FOREGOING

This chapter presents an account of the Ames Project, which was the name given to the activities carried on for and under the Manhattan District at Iowa State College, Ames, Iowa. The chapter was compiled under the direction of Dr. F. L. Spedding, Director of the Project, by his assistant, Dr. R. I. Palmer, from material furnished by Heads of Sections and other members of the Project. It has been incorporated in the Manhattan District History as written, with a negligible amount of editing. The Ames Project was carried on under Contracts No. 1 OR 18-410; OR 18-416; V-7408 aug-71 and V-7408 aug-83.

The account covers the Ames Project from its inception under OR 18 until 31 December 1946.

December 1947
MANHATTAN DISTRICT HISTORY

BOOK I, GENERAL - VOLUME 4, AUXILIARY ACTIVITIES

CHAPTER 11, ANHE PROJECT (IOWA STATE COLLEGE)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE NO.</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>11.1</td>
</tr>
<tr>
<td>SECTION I - INTRODUCTION</td>
<td>11.2</td>
</tr>
<tr>
<td>1. The Role of the Ames Project in the Manhattan District Operation</td>
<td>11.3</td>
</tr>
<tr>
<td>2. Early History</td>
<td>11.3</td>
</tr>
<tr>
<td>SECTION II - METALLURGY</td>
<td>11.5</td>
</tr>
<tr>
<td>1. Production and Casting of Metals</td>
<td>11.6</td>
</tr>
<tr>
<td>1.1 Uranium</td>
<td>11.6</td>
</tr>
<tr>
<td>1.2 Cerium</td>
<td>11.7</td>
</tr>
<tr>
<td>1.3 Rare Earths Other than Cerium</td>
<td>11.8</td>
</tr>
<tr>
<td>1.4 Thorium</td>
<td>11.8</td>
</tr>
<tr>
<td>1.5 Beryllium</td>
<td>11.9</td>
</tr>
<tr>
<td>2. Fabrication of Uranium and Thorium</td>
<td>11.20</td>
</tr>
</tbody>
</table>
PARA. NO. | PAGE NO.
---|---
5. Conversion Problems | 11.21
4. Alloy Studies | 11.22
4.1 Uranium Alloys | 11.23
4.2 Thorium Alloys | 11.24
4.3 Beryllium Alloys | 11.25
4.4 Rare Earth Alloys | 11.26
5. Production of Refractory Bodies | 11.26

SECTION III - GENERAL CHEMISTRY

1. Diffusion Studies and Allied Processes | 11.31
2. Uranium Chemistry | 11.32
3. Plutonium Chemistry | 11.33
4. Thorium Chemistry | 11.34
4.1 General Chemistry | 11.41
4.2 Purification of Thorium Compounds by Liquid - Liquid Extraction | 11.42
5. Radiocchemistry | 11.42
6. Rare Earths | 11.43

SECTION IV - ANALYTICAL CHEMISTRY | 11.44
1. Chemical | 11.45
2. Spectrographic | 11.46
3. Mass Spectrographic | 11.47

SECTION V - X-RAY STRUCTURE | 11.48

SECTION VI - PHYSICS | 11.49
APPENDIX A = REPORTS

APPENDIX B = EXAMPLES OF SERVICE WORK

APPENDIX C = LIST OF SCIENTIFIC PERSONNEL
1. INTRODUCTION

1. The Role of the Ama Project in the Manhattan District Operation

For many years previous to the war, fundamental studies in nuclear chemistry, nuclear physics and related subjects had been conducted in the United States, especially in university laboratories. While this research had progressed far enough to convince scientists that atomic energy might be made available for practical use, and that an atomic bomb might be possible, the financial aid was inadequate, being confined largely to that which the universities could afford over and above their normal teaching and research budgets. Furthermore, the several research programs were not correlated and so, not only did they frequently overlap, but research in important fields, which was urgently needed in order to advance the subject, was entirely neglected.

As the outbreak of the European phase of the war, some aid, through the National Defense Research Council, was given to several university groups to stimulate research in the development of means for releasing atomic energy. However, it was not until December of 1941 that it was decided that the subject warranted an all out effort on the part of the nation. The administration of this intensified effort was placed in the hands of the Office of Scientific Research and Development. Major programs were set up at three centers: Columbia University, the University of California and the University of Chicago.

The programs at Columbia and California were chiefly concerned with the separation of uranium-235 from uranium-238. The program at Chicago had three principal objectives: (1) studies of nuclear properties and
the possibility of establishing a self-sustaining chain reaction, (2) the development of a basic science required for the development of an atomic bomb and (3) the possibility of the manufacture of plutonium by means of nuclear chain reactions. As a result of the demonstration of a self-reacting atomic energy pile at Chicago on December 2, 1942, the direction of the program was taken over, from the Office of Scientific Research and Development, by the Manhattan District of the Engineer Corps of the United States Army. Later, large scale installations were built at Oak Ridge, Hanford and Los Alamos. The Oak Ridge project took over the responsibility for building a pilot-plant production pile which resulted subsequently in the construction of large scale piles at Hanford, the Los Alamos Laboratory and Savannah River for the ultimate development of the atomic weapons.

The Iowa State College Project under the Manhattan District, usually referred to as the Ames Project, played a vital role as a supporting laboratory to the Plutonium Project. It was evident that there was a serious lack of basic information in the fields of chemistry and metallurgy needed in the manufacture of atomic weapons. The Ames Project played a major role in helping to supply this badly needed information.

