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Abstract

Scientific fields are difficult to define and compare, yet there is a general sense that
they undergo similar stages of development. From this point of view it becomes im-
portant to determine if these superficial similarities can be translated into a general
framework that would quantify the general advent and subsequent dynamics of scien-
tific ideas. Such a framework would have important practical applications of allowing
us to compare fields that superficially may appear different, in terms of their subject
matter, research techniques, typical collaboration size, etc. Particularly important in
a field’s history is the moment at which conceptual and technical unification allows
widespread exchange of ideas and collaboration, at which point networks of collab-
oration show the analog of a percolation phenomenon, developing a giant connected
component containing most authors. Here we investigate the generality of this topo-
logical transition in the collaboration structure of scientific fields as they grow and
become denser. We develop a general theoretical framework in which each scientific
field is an instantiation of the same large-scale topological critical phenomenon. We
consider whether the evidence from a variety of specific fields is consistent with this
picture, and estimate critical exponents associated with the transition. We then discuss
the generality of the phenomenon and to what extent we may expect other scientific
fields — including very large ones — to follow the same dynamics.
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1 Introduction

The evolution of science and technology is a subject of enormous intellectual and societal

importance. One inescapable feature has been the explosion of scientific publishing in re-

cent decades, along with the enormous growth in the indexing and availability of scholarly
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documents. These developments open new opportunities to construct a robust, quantitative

understanding of the processes by which scientific and technical fields emerge and grow.

A central question to these studies is whether there are general structures and dynamics

in the evolution of science that unify the development of different fields across disciplines

and time. There are certainly a variety of emerging methodologies that unify the study of

science. These include population dynamical models [1, 2, 3, 4, 5, 6, 7], networks of co-

citation [8, 9] and collaboration [10, 11, 12, 13, 14, 15, 16, 17], disciplinary maps of science

[18, 19, 20, 21] and phylogenetic term analyses [22, 23], among others. But a more profound

question is whether studies using these methodologies and others capture common dynamics

across fields. Moreover, if such general frameworks exist, what insights for society and policy

might these common dynamics reveal?

The concept of a general science of science and technology is an old multidisciplinary

question. Foundational work [24, 25] certainly assumed that different fields reflect, at least

in some general sense, a common dynamics of discovery. Analysts like Kuhn [24] hypothesized

a general structure by which scientific communities coalesced, evaluated potential anomalies

or crises, and perhaps dissolved. Yet it is also evident that there are many differences of time

scales, level of investment, necessary equipment, collaboration size and scientific productivity

that distinguish different fields of science, as standard measures of scientific impact have

started to show [9, 26]. In the face of these more recent measures that emphasize distinctions

among scientific fields and differences in their evolution over time, do any commonly shared

features remain?

The availability of new data has made the mapping of scientific fields increasingly possi-

ble, but we believe that a return to the question of what is common across scientific fields is

now important and timely. Here we develop an integrated analysis of several fields of science,

spanning several disciplines, methods, and sizes, from theoretical physics to computer science

and biomedical research. We show that there exists a strong set of commonalities across all

these fields, signaling the processes of discovery and invention and the advent of a unified
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community of practice. These changes in social dynamics and cognitive content are mani-

fest in terms of a topological transformation of their large-scale structure of collaboration.

Moreover, we go one step further to show how all fields analyzed here can be interpreted

as undergoing the same kind of idealized phase transition, though certain dynamical and

small-scale structural aspects of each field vary.

The main methodological challenge in comparing different fields from this perspective is

the enormous variation in their size (measured in terms of number of publications and au-

thors), which is manifested also in their network and dynamical properties. By any measure

it is common to find fields with only tens or hundreds of authors, which are characterized by

clear unifying concepts and techniques. However, we often also refer to much larger fields

with hundreds of thousands of authors or more, which show much more diversity and are

much more loosely connected. Are these instances of the same phenomenon? To address

these issues we develop a theoretical framework based on familiar ideas of universality in

critical phenomena observed in finite-size systems. We show that within such a framework,

any field can be thought of as the realization of certain general dynamics of agglomeration

and percolation. Moreover, we demonstrate that in a very specific quantitative sense, all

fields are comparable under scale transformations and map to an idealized dynamical social

network critical phenomenon that can exist at any scale, including the limit of very large

numbers of authors.

2 Results

2.1 Characterizing Growth Over Time

In this study we have examined the growth and development of several scientific and tech-

nical fields as they changed over a time-scale of decades. The fields vary greatly in size

and composition: from relatively modest-sized communities in theoretical physics such as

cosmic strings or cosmological inflation, in which authors have similar training; to benchtop

biomedical topics like research on scrapie and prions, which incorporate co-authors of varied
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expertise who work together on a narrowly-defined problem; to huge interdisciplinary fields

like nanotechnology and sustainability science, which feature authors from a wide range of

specialties. Whereas we have examined other aspects of the growth of several of these fields

in previous work [7, 17], the two largest fields in our sample — sustainability science and

nanotechnology — represent brand-new datasets.1 See Table 1.

field years No. publications No. authors
cosmic strings 1976− 2005 2, 443 2, 292

inflation 1981− 2005 5, 135 3, 410
quantum computing 1967− 2005 8, 946 7, 518
scrapie and prions 1960− 2005 11, 074 14, 620

string theory 1974− 2005 9, 766 25, 022
sustainability science 1974− 2009 20, 455 36, 984

nanotechnology 1990− 2010 521, 075 333, 990

Table 1. Scientific fields included in our study.

