Records of Technical Change No.1, 2, 3, and 4)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-12-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 527, Horn Silver Mine, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 527 consists of one Corrective Action Site (CAS): 26-20-01, Contaminated Waste Dump No.1. The site is located in an abandoned mine site in Area 26 (which is the most arid part of the NTS) approximately 65 miles northwest of Las Vegas. Historical documents may refer to this site as CAU 168, CWD-1, the Wingfield mine (or shaft), and the Wahmonie mine (or shaft). Historical documentation indicates that between 1959 and the 1970s, nonliquid classified material and unclassified waste was placed in the Horn Silver Mine's shaft. Some of the waste is known to be radioactive. Documentation indicates that the waste is present from 150 feet to the bottom of the mine (500 ft below ground surface). This CAU is being investigated because hazardous constituents migrating from materials and/or wastes disposed of in the Horn Silver Mine may pose a threat to human health and the environment as well as to assess the potential impacts associated with any potential releases from the waste. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  18. Acquisition Guide Chapter 19.1 – Summary of Small Business Administration and Department of Energy Partnership Agreement

    Broader source: Energy.gov [DOE]

    Acquisition Guide Chapter 19.1 is revised to reflect changes in the new partnership agreement (attached). Revisions are indicated by bolded text.

  19. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTCs 1 and 2

    SciTech Connect (OSTI)

    Andrews, Robert

    2013-09-01

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  20. Kansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 122 266 268 1980's 206 539 389 249 560 274 1,956 245 329 687 1990's 372 430 1,054 335 524 679 377 307 501 437 2000's 262 279 436 206 750 207 807 407 334 212 2010's 687 152 742 733 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  1. Fermilab Recycler Ring: Technical design report. Revision 1.1

    SciTech Connect (OSTI)

    Jackson, G.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab`s ongoing High Energy Physics program and the Main Injector construction project.

  2. Ohio Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 40 108 1980's 87 44 55 63 56 62 94 35 37 20 1990's 16 22 27 19 16 13 42 75 118 113 2000's 156 287 139 127 64 111 112 198 333 43 2010's 59 38 162 158 1,490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  3. Ohio Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 30 114 1980's 33 12 32 10 26 29 51 45 20 45 1990's 34 26 21 36 27 39 91 101 276 401 2000's 243 129 186 121 103 166 49 144 135 70 2010's 68 17 180 530 1,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  4. Pennsylvania Dry Natural Gas Reserves Revision Decreases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decreases (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 33 37 156 1980's 24 95 56 195 75 147 242 195 88 144 1990's 206 102 155 73 117 65 103 381 114 595 2000's 184 219 151 263 567 154 224 418 502 502 2010's 1,938 4,872 6,393 7,128 7,453 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Kansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 171 140 171 1980's 158 194 259 178 215 194 274 147 123 446 1990's 313 191 385 225 342 386 953 510 300 479 2000's 350 220 350 180 647 381 1,020 221 498 403 2010's 166 240 475 521 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  6. Alaska Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1,324 231 1980's 104 61 22 742 395 552 757 67 24,751 136 1990's 99 239 21 109 49 51 171 99 125 3,525 2000's 2,093 335 118 235 207 154 376 112 4,068 108 2010's 452 206 339 2,400 685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Arkansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 32 58 1980's 89 76 116 157 167 178 262 229 232 288 1990's 118 195 175 123 95 92 108 101 653 376 2000's 48 88 107 134 91 142 113 146 189 621 2010's 301 324 6,610 284 1,094 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  8. California Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) California Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 183 149 239 1980's 301 381 136 167 145 1990's 144 241 164 136 162 106 70 52 328 316 2000's 121 255 127 172 152 129 419 273 491 189 2010's 451 1,889 539 103 241 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  9. California Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) California Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 413 660 1980's 793 211 315 221 255 1990's 186 208 185 110 136 113 207 358 574 553 2000's 733 162 202 301 440 739 156 355 263 259 2010's 548 1,486 538 256 612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 79 202 89 1980's 123 84 99 42 257 83 78 144 277 84 1990's 101 83 99 24 201 74 79 34 110 322 2000's 110 606 490 767 278 112 502 325 564 491 2010's 219 341 1,926 444 617 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 165 492 648 1980's 683 541 546 503 634 391 2,354 425 617 619 1990's 543 893 437 523 1,026 505 569 1,368 1,774 2,910 2000's 753 1,488 1,161 2,704 3,586 1,822 2,281 1,818 4,383 3,535 2010's 5,540 3,033 6,715 1,737 6,530 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Recent Title V operating permit program revisions

    SciTech Connect (OSTI)

    Nicewander, M.