It was also necessary to develop a large number of chemical and metallurgical processes in order to produce the raw materials to be employed in the atomic weapon. The Ames Project made many important contributions in these fields and was particularly successful in the pioneering stages of such developments. Frequently the need of special processes was outlined at Ames and a method of attack was developed. These problems

11.2

* Actually, the Manhattan District had been activated in August 1942.
were then turned over to special groups and subsequently set up at other installations for further study.

There was also the problem of obtaining vital raw materials. Frequently, these materials were not made by industry, or the known industrial processes were inadequate for the manufacture of these materials in sufficient quantities at the required purity. The Ams Project was eminently successful in developing processes and supplying many of these materials. A number of these processes were later turned over to industry for large scale production. The research programs in physics, chemistry and metallurgy, at other sites of the Manhattan District, frequently required that materials be fabricated in special forms; methods for producing these objects were worked out at Ams and a large number of them was supplied to other installations. While the bulk of this service was to the other members of the Plutonium Project, considerable material was also sent to the Los Alamos and T-12 Projects.

The Ams Project also did a considerable amount of consulting work with many branches of the Manhattan District and served as a reservoir of trained personnel which were transferred to other installations as the need became critical.

B. Early History

In the early months of 1942, Dr. A. H. Compton began to assemble experts to make definite plans for the program to be centered at the University of Chicago. In February, 1942, he invited Dr. Frank J. Spedding to Chicago to discuss the possibility of setting up and directing the chemical program which would be needed to accompany the program in physics. It was decided that a small research program would be maintained at Iowa.
State College in order to take advantage of the facilities and research personnel already working in these fields. Dr. Spedding then joined the staff of the University of Chicago, and arrangements were made for him to spend half of each week setting up and directing the chemical research program at the "Metallurgical" laboratory (the code name for the Chicago Laboratory) and the remainder of the week at Ames directing the correlated research at Iowa State College. This plan met with the hearty cooperation of President Charles E. Friley of Iowa State College, who placed the administrative details in the hands of Dean Harold V. Cassill, director of the Industrial Science Research Institute. The first contract was to continue to July 1, 1942.

Dr. L. A. Wilhelm and Dr. L. S. Johnson of the Department of Chemistry, Iowa State College, joined the project as associate directors at the request of Dr. Spedding. It was decided that the Ames laboratory would carry the bulk of the metallurgical research and also conduct fundamental studies in the chemistry of other materials which might have to be used in connection with the development of atomic energy machines. The research staff was rapidly expanded by the addition of a number of outstanding chemists to head the various sections. To strengthen the program further, several prominent scientists of Iowa State College were appointed as consultants. The project also acquired the services of a large group of scientific associates and skilled workers. Ultimately, at peak employment, the total number of project personnel exceeded five hundred.

The original contract, from February to July, 1942, with the Office of Scientific Research and Development, was for $30,000. The success of the project was such that the Ames program was rapidly expanded. When

11.4

SECRET

RESTRICTED DATA

ATOMIC ENERGY ACT 1946
The ORNL contracts were taken over by the Manhattan District, a prime research contract set up between Iowa State College and the Manhattan District. The major part of the research program at Ames was continued under this contract, W-7405 eng-33, which operated through Oak Ridge. By December 31, 1945, the face value of the Ames contracts amounted to $9,907,000. However, the research, metal production and service work were carried out for $4,000,000. Over two million pounds of uranium metal were produced, thorium metal and other materials and services were supplied, and the entire research program was supported by these funds. When it is considered that the cheapest price per pound of uranium metal, produced by the rival process to that developed at Ames, was twenty-two dollars a pound, it is obvious that the Ames contracts were decidedly profitable even from a direct financial viewpoint.

The history of the developments in the Ames Project is the subject of the following account.

II. METALLURGY

1. Production and Casting of Metals

1.1. Uranium

Among the large number of problems facing the metallurgy group at the time of the initiation of the program, in February of 1942, there were two all-important problems connected with the production of uranium metal. One of these was the development of a method for the production of uranium of high purity and in large amounts in a short time; the other concerned the development of a procedure for large scale casting of the metal. Other problems such as chemical reactivity of pure uranium metal,
protective coatings for uranium, alloy systems and the preparation of special compounds of uranium also received early study. Later, such problems as the development of processes for the production of pure thorium on large scale, the production of cerium and other rare earth metals, the production of beryllium metal and the study of alloy systems involving thorium and beryllium were also investigated as the requirements arose and manpower became available.

The critical metal shortage necessitated that results be obtained quickly with a minimum of experimental work. Very little information usable in developing an adequate process for the production of uranium metal was available in the engineering literature. In general, time, materials and manpower were not available for making thorough investigation of the voluminous data-gathering type in the development work. A careful analysis of each problem, a thorough inspection of the experimental runs for clues to indicate reasons lack of results, coupled with degrees of perseverance and inventiveness on the part of the key scientific personnel, led to the development of most of the metallurgical processes during the critical periods.

By early June, 1943, methods, materials and conditions for large scale casting of uranium were worked out at Ames. By early August, 1943, a method for the production of high purity uranium metal, by a low cost process that was capable of ready expansion into large scale production, was also developed in those laboratories.

Using the Iowa State College methods, small scale production of metal and casting into desired shapes for experimental pile testing at other sites were begun at Ames late in the summer of 1943. Production
increased rapidly and an OSRD sub-contract with the University of Chicago
for setting up a pilot plant to produce uranium by the Amco process was
granted to the college in October, 1942. While the pilot plant was being
set up, the physical chemistry laboratory continued to turn out metal
for the Plutonium Project. In November, 1942, a Manhattan District
Contract, under Madison Square Area, V-7405 eng-7, was also negotiated
with the college for pilot plant production of uranium for the Plutonium
Project. This contract and the OSRD sub-contract were concurrent for
the same uranium production program during the few weeks preceding
January 1, 1943, on which date the sub-contract terminated.