In our previous work we have found two features of scientific authorship that can be used

to simplify our analysis. First, as our “mean-field” population-modeling has shown, the total

number of authors (nodes), N(t), plays the role of the relevant time-like dynamical variable

[7]. For example, we found that the total number of articles grows as a simple power-law

of the total number of authors, even as both quantities display more complicated growth

patterns when measured with respect to time, t. Thus we may adopt N(t), the number

of authors in a given field at time t, as our basic time-like variable, akin to the kinds of

rescaling commonly adopted in cosmological models such as the universal scale factor, a(t),

or conformal time, η =
∫
dt/a(t).

Second, in our previous study of collaboration networks [17], we found a simple scaling

relationship between the number of co-authorship links (or edges) per node, E(t), and the

number of authors (nodes), N(t),

E(t) = Ei [N(t)]αi , (1)

1On the search strategies used to construct the datasets for the first five fields listed in Table 1, see the
appendix in [7]. To construct the database of all authors and articles in nanotechnology, we implemented the
search strategy described in [27] within the Web of Science database. The database of authors and articles
on sustainability science was generated for a recent study of the evolution and structure of this field, see
[28].
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where Ei and αi are constants, different for each scientific field, i, under consideration. The

quantity α is often termed the “densification exponent”: networks with α > 1 show increasing

numbers of links per node as the network itself grows over time. Fields with α > 1, in other

words, grow more dense as they evolve [29]. Empirically, virtually every field we studied

had an exponent, α > 1, with most falling in the range α = [1.05, 1.38]; only cold fusion

displayed a scaling exponent consistent with 1 [17]. In our latest studies, we have found the

same behavior for much larger scientific fields: both for sustainability science, a field that

has included approximately 37,000 authors over the past few decades and has a densification

exponent of α = 1.27; and for nanotechnology, a field that has included more than 330,000

authors over the past twenty years and has a densification exponent of α = 1.36. (See Figure

1, below.)

Such densification over time provides one simple example of the clarity that can come

from considering N to be the time-like variable, rather than ordinary time, t. Consider, for

example, the plots in Figure 1. Panels A and B show the number of new authors per year

in nanotechnology and sustainability science, respectively. For nanotechnology, new authors

per year grew roughly linearly over much of the time period of interest, whereas new authors

per year in sustainability science grew exponentially. Yet when plotting the number of links

in each network, E(t), versus number of authors, N(t), as in panels C and D, both fields

betray the simple scaling behavior of Eq. (1) — a simplicity of structure that is not at all

apparent from graphs like those in panels A and B.

2.2 From Densification to Percolation

A quantity of interest in any network study is the degree of a node, k, which counts the

number of links connected to that node. Given the form of Eq. (1), the average degree, 〈k〉,

should obey a simple scaling relation with network size, N , of the form

〈k〉 =
E(t)

N(t)
= Ei [N(t)]αi−1 . (2)
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Figure 1: Time evolution of fields of science and the densification of collaboration networks.
A. The number of new authors per year in nanotechnology vs. time. B. The number of new
authors per year in sustainability science vs. time. Regardless of the details of the temporal
evolution of the field, the number of collaboration (co-authorship) links increases in a scale-
invariant way with the number of authors in the network, as shown in C for nanotechnology
and D for sustainability science. These patterns are similar to those we have found in [17]
for a variety of smaller scientific fields.
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In [17] we found that fields with exponents α > 1 underwent a topological transition, akin to

percolation: at some finite time in each field’s evolution, one giant connected cluster emerged

such that nearly all nodes were connected to the cluster by a finite series of steps. In other

words, following the topological transition, nearly every author in the scientific field could be

connected to any other author by a finite set of co-authorship links: author A wrote a paper

with author B, who independently wrote a different paper with author C, and so forth, until

the set of authors became fully connected.

In [17] we hypothesized that such topological transitions signal an important step in a sci-

entific field’s development: a distinct, robust scientific field seems to emerge only once there

exists some commonly shared set of research questions, concepts, and methods that allow

multiple authors to cooperate and collaborate. The topological transition in co-authorship

networks, in other words, might provide a signal — available to policymakers and scientists

alike — that a new topic has emerged into a full-fledged field of inquiry. Such critical behav-

ior occurs at different times in various fields’ evolution, and hence at widely varying sizes of

networks. If one relied only upon time-series data such as new authors or publications per

year, one would miss the underlying similarities in topology and network structure.

To explore further the dynamics of these topological transitions, and in particular to

investigate whether the percolation phenomena betray universality — unfolding in the same

way near the transition for a wide variety of fields — we analyze the co-authorship net-

works using similar techniques to those developed for studying phase transitions in physical

systems, such as water freezing to ice. Very powerful quantitative methods have been devel-

oped to study the critical dynamics in the vicinity of these transitions [30]. This formalism

assumes the thermodynamic limit: the number of nodes is assumed to be both infinite and

unchanging. The scientific co-authorship networks of interest to us, however, are always fi-

nite, and change in size over time. In addition a general network does not have a well-defined

spatial dimensionality, unlike a standard regular lattice. For example, nodes connected in

a linear chain form an effectively one-dimensional system. Nodes with more connections
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effectively display higher local dimensionality, which can vary from place to place in the net-

work. These issues lead to a few challenges in the analysis of critical phenomena in evolving

networks. To address them we will begin with the usual infinite-size formalism and make

modifications to consider finite, time-varying networks, with 1� N <∞ and dN/dt 6= 0.