    1995-12-31

    The purpose of this paper is to discuss recent EPA proposed regulations regarding required procedures to be incorporated into the state operating permit programs to accommodate permit revisions. The development and implementation of an operating permits program must balance air pollution control requirements with the ability of a source to meet changing market demands. This has been the major item of concern during the operating permits program development. Before discussing the specific procedures for revising operating permits, it is necessary to include some generic background information for familiarization with the operating permits program.

  13. CASL Plan of Record 2 (1/11-6/11)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VERA Requirements Document (VRD) - Revision 1 Stephen M. Hess AMA Focus Area 30 March 2012 CASL-U-2011-0074-002 VERA Technical Requirements by Component Consortium for Advanced Simulation of LWRs ii CASL-U-2011-0074-002 REVISION LOG Revision Date Affected Pages Revision Description 0 2/25/2011 All Original Version 1 3/31/2012 Revision 1 1A 4/19/2012 all Revision 1A (Mario) Document pages that are: Export Controlled _______________None__________________________________ IP/Proprietary/NDA

  14. Colorado Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 116 226 373 1980's 250 131 322 167 160 368 372 340 473 431 1990's 394 719 718 1,000 696 555 802 959 1,898 2,788 2000's 1,825 1,882 2,029 2,114 1,505 2,018 1,178 3,924 3,244 1,601 2010's 2,973 2,509 2,137 4,110 3,461 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  15. Florida Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Florida Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1 1 1980's 0 0 0 0 1 0 1 0 0 3 1990's 1 0 1 0 0 0 0 0 0 0 2000's 0 0 3 0 1 0 32 0 183 0 2010's 0 9 4 2 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry

  16. Chapter 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -i Chapter 1 Revision History as of 2-12-16: Subsection Date Changed To LSSO Badges ... brings a personal or government laptop computer into an HQ building, protective force ...

  17. U.S. Crude Oil + Lease Condensate Reserves Revision Decreases (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Decreases (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,262 2010's 1,957 3,682 3,997 4,241 5,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Decreases, Wet

  18. Instructions for the Supporting Statement - Revision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Supporting Statement - Revision Instructions for the Supporting Statement - Revision Instructions for the Supporting Statementrev-includes BH table.pdf (38 KB) More Documents & Publications Paperwork Reduction Act Forms Paperwork Reduction Act Submission (OMB 83-I)

  19. Appendix A: Comments and Responses on the Draft Revised FONSI

    National Nuclear Security Administration (NNSA)

    Can you provide recent water quality results? The Draft Revised FONSI was drafted to ... The Draft Revised FONSI did not impact the plan for water quality testing at the site. ...

  20. Public Comment Received on Proposed Revisions to DOE's NEPA Rule...

    Energy Savers [EERE]

    Public Comment Received on Proposed Revisions to DOE's NEPA Rule: 10 CFR Part 1021 Public Comment Received on Proposed Revisions to DOE's NEPA Rule: 10 CFR Part 1021 Public Comment...

  1. Property:NEPA RevisedApplicationDate | Open Energy Information

    Open Energy Info (EERE)

    RevisedApplicationDate Jump to: navigation, search Property Name NEPA RevisedApplicationDate Property Type Date This is a property of type Date. Pages using the property "NEPA...

  2. POLICY FLASH 2013-58 Revised Guide for Financial Assistance ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2013-58 Revised Guide for Financial Assistance POLICY FLASH 2013-58 Revised Guide for Financial Assistance Questions concerning this policy flash should be directed to...

  3. Hawaii Revised Statute 182-6 Exploration | Open Energy Information

    Open Energy Info (EERE)

    Hawaii Revised Statute 182-6 Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Hawaii Revised Statute 182-6...

  4. Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates

    Weekly Natural Gas Storage Report (EIA)

    Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 16, 2015 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural Gas Storage Report estimates may occur EIA Weekly Natural Gas Storage Report Policy to Allow Unscheduled Release of Revisions - a description of the policy that will be implemented in the event of an out-of-cycle release

  5. Notice, Revised Classified Information Nondisclosure Agreement- July 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Notice to all cleared individuals, the "Classified Information Nondisclosure Agreement, Standard Form 312" (SF 312) was revised in July 2013.

