
Inforum 98 Paper, Page 1/8

Soph-Ware Associates

IDEA Moving & Storage™: ISO-based Document Management
Ron Turner, Soph-Ware Associates, Spokane WA

Introduction:

Three years ago the DOE (OSTI in particular) issued a solicitation through the SBA’s Small
Business Innovation Research (SBIR) program for an architecture to support distributed
multimedia. The main problem with distributed heterogeneous data objects is that we cannot be
certain at any moment where those objects are or even what they are. Soph-Ware Associates’
proposal was to design and implement a secure client-server architecture to publish distributed
multimedia. Like the data, the software can be heterogeneous, allowing the systems designer to
pick and choose among the most appropriate COTS products.

Soph-Ware is currently piloting and will soon deliver version 1 of a working implementation
of that architecture, known as Intelligent Document Exchange Architecture (IDEA). Under terms
of the SBIR, Soph-Ware seeks to commercialize its funded R&D as a product. That product is
called IDEA Moving & Storage. It comprises the document management activity of IDEA and is
the subject of our discussion at this meeting.

IDEA Architecture

Figure 1 is a schematic data flow diagram depicting the various services that are part of
IDEA. The approach of IDEA is for the software to function as the middle tier in a three-tier
architecture separating data objects from the various processes that manipulate those objects. The
Patron in this diagram is separated from the document store, and the various services are likewise
separated from one another. The diagram also demonstrates that IDEA is itself an embedded
client/server system with its own server and the various services as the server’s clients.

Figure 1 depicts a generic document retrieval session. The Patron, having already searched
the document store, issues a request to the SGML Information Server. In this secure architecture,
the Client Registry must certify the patron. In addition, the Security Manager must validate his or
her access to each of the objects comprising the requested document. If this transaction is fee-
based, the Business Manager must verify the patron’s subscription or debit the patron’s account.
The Entity Registry and File Manager actually retrieve the document objects. The Workstation
Registry, because it knows the profile of the patron’s current workstation, supplies the
Transformation Manager with sufficient information to prepare the document for final delivery.

SGML for Document Management

Soph-Ware Associates specializes in ISO 8879 Standard Generalized Markup Language
(SGML). And IDEA is especially useful for manipulating documents that are stored as SGML.
However, the most important aspect of IDEA is not what kind of data objects it handles but how
it handles those objects. IDEA exploits a powerful built-in capability of SGML for document

Inforum 98 Paper, Page 2/8

Soph-Ware Associates

management. IDEA is therefore an SGML architecture first because it incorporates SGML
document management. The documents and media it manages may be SGML or any proprietary
or legacy format. At a lower level, The interservice messaging in IDEA consists of SGML
packets. Furthermore, the metadata (bibliographic header information) for each document object
is stored as SGML documents. So whether the document store itself is SGML or not, IDEA
exploits the standard in every way possible. Just as SGML documents continue to offer the best
hope for their longevity, this SGML architecture promises to persist, regardless of inevitable
changes in software, hardware architectures, operating systems, platforms, scalability, and speed.

The thick-lined loop in Figure 1 encircles the document management activity of IDEA. Soph-
Ware is now packaging that portion as IDEA as Moving & Storage, a middleware product to
support document control for large SGML installations.

Moving & Storage: the SGML Connection

Those who are familiar with SGML (or XML, its kinder, gentler offspring) no doubt think
first of pointy brackets for tag names, the same apparatus used for HTML on text for Web pages.
But SGML is about much more than markup for text. SGML markup is for describing
relationships among structural elements of documents. But the standard also provides a
methodology for describing the relationships between the storage entities in a document and their
actual physical locations. That methodology is the principal feature of Moving & Storage.

The SGML standard, via its Extended Facilities, addresses the persistent locator problem by
applying a technique that is common in programming: indirection. Rather than hard-coding a
value in a program, it is better practice to use a variable. And it is even better practice to use a
pointer to a variable. (This is more or less what a “handle” is.) The principle is, the greater the
degree of indirection, the better. Conversely, the less coupling the better. It is better because
indirection allows for a single data object to be shared by many processes. The maintenance
payoff for data locator indirection is that by updating a single data object in one location, you are
simultaneously revising five, 50, or perhaps 5000 documents or reports or pictures or whatever
the data may be. The penalty for indirection is the front-loading cost of doing it right, because
indirection adds initial overhead. Figure 2 contains a tiny example of how we apply SGML to
achieve indirection for document objects.