Phase transitions are system-wide structural changes in the vicinity of a critical point,

such as the freezing point for a liquid-to-ice transition, or the Curie temperature above which

a ferromagnet loses its magnetization. In these examples, the critical parameter, τ , depends

on the ratio of the system’s temperature to its critical value: τ = [(T/Tc)−1]. In our previous

work [17], we found suggestive evidence that fields with α > 1 might percolate when their

average degree, 〈k〉, crosses some critical field-dependent threshold, kc. That is, percolation

might occur once the average connectivity of a network, changing in time as in Eq. (2),

reaches a critical point. Such behavior would be compatible with previous observations of

percolation on random graphs [31, 32, 33]. We therefore define the critical parameter as

τ ≡
[
〈k〉
kc
− 1

]
(3)

and study the dynamics of a given field in the vicinity of |τ | ∼ 0. Given the form of Eq. (2),

we may rewrite Eq. (3) as

τ =

[(
N

Nc

)αi−1

− 1

]
, (4)

where Nc is the size of the network at criticality. Using Eq. (2), we find kc = Ei [Nc]
αi−1.

Like a freezing point, the critical degree, kc (and hence Nc), will vary by field. See Table 2.

field Ei αi Nc kc (estimate) kc (measured)
cosmic strings 0.28 1.21 178 0.83 1.67

inflation 0.09 1.38 121 0.56 1.59
quantum computing 0.38 1.22 171 1.18 2.20
scrapie and prions 1.53 1.12 60 2.50 2.86

string theory 0.09 1.36 79 0.43 1.24
sustainability science 0.15 1.27 5054 1.50 2.98

nanotechnology 0.07 1.36 5605 1.57 3.97

Table 2. Links-per-node scaling coefficients, exponents,

and critical network size for the scientific fields in our sample.
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The value of kc at the critical point can be estimated via the scaling relation of edges

vs. nodes of Eqs. (1)-(2), which yields the relation kc = Ei [Nc]
αi−1. These values appear

in Table 2 in the column, “kc (estimate).” In general, Eq. (1) provides an excellent fit

to the data; for example, the fits in Figures 1C and 1D each have R2 = 0.998. But the

scaling relation of Eq. (1) tends to underestimate the number of links per node for small

networks (or, equivalently, at early times in the evolution of large networks), and hence

tends to underestimate 〈k〉 near criticality, at N = Nc. A direct measure of kc may be made

independently of the estimated form, by measuring the average degree, 〈k〉, at criticality.

These values appear in Table 2 in the column, “kc (measured).” Minimizing the discrepancy

between these two values of kc remains a matter for future research.

The behavior of the system in the vicinity of |τ | ∼ 0 may be characterized by several

quantities that scale with τ . The first, P (τ), is the percolation probability: the likelihood

that a randomly-selected node belongs to the largest connected cluster, which may be com-

puted easily as the fraction of nodes in the largest connected cluster. P (τ) is an order

parameter for the system, akin to bulk magnetization for a lattice of spins in a ferromagnet

placed in an external magnetic field. The second quantity, S(τ), is the susceptibility per

node, defined as
∑

s s
2ns/N , where ns is the number of clusters that contain s nodes. (The

sum extends over all clusters except the largest connected cluster.) S(τ) thus characterizes

the variance of fluctuations per node in cluster size for the system, which is highest at the

onset of the formation of a giant graph component, at the critical point. A final quantity of

interest is the correlation length, ξ(τ), which characterizes how smooth or homogenous the

system is. Effectively, ξ(τ) measures the size of the largest clusters that are not part of the

single largest component [30].

In the infinite-lattice limit, these quantities scale near |τ | ∼ 0 as

P (τ) ∝ |τ |β,

S(τ) ∝ |τ |−γ,

ξ(τ) ∝ |τ |−ν ,

(5)
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in terms of the so-called critical exponents, β, γ, and ν, with β, γ, ν ≥ 0. Remarkably, many

physical systems display “universality”: though they freeze at different critical temperatures,

Tc, they all freeze in the same way, that is, they share the same values for the set of critical

exponents. Put another way, systems that share the same values of β, γ, and ν fall into

the same universality class. The power of these scaling relationships thus becomes clear:

systems that might have quite different microscopic properties and dynamics each behave

in exactly the same way near a phase transition [30]. The values of the critical exponents

depend on the dimensionality of the system, d, and obey a “hyperscaling” relation [30, 35]

d · ν = γ + 2β. (6)

In the infinite-volume limit, we therefore see that the percolation probability, P , should

rise from zero near |τ | ∼ 0 while the susceptibility, S, and correlation length, ξ, should

diverge. In a finite system, however, the correlation length can only grow as large as the

system itself: ξ ≤ N . Likewise, in a finite system clusters can only grow so large, so S will

reach some maximum but finite value near |τ | ∼ 0, rather than diverging to infinity; while

P will remain at some small but nonzero value near |τ | ∼ 0. See Figure 2.