Numerous representatives from the Bureau of Standards, Massachusetts
Institute of Technology, Westinghouse Company, du Pont de Nemours
Chemical Company, Mallinckrodt Chemical Company, Electro-Metallurgical
Corporation, Battelle Research Foundation, Los Alamos and other project
laboratories were shown complete details of the uranium metal process as
carried out at Iowa State College. Numerous visits and reports kept those
interested in the Amco process abreast of new developments. Research
was continued to improve the process by studying factors affecting yield,
purity, cost and availability of materials. In addition, members of the
Amco technical staff were frequently called on to visit the industrial
plants that were set up to produce uranium, using this process, and to
assist them by suggesting changes in their procedures to give the same
high quality of uranium metal being produced at Amco. The small scale
production of metal in the physical chemistry laboratory furnished about
two tons of metal for use as heart metal in the first chain reaction
pile, which was operated at Chicago early in December, 1942.

11.7
The pilot plant on the campus at Iowa State College was set up in a remodeled one-story wooden building which was referred to locally as the Physical Chemistry Annex. This was to be only a temporary arrangement for development and production until the more elaborate plants being set up at duPont, ElectroMet and Mallinckrodt could take over the entire uranium metal production program.

Operations, research, and development connected with uranium production were continued at Iowa State College after January 1, 1945, under the Henneman Project Contract. The objectives at this point were production of bulk needed uranium metal, improvements in the quality of the metal produced, development of better processing techniques, reduction in cost of production and increase in production rate and in overall production capacity of the process.

The main Ames process being used in early January, 1945, for production of uranium metal was based on the chemical reduction of the tetra-
fluoride by calcium metal. Finely ground uranium tetrafluoride was mixed with an excess of granulated calcium metal and the mixture poured into a refractory-lined iron bath. A fuse wire buried in the charge was electrically heated to initiate the reaction, which continued throughout the entire charge, giving both uranium metal and calcium fluoride in the molten state. The more dense uranium metal, which collected at the bottom of the bath, was allowed to solidify and cool to room temperature and was then removed for casting. This metal was cast by charging a graphite crucible with the proper amount, heating the charge in a vacuum to melt the charge and allowing the liquid metal to flow from the crucible into a graphite mold of proper shape.
Metallic calcium was used early in the process for the production of uranium, although experiments in the Ames laboratories had shown that metallic magnesium could be employed as a reductant under special conditions. The relative ease with which calcium functions, and the urgent demand for uranium metal at that time, made it practically essential to operate with calcium until time was available for working out the conditions necessary for the more complicated magnesium process. Magnesium offered the following major advantages over calcium: (1) it was readily available in almost unlimited quantities as required by the project; (2) it was available in greater purity than the calcium; (3) approximately one-half as much magnesium as calcium would produce a certain amount of uranium; (4) the cost of magnesium was only about six per cent that of an equal weight of calcium.

The main disadvantage of magnesium, as compared with calcium, was the fact that the heat of the reaction between magnesium and uranium tetrafluoride in the process is not alone adequate to fuse the products and cause a separation of the uranium metal from the slag; the heat produced with calcium is adequate for complete fusion and separation.

In order, then, to employ magnesium in the process, additional heat had to be introduced by means of side reactions, or the charge had to be heated before the reaction was initiated. Investigations of methods for introducing the heat along these lines, separately and in combination, were made before it was finally decided to use only a preheating furnace for the magnesium process. A number of new problems were introduced in using the preheating method with magnesium. Heat-linear materials and methods of fabrication of liners were the first to receive attention. The magnesium-produced metal also introduced new problems in the casting process. However, a gradual change from calcium to magnesium was initiated.
In January, 1943, and the new problems were solved in time to allow a complete change-over to magnesium in early March, 1943, without interfering with the scheduled rate of production which was being stepped up very rapidly from one week to the next.

Since none of the three industrial plants got into production as early as had been planned, the rate of production at Amco was stepped up to meet the increasing requirements of the Manhattan Project. The small pilot plant was expanded so that it reached a production rate of over 125,000 pounds of uranium metal per month by July 1, 1943. This is probably as high a rate, if not a higher one, than was reached by any of the more elaborately planned industrial plants during the war years.

By July 1, 1943, the industrial plants had reached a rate of production that permitted diverting some materials from the Amco plant; so a sub-blend was made in the Amco operations' furnace at that time. Although the production rate began dropping immediately, continued improvements in the methods brought the potential productive capacity of the Amco plant well above the 150,000 pounds per month to a potential capacity close to the total demands of the entire Manhattan Project.

In April, 1943, the floating method of casting the refractory liner in the tank was developed at Amco. This procedure gave an immediate improvement in the quality of the metal, since the refractory liners were much stronger and reduced materially the chance of uranium metal contacting the iron wall of the reaction tank. Early mandrels for felt-packing were made of wood, but after proper dimensions were established, with the wooden mandrels, the more permanent properly ground and chromium-plated steel mandrels were introduced into the operation. Refractory materials for
forming the liner were not too satisfactory, because of the fact that
the commercial materials usable, from the standpoint of mineral contam-
inations and availability, usually contained small amounts of water.
Specially burned high calcium lime served for some time as the best liner
material available. Although some batches of this lime gave exceptionally
good results, other batches gave decidedly poor results. Attempts to
improve a manufacturer with the importance of maintaining the high
quality which was possible with lime were not successful. Therefore,
plans were worked out to set up a small kiln at Anse in order to control
the burning of the lime to suit the specific needs of the local project.