Note first that we must understand the slightly subtle distinction between an entity and an
element. An entity is a physical thing—a storage thing—defined formally as simply a collection of
characters. The entity has to do with where and how it is to be found, and it is oblivious to its
role(s) within the document(s). We define an element, on the other hand, solely by its relationship
within the single document in which it occurs. That relationship is a relationship of structure. In
our example the paragraph element, tagged as <para>, is probably a subelement of
<section>, which is part of <chapter>, which is part of <unit>, which is part of
<book>, which is part of <set>. An element therefore is a structural thing, a relational thing.

Inforum 98 Paper, Page 3/8

Soph-Ware Associates

In our example an entity is embedded in an element. Note, by the way, that element-entity is
not a part-whole relationship. The entity yonder is a name, like a variable in a computer
program. This hints at the notion of indirection discussed earlier, and we are about to trace
exactly how that works. From its name we don’t know whether yonder refers to a single symbol
like a copyright symbol or company logo, a dynamic string like date and time, a piece of dynamic
data like this hour’s Dow Jones Industrial Average, a JPEG graphic, a video, or an audio file.
From reading the example we only know that it’s something “out there,” something that the
SGML system needs to fetch and insert into the paragraph, replacing the string &yonder;.

Clearly the SGML system (whether it’s an authoring tool or a publisher’s retrieval product)
needs certain information in order to fetch what &yonder; is referring to. Those pieces of
information show us how an SGML document is “bolted together.”The SGML parser recognizes
first that yonder is an entity, something that needs replacing. It knows that because of the “&”
and the “;” surrounding the name. It then expects to find that entity declared somewhere in the
document itself (the “document instance”). That entity declaration points to yet another name
doc2. The parameters of the entity declaration are significant:

1. The string <!ENTITY yonder informs the parser that this is the declaration it is looking
for. (As a matter of procedure, this declaration, along with perhaps hundreds more for a
complex document, may be in a separate physical file.)

2. SYSTEM informs the parser to use some system-based process to locate the entity. That
process is defined by what follows.

3. <IDEA>doc2 is a formal system identifier, another construct that is part of the SGML
standard. This functions as the “storage object specification (SOS).” <IDEA> is the “storage
manager name.” “Storage manager” is a concept described at length in the SGML standard.
The “entity manager” (also an SGML concept) manages the mapping of virtual objects
(entities) to real objects (files). The details of how the entity manager maps a virtual storage
object (here, the entity yonder) to an actual (physical) location are not mandated by the
standard. But SGML does prescribe how the entity manager maps a virtual object to a
storage manager.

4. doc2 is the name within the IDEA storage manager name space. Within IDEA that name is
a unique entity. Outside IDEA it has no significance. Entering that entity name plus its
declaration into the system is an administrative activity, part of registering the document into
IDEA’s Entity Registry. (The Entity Registry is not the same as the “entity manager” of the
standard.)

5. The parameter <IDEA> designates the SGML storage manager. We have implemented this
manager with the Entity Registry. It contains, among other things, its own file of entity
declarations. It contains a declaration for doc2.

Inforum 98 Paper, Page 4/8

Soph-Ware Associates

6. This declaration—the one for doc2 in the Entity Registry—encapsulates its own storage
method. The method is proprietary to IDEA. At this time IDEA uses FileNet’s document
management product FileNET Document Services as its method. It can use any other
document management product. Note that there is no mention or implication of the
underlying data base product or data base architecture that supports the method.

7. In the example, the FileNet system’s entity name is id2, the name by which IDEA’s File
Manager will locate and retrieve the actual stored element.

All of this apparently “excess SGML baggage” is the overhead we described above. This
clearly requires careful software design. And what have we gained with this degree of indirection
and layering of services? First, we could conceivably have not just one entity manager (IDEA)but
several: IDEA2, IDEA3... Second, the architecture is not locked into a particular data base.
The underlying data base could be Microsoft SQL Server, Sybase, Oracle, or whatever the
document management system will support. Third, we are not locked into a particular vendor’s
document management product. If we chose to substitute a product from Documentum, for
example, instead of FileNet, we would need to alter only the catalog (Entity Registry). Fourth,
and of greatest importance to the administrator, we only need to update or revise the actual data
object in a single place.

Although the mapping from virtual document objects to actual stored data seems tortuous,
Moving and Storage hides this from the writer, editor, or document technician. Within an
authoring/editing tool (Adobe’s FrameMaker+SGML, for example) Moving & Storage prompts
only for minimal input. The author only needs to know the name of the storage manager (IDEA)
and the name of the entity within that storage manager (doc2). It appears to the user as simply a
disk name and file name, for example. The Patron, on the other hand, who is operating all this
only for retrieval sees nothing of the underlying structure.

The tiny example we studied shows an entity to be contained within an element. The more
frequent case is for large clusters of text, comprising many elements, to be part of a single stored
entity. For instance, a “master document” element, <manual> say, may contain nothing but
entity references, each pointing to a chapter’s worth of text. But the method of mapping entities
from their reference names to their actual locations is the same.