In order to account for the finite size of our systems, 1 � N < ∞, we make use of

the usual scaling hypothesis (see, e.g., Section 2.3 of [35]). At any given time, the only

length scales are the smallest scale in the system (an individual author), the total number

of authors, N , and the correlation length, ξ. From Eq. (5), we see that τ ∝ ξ−1/ν . Since we

assume that the only dimensionful quantity of relevance to the dynamics is τ , we scale the

quantities P and S as

P (τ) = [ξ(τ)]−β/ν P0(N/ξ),

S(τ) = [ξ(τ)]γ/ν S0(N/ξ),
(7)

where the quantities P0 and S0 depend only on the dimensionless ratio, N/ξ. These functions

obey the following limits:

ξ � N : P0 → C0, S0 → D0,

ξ → N : P0 → C0

(
N
ξ

)−β/ν
, S0 → D0

(
N
ξ

)γ/ν
,

(8)
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Figure 2: Signatures of the topological transition at the advent of the formation of scientific
fields. A. Schematic representation of the behavior of the percolation cumulants P (blue)
and S (red). In the idealized infinite-size limit, as a field forms and densifies, it undergoes
a topological transition such that P grows away from zero while S quickly decays from a
large value; in this limit, P has a derivative discontinuity at the critical point, while S
has a divergence at the critical point. The behavior of these quantities for real fields are
finite-size approximations (pale lines) to their infinite-size extrapolations (bright lines). B.
The corresponding critical behavior for two large fields in our sample, nanotechnology and
sustainability science.

where C0 and D0 are constants. Thus, it is clear that near the critical point, as the correlation

length diverges to be comparable to the size of the entire system (ξ → N), we obtain

P → C0N
−β/ν
c ,

S → D0N
γ/ν
c ,

(9)

where Nc is the size of the network at criticality.

We may make a further rescaling in order to extract the dependence on the system size,

N , by writing

P0(N/ξ) =

(
N

ξ

)−β/ν
P̃ (N/ξ),

S0(N/ξ) =

(
N

ξ

)γ/ν
S̃(N/ξ).

(10)

Eq. (8) requires that the new functions obey

ξ � N : P̃ → C0

(
N
ξ

)β/ν
, S̃ → D0

(
N
ξ

)−γ/ν
,

ξ → N : P̃ → C0, S̃ → D0,
(11)
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while Eqs. (7) and (10) require

P (τ) = N−β/νP̃ (N/ξ),

S(τ) = Nγ/νS̃(N/ξ).
(12)

In order to retain the appropriate scaling with τ , as in Eq. (5), we therefore see that the

argument of P̃ and S̃ must be (
N

ξ

)1/ν

= N1/ντ. (13)

Combining Eqs. (11), (12), and (13), we therefore find

P (τ) = C0N
−β/νf(N1/ντ),

S(τ) = D0N
γ/νg(N1/ντ).

(14)

Plotting P/
[
C0N

−β/ν] versusN1/ντ should then yield a single curve, f , on which all members

of the same universality class fall. Likewise, plotting S/
[
D0N

γ/ν
]

versus N1/ντ should yield

a single curve, g, on which all members fall.

Our empirical results are consistent with the hypothesis of universality. First consider

Figure 3, which shows the scaling of P and S for each scientific field at criticality, N = Nc.

Note how closely all seven fields in our sample obey the predicted scaling with Nc as given

by Eq. (9). All seven fields fall upon a single line for P and S, with exponents given by

β/ν = 0.36 (95% confidence interval [0.27, 0.44], R2 = 0.93) and γ/ν = 0.31 (95% confidence

interval [0.19, 0.42], R2 = 0.85). The constant coefficients take the values C0 = 0.52 and

D0 = 0.66.

Using these estimates leads to predictions for the exponents β and γ, given the value

of ν. In practice we investigate the dependence of P and S on the critical parameter, τ ,

directly as we vary ν, as in Figures 4 and 5. These, too, scale as expected in the light of Eq.

(14), and provide a consistency check that there is a single set of exponents that describe

(at least approximately) all fields at the transition. Figure 6 shows the allowed region for

these parameters as the intersection of the uncertainty ranges in the fits of Figs. 3-5, plus

the dimensional limits arising from the hyperscaling relation of Eq. (6). We see that the

12



allowed region corresponds to an effective dimensionality d & 1. The best parameters are

obtained at

ν = 1.21± 0.01, β = 0.45± 0.04, γ = 0.35± 0.03, → d = 1.04± 0.07 (15)

where errors are computed at 95% confidence. At d = 1 we obtain the best parameter

estimates

ν = 1.31± 0.01, β = 0.47± 0.03, γ = 0.36± 0.03. (16)

These estimates still suffer from some uncertainties, as most fields show only limited and

noisy scaling with τ in the critical region. Nevertheless, the estimates of a low dimensionality

for the transition, with d & 1, suggest that the networks are structured as strings of dense

cliques, each clique weakly linked to the next; that is, as blobs on a line. Within each clique

one finds high local degree, k � 1, with loose connections from a few nodes to the next

neighboring clique. Large-scale connectivity — of the sort that allows the entire network

to percolate into a single connected component — thus behaves essentially as a linear (one-

dimensional) chain of collaboration. We discuss these aspects of the transition and the value

of the exponents below in greater detail.