Electrically fused dolomitic oxide was found to serve quite well as
a refractory liner for the reduction benches. This material could be pro-
duced very uniformly from one batch to the next and the analyses showed
it to have low water and carbon dioxide contents. Once equipment was
set up at an Electrometallurgical Corporation plant for production of the
electrically fused dolomitic oxide, it was decided that this plant would
furnish this material for the project. The cost of the electrically fused
dolomitic oxide to the government was approximately four times the esti-
nated cost of the high burned lime which the Anse Project had planned to
produce. Under the urgency of the situation at the time, plans were set
aside for producing adequate refractory materials at Anse, and shipments
of the electrically fused dolomitic oxide were supplied by the Manhattan
District.

One decided improvement worked out locally in the meantime, which
applied to all refractory liner materials, electrically fused dolomitic
oxide included, was the introduction into the refractory of a material
that would react with water in the liner. For example, finely ground
magnesium metal in the liner tends to react with any water present to
give gaseous hydrogen instead of water vapor. When the bomb is heated,
water vapor tends to react with the charge and thus considerably reduces
the yields. The magnesium "fines" remedied this situation.

The production of virgin uranium metal by the regular Iowa State
College process was discontinued at the pilot plant in Ames by January 1,
1945; all production by the process having been turned over completely
to Kallinakofft and Electromet. The total production of virgin uranium
metal at the Ames plant was approximately one and one-half million pounds.
Research and development work on special processes for virgin metal continued
at Ames until V-J Day.

The operations of extracting the uranium billets into bare and
machining the bare into "slugs", to be used in the various piles, resulted
in the accumulation of large quantities of waste turnings. A method for
the recovery of these turnings was developed at Ames late in 1945.
Subsequently, plans were made for setting up a plant at Ames for converting
the turnings, from all Manhattan Project sites, into good sound metal ingots.
A brick, fire-proof, one-story building was constructed early in 1946 for
housing this recovery process and was known locally as Physical Chemistry
Ames Number 2.

In this recovery process, the turnings were dumped into an inspection
bin where the bushy turnings were pulled apart. The larger pieces of
uranium metal, large foreign objects, and turnings of foreign metals, were
removed at this point by hand. The turnings were then passed over a
magnetic separator to remove "tramp" iron and other magnetic impurities
before delivery to a smelter. The turnings from Hanford were, in general,
quite free from large pieces of foreign matter, but turnings from some of
the projects and early production shops were often highly contaminated
with materials such as iron, brass, stainless steel, aluminum, shop tools,
etc., and required very careful inspection and hand picking before sending
them to the smelter.

The turnings were cut, washed, rinsed, dried and again carefully in-
spected and foreign matter was picked out by hand. They were then repassed
over a magnetic separator and pressed into briquettes about one inch in
thickness by four and a quarter inches in diameter. These briquettes went
to the casting room, where they were melted and cast into regular
sized ingots. The addition of a small amount of magnesium metal to the
briquettes acting as a nitrogen and oxygen "getter" and significantly
increased the recovery of usable metal in the casting process. Over 600,000
pounds of uranium metal were recovered by this process and shipped out for
fabrication and use in piles, along with the regular production metal.

In December, 1945, this recovery process was discontinued at Ames; part
of the process was taken over by Metal Hydrides, Inc., Beverly, Massachusetts,
and part of it by the metal recovery plant then being set up at Hanford,
Washington.

Two variations from the regular Iowa State College process for pro-
ducing pure uranium metal, which show some promise of reducing cost of
production and increasing efficiency in supplying the metal to the piles,
were being worked out at Ames late in the war period. One of these
variations consisted of casting the molten metal directly from the reduction
bath into a mold of proper shape to give a billet for extrusion. This was

11.18

SECRET
designed to eliminate the remelting and casting of metal, as ordinarily done by the regular two-step process. Considerable improvement in quality and soundness of the metal had been attained, as compared to early metal produced by the one-step process, when the work was discontinued, because of lack of materials and funds. At that stage in the development of the process the metal was considered as slightly inferior to the metal by the regular two-step process. Further improvements were possible and were planned but were not realized because of curtailment of the research program along such lines at the time.

The other variation which offered considerable promise was the casting of metal in the form of rods which could be machined directly to "slugs" for use in piles. Instead of casting ingots 1½ inches in diameter for extrusion into rods as in the regular process, the castings were made in 30 inch length by 1½-inch diameter steel molds. Nine of these rods were cast at each pouring, giving enough metal for 27 eight-inch "slugs". The quality of these "slugs" was brought up to equal or surpass that of the regular "slugs" produced by extrusion.

The Anse Project was awarded the Army-Navy "E" flag, with four stars, signifying two and a half years of excellence in production of metallic uranium as a vital war material.

1.2 Cerium

The Anse laboratory was asked, in the early summer of 1944, to supply several other sites with very pure cerium metal. This metal was essential in the fabrication of cerium sulfide crystals which were very important at that time in the plutonium program. Cerium
metal of sufficient purity could not be obtained commercially, so it was necessary to have it made on the project.

A method of reducing anhydrous cerous chloride with calcium was rapidly developed at Ames. The reduction was carried out in an iron bomb with a refractory liner; iodine was used as the "booster". The most convenient commercial cerium salt available was hydrated cerous chloride. A method of drying this salt under a reduced pressure (7–8 cm) of hydrogen chloride gas was found which gave an anhydrous product which only needed to be ground before being reduced. A "dry-room" was built in order to carry out this grinding operation so as to prevent the hygroscopic cerous chloride from absorbing water.