Moving & Storage strives to maintain its SGML integrity as an entity manager. That means
that it fragments, stores, retrieves, and reconstitutes the pieces of a document as entities. Some
other management systems use the element as the storage unit. While either approach calls for a
database solution, and while either is amenable to document management, the consistent
preservation of SGML entities assures maximum portability, standards compliance, and document
longevity with the minimum consumption of resources. There are dramatically fewer files required
for entities than there would be for elements.

Inforum 98 Paper, Page 5/8

Soph-Ware Associates

Moving and Storage: the Database Connection

In IDEA every one of the services sits on and is driven by a data base (see the vertical bars in
figure 1.) The data base for Moving & Storage consists of SGML entity declarations and of
bibliographic header information (metadata), themselves stored as SGML documents. We have
only casually stated that that data resides in a data base. It is important to note that SGML is
indifferent to data structures. Each document object could just as well be a flat ASCII file.

But in the real world of large documents (multi-volume, multi-set), one cannot think of
document management without considering data bases. There are three reasons why the systems
designer must keep data base strategies clearly in mind. First, structured data most logically
should reside in a data base, not because it’s SGML data, but because that’s the best way to store
data for large systems—of anything, including documents. Second, those objects, properly
structured and intelligently stored, can function as reusable, shareable data objects. Third, the
information borne by richly marked SGML documents (via attributes and declarations) can
constitute a high value added to the document store. If that information is properly structured (as
in a data base), the documents can be mined as well as simply located. All such data warehouses
or data marts require a rich interaction of data bases.

Moving & Storage: the Document Management Connection

Document management means several things. That’s because it can serve several purposes. It
can trace the progress of a document through the workflow of a collaborative writing group. It
can do simple check-in/check-out control to assure that only a single copy is open for write
access. It can provide a mechanism for controlled access to secured documents. It can help
implement e-commerce with fee-based materials. Most of all, it is a standards-based answer to the
quest for persistent locators. Moving & Storage uses document management to implement an
SGML-prescribed method for entity location and control.

The big problem that exists for heterogeneous distributed document objects is the classic
problem of locator persistence. This is IDEA’s reason for existence. We choose to manage these
objects, not only because it’s trendy or because there are lots of them, but because it is the only
way to maintain the integrity of a document entity’s location. That managed object and the
documents that “own” it remain totally intact, no matter how radically that object may be revised
or relocated.

Figure 3 depicts the relationship between (1) stored document objects (SGML/XML entities
or data in other formats), (2) an off-the-shelf document management system, enhanced to be
SGML-compliant, (3) Moving & Storage, and (4) SGML/XML tools.

SGML
Information

Server

1: Formal Public Identifier
+ Client-id (User-id + Location)

Patron
14: Pointer to D2

Client
Registry

2: Client-id
3: Access Permission

Entity
Registry
(FileNet)

6: FPI

"Business
Manager"

Client Data Base Entity Registry
Data Base

(CATALOG)

Publisher's Corporate
Training Accounting
System, for example

File
Manager
(FileNet)

11: FSI

12: Document D1

Workstation
Registry

8: Client-Id

9: Workstation Data

Transformation Mgr.

10: FSI
+ Workstation Data

13: Pointer to D2

Intelligent Document Exchange Architecture (IDEA)
Draft:3/12/98

7: FSI

Security
Manager

(Optional)

4: Client-id + FPI

5: File Permission

Greyed box: SWA Proprietary
Lightly greyed box: Possible SWA Effort
White box: Other

Numbered arc:
Phase II middleware

Site 1: Text
Site 2: Graphics
Site 3: Data base

Site n: Digital
 Archive

 Document Storage
Sites:15: Pointer to D2

16: Document D2

Inforum 98 Draft (3/12/98), Page 6/8

Copyright © 1998 by Soph-Ware Associates

Figure 1

Inforum 98 Paper, Page 7/8

Soph-Ware Associates

Figure 2

SGML
TOOL

N

SGML
TOOL2

SGML
TOOL1

DOCUMENT (SGML ENTITY) MANAGER

IDEA MOVING &STORAGE

Inforum 98 Paper, Page 8/8

Soph-Ware Associates

Figure 3. Integration of Data, Entity Manager, and Tools with Moving & Storage

	Introduction
	IDEA Architecture
	SGML for Document Management
	Moving & Storage: the SGML Connection
	Moving and Storage: the Database Connection
	Moving & Storage: the Document Management Connection
	Figure 1. Intelligent Document Exchange Architecture (IDEA)
	Figure 2. So What's New?
	Figure 3. Integration of Data, Entity Manager, and Tools with Moving & Storage