2.3 Network Structure and Micro-Dynamics

All seven of the scientific fields in our sample — ranging over nearly four orders of magnitude

in size — betray self-similar behavior in the vicinity of their critical points. That is, the

bulk properties of their topological transition are independent of the micro-level dynamics

by which their networks evolve. Nonetheless, simple scaling relations like Eq. (1), showing

the densification over time as the networks grow, suggest that we may be able to model the

micro-level structure and dynamics of these networks as well.

The goal of this subsection is to find some form for the underlying degree distribution,

pk, which could be consistent with the bulk properties near criticality. Here pk gives the

probability that a randomly chosen node has degree k. The degree distribution, pk, thus
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Figure 3: The finite-size scaling of P and S at criticality for seven fields with different
sizes. A. The percolation probability, P , decays to zero as a scale-invariant function of N
with exponent β/ν = 0.36 (95% confidence interval [0.27, 0.44]) . B. The susceptibility, S,
diverges to infinity with increasing N , with an exponent γ/ν = 0.31 (95% confidence interval
[0.19, 0.42]). The behavior of both of these quantities suggests the existence of an infinite-size
idealized topological transition to which all fields in our sample are finite-sized realizations.
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Figure 4: The behavior of the percolation probability, P , with τ for our set of scientific
fields. Plotted here is P/P ∗ versus N1/ντ , where P ∗ ≡ C0N

−β/ν . The yellow line shows the
expected scaling for the particular value of the critical exponents, β = 0.45, ν = 1.21.
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Figure 5: The behavior of the susceptibility, S, with τ for our set of scientific fields. Plotted
here is S/S∗ versus N1/ντ , where S∗ ≡ D0N

−γ/ν . The yellow line shows the expected scaling
for the particular value of the critical exponent, γ = 0.35, ν = 1.21.
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Figure 6: The allowed parameter space of exponents resulting from the finite-size scaling
at criticality of P and S (blue and yellow regions, respectively) and direct estimate of their
dependence on τ (red region), see Figs 4-5. The red line shows the trajectory of the two
ratios β/ν and γ/ν as a function of ν. Solid and dashed lines show dimensionality constraints
on the exponent ratios resulting from the hyperscaling relation d = 2β/ν+γ/ν. The allowed
range for the ratios at 95% confidence corresponds to the intersection of the yellow, blue
and red regions, above the solid black line. In this region ν ranges from 1.31 for which
β = 0.47 and γ = 0.36 (with d = 1), and ν = 0.75, with β = 0.33 and γ = 0.25. The best
fits are obtained in the vicinity of ν ∼ 1.21, with β = 0.45 and γ = 0.35, d = 1.04. These
results suggest that a common description of all collaboration networks corresponds to a
non-standard percolation phenomenon dominated by chains of collaboration at criticality,
corresponding to an effective dimension d & 1.
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plays an analogous role to the partition function in statistical mechanics. As in statistical

mechanics, pk should offer a bridge between the micro-level dynamics of the system and the

bulk (quasi-thermodynamic) properties near the phase transition.

Many networks across the physical, biological, and social domains feature degree distri-

butions that are close to power-law form, pk ∼ k−s, at least over some wide range of degree,

k. That is, they contain many nodes with a small number of links, and few nodes with many

links. As noted above, real-world networks of interest grow large but remain finite, with

1 � N < ∞. In such finite networks, the pure power-law distribution is often truncated:

pk ∼ k−sf(k), where f(k) is a rapidly-falling function of k. (For reviews, see [31, 32, 33].)

Because are interested in late-time and large-size effects, we will make use of the continuum

approximation throughout this subsection:
∑

k pk →
∫
dk p(k).

Previous studies of scientific collaboration networks have modeled the degree distributions

by a soft (exponential) cutoff of the form f(k) = exp[−k/κ] [10]. We therefore consider a

degree distribution of the form

pi(k) =

{
0 for k = 0,

Cik−sie−k/κi for k ≥ 1.
(17)

Given the cutoff parameter, κi, we may integrate up to k →∞ in the continuum limit. The

constant Ci is determined from normalization, and therefore the degree distribution for each

field, pi(k), depends on only two free parameters: the scaling exponent, si, and the cutoff

parameter, κi. The exponent, si, determines how likely it is to find a well-connected author

with k links, while κi incorporates finite-size effects; hence we will assume that κi scales in

some way with the network size, N . Just as each field grew and densified according to the

same basic scaling relation of Eq. (1) but with different values for Ei and αi, we expect that

each field has an underlying degree distribution of the form in Eq. (17), with its own values

for si and κi.

First we determine the normalization constant, Ci. The incomplete Gamma function,
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Γ(a, z), is defined by the integral [36]

Γ(a, z) =

∫ ∞
z

dt ta−1e−t (18)

and thus we find

1 =

∫ ∞
0

dk pi(k) =

∫ ∞
1

dk Ci k−sie−k/κi = κ1−sii Γ(1− si, 1/κi), (19)

or

Ci =
κsi−1i

Γ(1− si, 1/κi)
. (20)

The average degree then takes the form (dropping the field-index i for convenience)

〈k〉 =

∫ ∞
0

dk k p(k) =

∫ ∞
1

dk C k1−se−k/κ = κ
Γ(2− s, 1/κ)

Γ(1− s, 1/κ)
. (21)

Using the general properties of the Γ(a, z) functions [36], we find the leading behavior of Eq.