  6. DOE Revises its NEPA Regulations, Including Categorical Exclusions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revises its NEPA Regulations, Including Categorical Exclusions DOE Revises its NEPA Regulations, Including Categorical Exclusions September 30, 2011 - 2:30pm Addthis On September 27, 2011, the Department of Energy (DOE) approved revisions to its National Environmental Policy Act (NEPA) regulations, and on September 28th, submitted the revisions to the Federal Register. The final regulations, which become effective 30 days after publication in the Federal Register, are

  7. Anomalies of Nuclear Criticality, Revision 6

    SciTech Connect (OSTI)

    Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

    2010-02-19

    This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

  8. Pennsylvania Dry Natural Gas Reserves Revision Increases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Increases (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 15 34 1980's 23 70 125 137 277 188 202 109 121 126 1990's 167 88 136 177 315 95 243 519 218 642 2000's 417 201 330 241 657 234 185 326 655 668 2010's 2,892 7,077 5,466 7,166 8,633 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 45 41 1980's 116 89 1990's 938 207 191 159 2,128 286 97 54 313 140 2000's 69 218 155 122 155 60 208 35 732 328 2010's 173 157 254 75 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  10. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18 35 129 1980's 69 119 1990's 759 773 545 44 2,101 481 502 348 309 215 2000's 74 78 130 588 162 135 234 163 283 99 2010's 206 455 99 67 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 23 17 1980's 11 8 19 14 29 26 9 17 18 13 1990's 19 6 12 31 101 12 12 3 41 41 2000's 77 397 383 167 153 77 21 152 133 760 2010's 540 639 276 58 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  12. Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 35 79 37 1980's 39 91 54 32 65 343 126 65 25 67 1990's 93 99 73 34 49 100 43 107 14 230 2000's 363 348 377 128 176 251 56 62 187 126 2010's 103 178 43 159 72 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  13. Michigan Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 94 83 118 1980's 64 87 146 115 184 98 105 160 239 228 1990's 87 281 148 164 191 79 453 252 538 624 2000's 422 263 383 303 205 141 460 780 143 367 2010's 260 210 541 388 290 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decreases (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 148 118 124 1980's 151 161 372 279 193 176 214 96 85 192 1990's 142 151 121 108 133 46 88 56 112 120 2000's 39 43 75 41 55 27 40 50 96 250 2010's 70 156 300 75 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  15. Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Increases (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 55 107 71 1980's 45 75 226 179 176 88 192 153 130 181 1990's 163 88 121 64 55 73 87 66 177 165 2000's 84 70 89 67 48 57 96 53 108 92 2010's 77 105 91 39 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  16. Montana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Montana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 21 86 1980's 189 83 95 79 77 40 31 16 33 25 1990's 32 33 21 11 76 14 12 133 43 55 2000's 133 90 109 26 124 122 78 74 56 210 2010's 100 97 191 49 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  17. Montana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Montana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 120 45 1980's 72 102 72 58 54 65 60 57 48 91 1990's 34 20 22 29 26 133 59 99 119 98 2000's 130 82 40 46 73 63 65 92 41 132 2010's 103 43 31 113 89 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  18. Alaska Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1,057 719 1980's 1,091 154 2,225 306 907 523 185 718 796 227 1990's 1,065 795 177 679 244 562 202 1,809 169 3,577 2000's 300 233 141 427 632 293 2,853 2,147 184 1,868 2010's 622 928 752 153 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  19. Revised DOE Acquisition Guide Chapter 15.4-2 Weighted Guidelines (July 201

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0) | Department of Energy 15.4-2 Weighted Guidelines (July 201 0) Revised DOE Acquisition Guide Chapter 15.4-2 Weighted Guidelines (July 201 0) The Office of Procurement and Assistance Management (OPAM) has issued the above Acquisition Guide chapters. DOE Acquisition Guide Chapter 1 5.4-2 Weighted Guidelines (Attachment 1) has been revised to include DOE Form 4220.23, Weighted Guidelines and instructions to completing the DOE Form 4220.23. When evaluating the estimated fee in a contractor's

  20. Last Revision Date: 8/16/2010 Last Merged Filing ID:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revision Date: 8/16/2010 Last Merged Filing ID: Tariffs, Rate Schedules, and Other Tariff Documents Southwestern Power Administration Tariffs, Rate Schedules, and Other Tariff Documents Document Generated On: 10/1/2010 Contents TABLE OF CONTENTS ....................................................................................................................................1 PREAMBLE: AUTHORITIES AND OBLIGATIONS