Since the cerium metal from the bomb contained some metallic calcium and magnesium as well as occluded slag, it was necessary to recast the metal to remove these impurities; recasting was also the most convenient method for obtaining the 5/4-inch diameter rods, which was the desired form. The recasting had to be done under vacuum because of the extremely reactive nature of cerium metal. The metal was melted in a magnesium oxide or calcium oxide crucible and heated to 800°. It was then poured into a graphite mold containing twenty cavities each 5/4-inch in diameter and four inches long.

The first cerium metal was shipped from the Ames laboratory in August, 1944. Increasing amounts were requested almost weekly until the demand for cerium sulfide crucibles declined. Production and casting of cerium was concluded in August, 1945. A total of 457 pounds of metallic cerium was shipped, most of it better than 99 per cent pure.
1.5 Rare Earths Other than Cerium

The rare earths occur among the fission products of a chain-reacting pile. Some of them are known to have extremely undesirable nuclear properties and must be periodically removed from any production or atomic energy piles. Because of the very limited quantities of pure rare earths available, their nuclear, chemical and physical properties were not well known. The experimental chemists and physicists at other sites desired metal targets of the elements for bombardment in cyclotrons and piles in order to study these properties. Processes were worked out at Amo for producing rare earth metals of high purity. Several lanthanum metal targets were produced and shipped to other sites.

Trace of the rare earth metals in the thorium and uranium metals rendered them unfit for use in piles. The Amo group found it desirable to study the properties of these rare earth metals in order to determine whether they could be removed by metallurgical operations without chemical purification. The rare earths also constitute a most favorable group for studies on theories of the metallic state.

A program was started, and is still in progress, at Amo, to produce most of the rare earth metals, to be employed in advancing the knowledge of the metallic state.

1.6 Thorium

Soon after the large scale batch reduction of uranium was in successful operation, similar approaches were made on the reduction of thorium. In August, 1945, attempts were made to reduce a number of thorium compounds in a bomb. The first attempts were unsuccessful.
because of the high melting point of thorium and the great stability of its compounds. Later, small amounts of thorium were produced by reducing ThF₄ with metallic calcium, using calcium as a "booster." The yields were low and the metal was obtained in small pellets which were very difficult to convert into solid metal. In August, 1944, helium was tried as a "booster" and solid pellets of thorium-calcium alloy were obtained in good yields. Within three months the conditions necessary for good yields had been well enough established to allow expansion of the process to the use of a reduction tube six inches in diameter. As the demands from other pilots increased, the production of thorium was increased to fulfill their needs. The effects of various factors on the yield and quality of the metal were investigated during this small scale production program. By June, 1944, most of the details had been worked out successfully and the basic reduction of thorium fluoride was ready for expansion to large scale production.

The process, as used in December, 1946, was a metallothermic reduction of thorium fluoride by metallic calcium. The fluoride was first reduced to produce metallic calcium, to give a more flexible alloy, and to form a competitive alloy of thorium which could collect in the form of a solid biscuit. The reduction was carried out in an iron tube 7 inches in diameter and 68 inches long. This tube was lined with a layer of calcium oxide and a sheet around a steel mandrel with a pneumatic jacket. The charge was placed in the tube which was then sealed and the reduction started by preheating to a pre-dried furnace. The tube was allowed to cool after preheating and the biscuit of thorium-calcium alloy was removed.
and cleaned. This method produced a ingot of about 50 pounds of thorium-
clad alloy with better than 50 per cent yield of thorium.

The casting of thorium metal presented many difficulties because of
its high melting point and its reactive properties. Very little experi-
mental work had been done on casting metals in vacuo at temperatures
above 1000°, so there was a scarcity of usable literature on the subject.

The use of graphite crucibles was not feasible because of the rapid
reaction of thorium with graphite at temperatures above the melting point
of thorium and to the lack of temperature control at the melting point
of thorium. Several refractory metals, such as molybdenum, tungsten
oxide, and mica-mica oxide were tested but were attacked by the metal.
Noble metal boxes were found to be sufficiently resistant to the
high temperature and to chemical attack by thorium metal, but they
were used almost exclusively in the mass process. Thorium oxide crucibles were not
satisfactory because of their low strength and the apparent instability
of the oxide in liquid thorium metal.

The accurate measurement of temperatures above 1000°, under a vacuo,
in difficult, especially in cases in which optical methods are unreliable
because of burning of windows. Since very close and reliable control
of the temperature was desired, a thermocouple of molybdenum and tungsten
was developed and calibrated. This thermocouple was usable but was re-
placed by the columbium-tungsten thermocouple which is more reliable and
has essentially a constant scale of electromotive forces to temperature.

The early thorium castings at mass were made by melting the metal
and allowing it to run through a molybdenum grill which would hold back the
oxide flakes and slag. The thorium did not flow well through the narrow

\[11.10\]
openings of the grill and this method was discarded. Melting the thorium in a crucible the size and shape of the desired ingot proved to be a more reliable method of casting, although it often gave poor separation from the slag and oxide. The thorium-zinc alloy produced in the reduction was first heated under vacuum in a graphite crucible to 1300°C to distill off the zinc. The zinc-free thorium was then placed in the beryllium crucible and heated to 1650 or 1900°C, under a vacuum, by an induction furnace, to give the final ingot.