(21) in the κ� 1 limit to be

〈k〉 =

{
(s− 1)Γ(2− s)κ2−s for 1 < s < 2
(s− 1)(s− 2)−1κ0 for s > 2.

(22)

The apparent divergence in 〈k〉 at s = 2 is an artifact. Expanding Γ(0, 1/κ) in the limit

κ� 1, we have [36]

Γ(0, 1/κ) = lnκ− γE + κ−1 +O(κ−2), (23)

where γE = 0.5772... is the Euler-Mascheroni constant. This yields

〈k〉s=2 = C Γ(0, 1/κ) = lnκ+O(κ0). (24)

Thus the average degree will only scale as some power of network size, N , for exponents in

the range 1 < si < 2.

We now assume some relation between the exponential cutoff parameter, κi, and network

size, N . The cutoff effectively measures the largest degree found in the network, κi ∼ kmax.

Clearly no node can have more links than there are other nodes in the network, so κi must be

bounded from above by κi < (N−1) ∼ N . Moreover, at any finite time authors in a network
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might not yet have had a chance to form links with all the other potential co-authors. Thus

we expect the cutoff parameter to scale with network size as

κi = N bi , with 0 < bi < 1. (25)

Equating the two expressions for 〈k〉 in Eq. (2) and (22), we find, for 1 < si < 2,

Ei = (si − 1)Γ(2− si) (26)

and

αi = 1 + bi(2− si). (27)

From Eq. (27), we see that networks will only densify, with αi > 1, if their underlying

degree distribution has a scaling exponent si < 2. If p(k) falls off more rapidly than k−2

then too few nodes in the network will be well enough connected to allow the overall network

to densify and percolate.

Using our empirical values for Ei and αi in Table 2 together with Eqs. (26) and (27), we

find
field si bi

cosmic strings 1.23 0.27
inflation 1.09 0.42

quantum computing 1.30 0.31
scrapie and prions 1.63 0.33

string theory 1.09 0.39
sustainability science 1.14 0.31

nanotechnology 1.07 0.39

Table 3. Degree distribution scaling exponents and

cutoff parameter scalings for the scientific fields in our sample.

The field with the largest scaling exponent — and hence the steepest fall-off in likelihood

for multiple co-author links per author — is the biomedical field of scrapie and prions, with

si = 1.63. Several areas of theoretical physics, on the other hand, such as inflation and string

theory, have smaller scaling exponents (more frequent large-degree nodes) with si = 1.09.

Likewise, in a previous study [10], Newman found that the network of authors who had
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published biomedical articles registered in Medline (about 1.4 million authors ca. 2000)

were relatively loosely connected, with a large scaling exponent, si = 2.5, whereas most

physics fields had si ' 1.1 − 1.3. He also found cutoff parameters that scaled in the range

0.25 ≤ bi ≤ 0.65.

Perhaps the biggest surprise of our analysis is that our largest and most heterogeneous

field, nanotechnology, appears to have the smallest scaling exponent, si = 1.07. One might

have expected instead that an interdisciplinary field as large and diverse as nanotechnology

would behave more like the network of all authors in Medline, rather than like a small and

relatively homogenous field like cosmological inflation or string theory. This curious finding

deserves further study.

2.4 Finer Substructure?

The simple ansatz for the underlying degree distribution, p(k) as in Eq. (17), can reproduce

the bulk properties we had found for our various fields near their critical point. But p(k) can

also be measured directly at any given moment in the evolution of a network, by plotting

the frequency of a given number of links within a network at a given time. How well does

the form of Eq. (17) match such snapshot measurements?

Figure 7 shows the degree distribution near N = Nc for several fields. The orange line

shows the scaling p(k) = k−2 for reference. Though most cases clearly fall off as a quasi-

power-law with increasing k, they are much more flat at small k than the form of Eq. (17)

would suggest, and they fall off more steeply than k−s with 1 < si < 2.

The discrepancy between the assumed form of p(k) and the data in Figure 7 might be ac-

commodated by modifying our assumption about the micro-dynamics by which the networks

grow. The degree distribution of Eq. (17) incorporates the assumption that each new author

joins the network as an individual. Yet the value of the bulk scaling exponents, β/ν = 0.36,

which we found above, might suggest the presence of significant “clique” substructure. That

is, our scientific fields might not grow as pure random graphs, with each new node added
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Figure 7: The degree distribution, p(k), versus k for several fields, as measured in the vicinity
of each field’s critical point, N = Nc. The orange line shows the pure power-law distribution,
p(k) ∼ k−2. Unlike the plots in Figures 3-5, there is no reason to expect each field’s degree
distribution to line up on a single curve, since the free parameters within p(k) — namely,
si and κi — vary by field. Nevertheless, we expect p(k) for each field to fall roughly as a
power-law with increasing degree, up to some finite-size cutoff.
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autonomously of all others. Rather, new nodes might join the network in pre-formed clusters

or “cliques” of size r. As found in [37], the order parameter in such a case should scale with

network size as

Ψ =

{
N
−r/6
c for r ≤ 3,

N
1−r/2
c for r ≥ 3.

(28)

Our finding in Eq. (9) for the scaling of the order parameter, P ∼ N
−β/ν
c , with β/ν = 0.36,

is close to the predicted scaling of Eq. (28) for r = 2, that is, for networks in which each

new author joins the network as part of a small clique of two co-authors. We might therefore

modify the degree distribution of Eq. (17) to take the form

p(k) = Ci(k + r)−si exp[−(k + r)/κi]. (29)

Proceeding as in the previous subsection, we find

Ci =
κsi−1i

Γ(1− si,Λi)
, (30)

where

Λi ≡
(1 + r)

κi
� 1, (31)

and thus, for 1 < si < 2,

〈k〉 = (si − 1)Γ(2− si)(1 + r)si−1κ2−sii +O(κ0i ). (32)

Again assuming that the cutoff parameter scales with network size as κi = N bi , and com-

paring with Eq. (2), we thus find

Ei = (si − 1)Γ(2− si)(1 + r)si−1 (33)

and

αi = 1 + bi(2− si). (34)

The sum-rule among the exponents in Eq. (34) is unchanged from our previous finding in

Eq. (27), but the relation among coefficients in Eq. (33) has picked up the extra factor of

(1+r)si−1 compared to the corresponding expression in Eq. (26). For r = 2 and si ∼ 1.1−1.6,
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this extra factor amounts to a multiplicative constant of 1.12 − 1.93. The overall effect of

the r-clique modification is thus to flatten out the degree distribution at small k, to better

match the empirical findings in Figure 7, while retaining the large-N behavior of 〈k〉, and

hence of the percolation behavior described in previous subsections.

Whether an underlying degree distribution of the form in Eq. (29) or some other form

will best capture the underlying dynamics remains a topic for further study.

3 Discussion

Scientific fields are self-organizing collections of people, their knowledge and interactions

and the physical products of their research evolving over time, all aimed at solving specific

problems. Mature fields of science are unified by subject matter, research techniques, con-

ferences and journals. However, the most interesting stage of field formation is also the most

uncertain and deals with the moment at which the advent of new concepts and techniques

produces new communities of practice that eventually become mature fields. It is just before

and at this point that policy interventions can be expected to be most effective.

The present study deals with a central question in epistemology and the emerging science

of science, namely whether there exist general processes common across disciplines, time, and

scale that characterize the formation of new fields of science. If such common processes do

exist, then quantification of such processes would provide a unified framework to understand

and predict the evolution and structure of every scientific field, with important implications

to science as well as policy. This would mean, for example, that there should be general

objectives of science policy that will benefit any field of research, regardless of its size or

disciplinary focus.

There have been a number of tantalizing pieces of evidence to suggest that such a unified

description does exist, and that it relates to a (geometric) critical phenomenon, crossed at a

finite rate in time and at a finite (and often small) scale in terms of network size. Here we

have developed additional evidence in support of this picture and proposed a quantitative
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framework in which to generate features of dynamics and network structure that can be

accounted for and parameterized in terms of a few universal parameters (critical exponents).

While more evidence is still necessary, the present study is strongly suggestive that a universal

critical structural change in interactions between scientists marks the advent of a new field.

To establish the values of critical exponents and the extent to which these are universal,

more examples of fields, across an even greater range of scales and diversity of research

areas, will be necessary. We found that the inclusion of larger fields — nanotechnology and

sustainability science — was actually crucial to enable us to glimpse details of behavior in the

critical region, especially to test the scaling assumption behind Eq. (9) and demonstrated in

Figure 3. The critical dynamics are sensitive to N , and hence testing the expected relations

across a wide range of N is essential.

Many of the smaller fields that we have examined in this study show scaling only over a

very small window of their dynamics. This is familiar from studies of critical phenomena in

small systems, where the most spectacular signatures of criticality are washed out. We have

begun to explore other possible forms for the critical parameter, τ , which might prove more

sensitive to the critical dynamics of smaller fields. For example, rather than parameterizing

τ in terms of the average degree, 〈k〉, as in Eq. (3), we could incorporate fluctuations

around the average degree, 〈k2〉. The natural combination to consider would take the form

τ = (T − 1), where T = 〈k2〉/(2〈k〉) (see [33, 38]). Whether this new ansatz for τ will prove

any better empirically at capturing sensitive features of smaller networks’ growth remains a

topic for further study.

If all fields show differences of critical exponents under a more extensive set of examples,

then this raises the question of whether each field undergoes the same critical phenomenon

or if instead there are universality classes that characterize different sets of fields, each with

their own values for β, γ, and ν. On the other hand, if all fields can be associated with

the same set of critical exponents — as it strongly appears that they can, given the present

analysis — then the next challenge to tackle will be to develop and test more accurate
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models of the underlying, micro-level dynamics that give rise to the observed behavior of

universal structural change. The results of our empirical analysis developed here suggest a

low effective dimensional model where, around the time of field formation, distant authors are

connected primarily in terms of linear (d = 1) chains of collaboration. This does not preclude

that locally most publications are co-authored by several people and that many authors

enjoy large numbers of collaborators, leading to dense collaboration clusters. However,

these cliques remain for a while disconnected as isolated groups, and field formation occurs

when their interconnectivity is just high enough to lead to a giant graph component, close

to effectively a one-dimensional set of chains over the longest distances in the network.