Late in 1946, a method of casting was worked out for thorium that gave a marked improvement in the quality of the metal. Essentially, the metal was vacuum melted in a beryllium crucible from which the molten thorium was poured into a graphite mold. Castings of up to one hundred and fifty pounds in zinc were made by this method. By December 31, 1946, over 4500 pounds of thorium had been cast for shipment to other sites. Prior to the war, massive thorium metal was a laboratory curiosity and was listed in Lange's Handbook as selling at three dollars per gram. It is estimated that the metal produced by the Amo process, which was of a considerably higher purity, can now be produced for less than five cents per gram.

1.4 Beryllium

Development of a process for the production of pure beryllium metal was undertaken in December, 1946. This was first accomplished by the reduction of beryllium fluoride with metallic magnesium in an electrically heated open graphite pot. As soon as the information became available, that this process was similar to the then undisclosed process of the
Brush Beryllium Company, further work on this process was discontinued.

The toxicity of many beryllium compounds made it more desirable to produce beryllium by the closed bomb method similar to the procedure used for uranium, thorium and curium; in a closed bomb reduction the hazard due to toxic dust is reduced to a minimum. A closed bomb reduction of beryllium fluoride with magnesium metal was developed at Ames. The additional heat required to fuse the slag and to bring about the separation of metal and slag was supplied by preheating and by the use of sulfur as a "booster." This process was abandoned because of the high pressures developed by the magnesium sulfide at elevated temperatures, which introduced an explosion hazard.

A highly successful process for producing very pure beryllium metal was developed at Ames. It is a closed bomb process, utilizing the reduction of beryllium fluoride with calcium metal, with the addition of a lead chloride "booster"; it has also considerably reduced the health hazard in the production of beryllium metal. This process has been developed on a laboratory scale and its successful application on a pre-production scale is dependent upon a cheaper course of pure metallic calcium. This latter problem is included in the current Ames program and promising preliminary results indicate an early solution. Experimental castings of beryllium metal were made. The metal was melted and poured in open air, in vacuum and in inert atmosphere. The vacuum-casting process for beryllium gave better quality ingots than did the other casting conditions.

A. Fabrication of Uranium and Thorium

11.20

SECRET

RESTRICTED DATA

ATOMIC ENERGY ACT 1945.
Aside from casting, research at Ames on other methods of fabrication of metals was rather limited, being confined mainly to such production problems as the cutting and turning of uranium and thorium billets and other shapes. However, some experiments on the cold and hot rolling of uranium and thorium were completed. The effect of cold swaging on the grain size of uranium was studied and reported. In the early days of the project a number of special forms of uranium were fabricated and shipped out. Thorium has been cold-rolled from 1/8-inch thickness to 10 mils.

E. Corrosion Problems

The corrosion of uranium metal and certain uranium compounds by possible pile coolants was among the first problems investigated at the Ames laboratory. Since the postulated coolants were air, water and molten bismuth, studies were made of their effect on materials which might be used in the pile including uranium metal, uranium carbide, and uranium oxide.

In April, 1942, as supporting work for the first air-cooled pile, the reaction of air with uranium metal was shown to be considerable at temperatures well below 600°C. Since such corrosion limited the possible power output of the pile, a number of chemical protective coats were prepared and tested. Uranium oxide coatings prepared by wet and dry methods, sulfide coatings and carbide coatings were all shown to afford little protection against the oxidation of the metal. A spattered aluminum coating was found to be too porous to provide sufficient resistance to oxidation.

The problem of water corrosion was of paramount importance since the

11.21
Large plutonium piles were to be water cooled. The type of materials and the thickness of the protective coatings or envelopes were drastically limited by the nuclear physics and engineering specifications for pile operation. It was shown that uranium is slowly attacked by water at room temperature. The chemical coatings, since they introduced only small amounts of contaminants, were considered as good possibilities for the protection of uranium metal. Uranium oxide, carbide, and sulfide coats were tested; however, they were found to have little or no protective value. The sputtered aluminum coating was also tested, but, as in the case of protection against air oxidation, was found to be too porous and too poorly bonded to the uranium to provide the necessary resistance to corrosion. Corrosion inhibitors such as bismuth oxide and the metallophosphates were tested to find their effect on the reaction of uranium in boiling water. This phase of the project, together with the assisting personnel, was transferred to the Chicago Laboratory in March, 1943, when the large scale testing program was set up there.

The bismuth-coated piles were designed to run at high power output and consequently at high temperature; this required protective coatings with refractory properties. The first experiments showed that at temperatures slightly above its melting point (807°C), bismuth metal reacted rapidly with uranium metal to form a black flaky powder. The chemical coatings provided little resistance to attack, although the UO₂, UP₃, and MO₃ themselves proved to be quite stable in the presence of molten bismuth and also quite refractory, and so perhaps were suitable for use in this type of pile.

4. Alloy Studies

11.52
A.1. Uranium Alloys

Early in the Ames project several problems arose requiring knowledge concerning the properties and fabrication of various uranium alloys. Since, before the war, uranium metal was relatively scarce, there was little known about its alloy systems. Therefore, considerable time was devoted to the study of alloy systems of uranium and later of thorium, beryllium and the rare earths.

The work on uranium alloys was begun in the spring of 1942, and the uranium-carbon system was first investigated. Before a satisfactory method had been discovered for the production of uranium metal, the Ames group found that uranium carbides could be produced in quantity by the high temperature reduction of uranium oxide with carbon. Because of some desirable properties, such as high purity and high thermal conductivity, these carbides were considered as possible alternatives for uranium metal for use in piles, and this prompted a detailed study of the uranium-carbon system. The method developed at Ames for the production of uranium metal involved melting and casting the metal in a graphite assembly, and this was another reason for the study of the above system. Since calcium and magnesium metals were used as reactants in the Ames process for the production of uranium metal, a study was made of the alloying tendencies of magnesium and calcium with uranium.

The use of uranium in piles to produce plutonium required that the uranium have a protective coating to prevent corrosion by the cooling water of the piles. One of the metals suggested for such a protective coating was copper, and so the uranium-copper system was experimentally determined to establish the type of alloy that would result at a uranium-copper interface, and the corrosion resistance of such an alloy was studied.
Since tin was one of the materials used in soldering aluminum jacketing to uranium, the uranium-tin system was examined and the equilibrium diagram was constructed in conjunction with the casting studies.

Experiments carried out at another site had indicated that molybdenum was soluble in uranium metal. It was hoped that this solubility might confer some desirable properties on uranium, such as increased corrosion resistance and increased strength. The Iowa State College group was given the task of determining the uranium-molybdenum system; this work was completed, and the results were published in 1944. In connection with this same type of problem, the phase diagrams of uranium-beryllium and uranium-tantalum systems were constructed. The special interest in mercury as a pilot special-promoted studies of the uranium-beryllium alloys.

An unusual method for removing plutonium from uranium metal was developed at Ames, based on the fact that silver and gold are immiscible with uranium in the liquid state. Experiments were conducted in which silver or gold was added to uranium enriched with plutonium, and it was found that over 90 per cent of the plutonium was extracted into the silver or gold layer. The uranium-mercury system was also worked out in an effort to purify uranium and separate plutonium from it. Considerable exploratory work was done on a possible all-metallurgical separation of plutonium from uranium and the fission products. This metallurgical process is very attractive in that the fuel metal does not have to be destroyed in order to revitalize the pile. The Ames process showed much promise, but it was evident that a great deal of work would be required before it could be reduced to engineering practice. Because of the urgency, this method was discontinued, since it was decided to adopt the bismuth phosphate process in the Manhattan Project.
This latter process was chosen because it could be put into successful operation at an earlier date. However, now that the war is over, further research should be done on such alternative processes.

Homogeneous pile studies had indicated that uranium-bismuth alloys might be extremely useful as possible fluid reactants, because of the low cross-section of bismuth for neutrons, and other favorable factors. This system was determined and the solubility of uranium in liquid bismuth was examined quite carefully, since this was the portion of the equilibrium diagram that was of particular interest. The uranium-niobium, uranium-antimony and uranium-silicon systems were also of interest in the homogeneous pile studies and were worked out at Iowa State College.

4.2 Thorium Alloys

An extensive study was made of the thorium-rich end of the thorium-niobium system, since the method developed at Iowa State College for the production of thorium involves the use of a thorium-niobium alloy. In an effort to improve certain properties of thorium, studies were made of alloys of the metal with zirconium, titanium, columbium and vanadium.

Extrusion has been one of the most satisfactory processes in fabricating thorium billets into the desired shapes, and it was found that copper is very helpful in protecting the steel die from alloying with thorium at the temperature of extrusion. Since this is a high temperature operation, the thorium-copper system has been studied extensively and proper extrusion temperature limits have been determined.
The relatively low-melting eutectic discovered in a study of the thorium-beryllium system at Ames was proposed as a possible pile material, and several metallurgical operations involving this eutectic were developed. Other thorium alloy systems which were studied, but not completed, are the thorium-bismuth, -carbon, -tungsten, -chromium, -molybdenum, -manganese, -nickel, -iron, -tin, -mercury, and -oxygen systems.

A.2. Beryllium Alloys

In the beryllium metal production program at Iowa State College, studies were made of the beryllium-lead, beryllium-bismuth and beryllium-tin systems. These alloys were formed in the various bomb reduction techniques when metal salt "booster" were used. The work on the beryllium-thorium and beryllium-uranium systems was mentioned above.

A.4. Rare Earth Alloys

Studies were made at Iowa State College of alloys of rare earths and rare earth mixtures with certain heavy metals, in conjunction with the research program at Los Alamos.

A. Evaluation of Refractory Refines

11.86
The metal production and research carried on at Ames required
the forming of many types of refractory bodies of various physical
and chemical properties and of many sizes and shapes. It was neces-
sary that these be made of inert refractory materials of high purity
for use as casting-molds, liners for reaction chambers, crucibles for
melting metals and alloys, radiation shields, thermocouple shields,
etc. The refractories used for these applications were principally
CaO, MgO, BeO, BeO₃, SiO₂, alumina and siliconite.

In the course of the work at other sites a need for refractory
crucibles of low porosity, high purity and stability was emphasized.
Interest was expressed in the use of refractory crucibles of uranium
compounds. In an attempt to meet these requirements, crucibles of
uranium, nitride, oxide and carbide were produced. A number of crucibles
of these compounds for experimental tests were supplied by Ames. In
addition, a number of calcium oxide crucibles, of special properties
and shapes, were sent to Los Alamos.

The "Tut" program also encountered a need for calutron units
of a refractory which would withstand severe thermal shock and tempera-
tures of 2000 to 2500°C. In an attempt to meet these requirements, the
carbides and nitrides of titanium, zirconium, tantalum and uranium as
well as columbium carbide, tungsten carbide, beryllium nitride,
Thorium nitride, and uranium dioxide were investigated. Alloys of all these compounds, except beryllium, tantalum and thorium nitrides, were submitted for experimental tests. The nitrides of beryllium and tantalum were found to decompose at approximately 2000°F, and the thorium nitride to be rapidly attacked by atmospheric moisture, and they were therefore unsuitable.