Because one-dimensional critical phenomena are simpler and often analytically tractable,

these findings suggest the existence of a simple model that can account for the observed

critical dynamics of fields of any size. Such a model will necessarily be different from standard

percolation in order to account for the observed exponents. For example, the presence of

clique substructure as new authors enter a given field (as discussed in Section 2.4) would

produce a departure from pure random graph theory, and might well account for the values

of critical exponents found here.

The existence of a general theory and detailed model that describes field formation across

disciplines, time, and population size would provide a new comprehensive, quantitative, and

predictive framework with which to understand the social and conceptual dynamics involved

in the self-organized creation of scientific communities of practice. Such a framework would

hold great promise for guiding science policy.
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ulation modeling of the emergence and development of scientific fields,” Scientometrics

75 (2008): 495-518.

[8] D. J. de Solla Price, “Networks of scientific papers,” Science 149 (1965): 510-515.

[9] S. Redner, “Citation statistics from 110 years of Physical Review,” Physics Today 58

(6) (2005): 49-54.

[10] M. E. J. Newman, “The structure of scientific collaboration networks,” Proceedings of

the National Academy of Sciences USA 98 (2001): 404-409 [arXiv:cond-mat/0007214].

27



[11] M. E. J. Newman, “Scientific collaboration networks, I. Network construction and fun-

damental results,” Physical Review E 64 (2001): 016131.

[12] M. E. J. Newman, “Scientific collaboration networks, II. Shortest paths, weighted net-

works, and centrality,” Physical Review E 64 (2001): 016132.

[13] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution

of the social network of scientific collaborations,” Physica A 311 (2002): 590-614.

[14] M. E. J. Newman, “Who is the best connected scientist? A study of scientific coauthor-

ship networks,” Lecture Notes in Physics 650 (2004): 337-370.

[15] J. J. Ramasco, S. N. Dorogovtsev, and R. Pastor-Satorras, “Self-organization of collab-

oration networks,” Physical Review E 70 (2004): 036106.

[16] K. Börner, L. Dall’Asta, W. Ke, and A. Vespignani, “Studying the emerging global

brain: Analyzing and visualizing the impact of co-authorship teams,” Complexity 10

(2005): 57-67.

[17] L. M. Bettencourt, D. I. Kaiser, and J. Kaur, “Scientific discovery and topological

transitions in collaboration networks,” Journal of Informetrics 3 (2009): 210-221.

[18] R. M. Shiffrin and K. Börner, “Mapping knowledge domains,” Proceedings of the Na-

tional Academy of Sciences USA 98 (2001): 5183-5185.

[19] K. W. Boyack, R. Klavans, and K. Börner, “Mapping the backbone of science,” Scien-

tometrics 64 (2005): 351-374.

[20] J. Bollen, H. van de Sompel, H. Haberg, L. Bettencourt, R. Chute et al., “Click-

stream data yields high-resolution maps of science,” PLoS One 4 (3) (2009): e4803,

doi:10.1371/journal.pone.0004803.

[21] K. Börner, Atlas of Science: Visualizing What We Know (Cambridge: MIT Press,

2010).

28



[22] D. Chavalarias and J. Cointet, “Science mapping with asymmetric co-occurrence analy-

sis: Methodology and case study,” in Proceedings of the European Conference on Com-

plex Systems, Dresden (2007), pp. 1-5.

[23] D. Chavalarias and J. Cointet, “Bottom-up scientific field detection for dynamical and

hierarchical science mapping: Methodology and case study,” Scientometrics 75 (2008):

37-50.

[24] T. S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago

Press, 1962, 1970).

[25] D. J. de Solla Price, Little Science, Big Science (New York: Columbia University Press,

1963).

[26] J. E. Hirsch, “An index to quantify an individual’s scientific research output,” Proceed-

ings of the National Academy of Sciences USA 102 (2005): 16569-16572.

[27] A. Mogoutov and B. Kahane, “Data search strategy for science and technology emer-

gence: A scalable and evolutionary query for nanotechnology tracking,” Research Policy

36 (2007): 893-903.

[28] L. M. Bettencourt, and J. Kaur, ”Mapping the evolution and structure of sustainability

science”, in review.

[29] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Densification laws,

shrinking diameters, and possible explanations,” Proceedings of the Eleventh ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining (New York:

ACM, 2005), 177-187.

[30] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (New York: Oxford

University Press, 1989).

29



[31] R. Albert and A.-L. Barabási, “Statisical mechanics of complex networks,” Reviews of

Modern Physics 74 (2002): 47-97 [arXiv:cond-mat/0106096].

[32] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of networks,” Advances in Physics

51 (2002): 1079-1187 [arXiv:cond-mat/0106144].

[33] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review 45

(2003): 167-256 [arXiv:cond-mat/0303516].

[34] R. van der Hofstad, Lecture Notes on Random Graphs and Complex Networks, available

at http://www.win.tue.nl/∼rhofstad (December 2010).

[35] Kurt Binder and Dieter W. Heermann, Monte Carlo Simulation in Statistical Physics:

An Introduction, 5th ed. (New York: Springer, 2010).

[36] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (New York:

Dover, 1965).
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