The oxides used in the production of ceramic ware were obtained from commercial sources, which in general were able to supply materials having the necessary purity required by the various processes for which they were used. The nitrides and carbides, however, had to be prepared locally. In general, the carbides were made by heating the metallic metal or oxides with graphite or lamp black in a graphite mould to approximately 1800°F; a slightly sintered or loose powder was obtained in each case. The nitrides and carbides of uranium, when in a finely divided state, are quite pyrophoric and will ignite and burn vigorously on exposure to air; this is also true of powdered metal. It was therefore necessary to employ special procedures in their preparation.

Three general methods were employed in forming the refractory bodies, namely, slip-casting, compounding or gelting, and die-pressing. The slip-casting method was successfully employed in the fabrication of 90. 80. 83, and 84 were. A body formed by slip-casting is permitted to air dry and is then fired to 1800°F or above, thus forming a dense rigid body. The compounding or gelting method consists of compacting the dry powder into a graphite mould by hand compounding or mechanical gelting. In the die-pressing method this is accomplished by the
application of direct pressure to the powder contained in a die. In this sense, lubricants such as wax, stearic acid, etc., are often necessary to facilitate transmission of pressure between particles. Difficulty in this respect increases with the size of the object being formed. Therefore, large crucibles or other forms were generally produced by the sintering or melting method. The refractory bodies so formed were then fired in an induction-type furnace, using a graphite susceptor as the heating element. The reactivity of the refractory toward graphite in general determined the final or maximum sintering temperatures to which the compacts were fired.

In the case of small bodies formed by slip-casting or die-pressing, the firing could be carried out without having the refractory in direct contact with the graphite. Shields of various types were sometimes used. However, at temperatures of 2200° or above it was not practicable to shield oxide or nitride refractories from attack by graphite. Any graphite picked up by the ware during the firing operation was later removed by firing the ware overnight in a reducing furnace at approximately 1400°. Complexes of suitable mechanical strength and porosity were prepared in this manner from the above oxides with the exception of thorium. Thoria crucibles were prepared by slip-casting or die-pressing and were then fired out of direct contact with graphite to approximately 1500°.

The production of nitride and carbide bodies was limited to the die-pressing method. To protect the nitrides from attack by graphite the compacts were fired in a larger container made of the same material or of some other material less reactive toward the nitride in question. Compacts of uranium monocarbide could be fired
to as high as 2000° in a graphite crucible without any appreciable
pickup in carbon content as long as the compacts were kept out of
direct contact with the graphite. Pressed compacts of FeSi could be
fired to as high as 2900° in a graphite crucible without appreciable
increase in carbon content.

It was found that the pure nitride and carbide powders of the pre-
viously mentioned metals could not be sufficiently bonded by pressing
in steel dies to withstand subsequent handling, except for very small
articles. These powders are very hard and abrasive and show little or
no tendency toward plastic flow at pressures attainable with hardened
steel tool steel dies. A paraffin wax of fairly high melting point, added to
the powders as a 25% solution, served satisfactorily as a temporary
binding agent and as a lubricant to facilitate transmission of pressure
between particles. Nitride crucibles and slits were formed in this
manner.

The carbides in a very pure form showed little tendency to
sinter at temperatures below 2500°. Uranium monocarbide compacts
had to be fired to 2500° or above before a sintered body of appreciable
mechanical strength could be produced. A pressed compact of pure FeSi
did not sinter sufficiently to withstand handling when fired to be-
tween 2700 and 2800°. It was found that the addition of sodium
silicate to the powder served as a temporary binder and greatly improved
the bond of the fired product. The addition of 2 to 3 per cent of
iron, either as the powder or a salt in solution, to the FeSi powder,
gave a sintered product having an appreciable mechanical strength when
fired to approximately 2850°. The iron remaining after firing was
found to be less than 0.5 per cent.
III. GENERAL CHEMISTRY

1. Diffusion Studies and Allied Processes

The Chemistry Division of the Amco Project was started in the spring of 1942. Its main purposes were: (1) to collaborate with the Metallurgical Division; (2) to conduct research in the chemistry of uranium and plutonium; (3) to study the radiochemistry of the fission products; (4) to develop possible processes for the separation of plutonium from uranium and the fission products; (5) to develop analytical methods needed throughout the project for research, control, and production; and (6) to study the special chemical problems which arose in connection with the design of a plutonium pile.

Literally, hundreds of problems arose in the design of piles, and many of these were successfully solved at Amco. They ranged from simple problems such as the determination of solubilities, melting points, viscosities - through determination of analytical problems involving rare chemicals, physical chemical properties of various salts - to typical major programs as outlined below.

One important problem attacked by the group (starting in July, 1942) was that of the diffusion of fission products from hot uranium metal and its compounds. It was of great interest and importance in the design of piles to know the extent of the diffusion of the active fission products from the pile fuel into the stream of coolant. Since pile operation at high temperatures was then under consideration, these studies were carried out at 600° and 1000°C. The extent of the diffusion was up to ten per cent of the total amount present at the 11.51...
higher temperature for some of the fission products, but much less for others. The information obtained was valuable in contributing to the decision that it would be necessary to can the fuel material.

An allied problem was the high temperature technique which was used in the removal of fission products from uranium by metallurgical treatment. In these experiments the metallic uranium was heated to temperatures above the melting point (1800-1850°C) and in contact with various substances, particularly graphite, in order to determine how thoroughly the fission products could be removed without altering the metallic state of the uranium. It was found that most of the fission products were removed in high percentages, while the neptunium and plutonium also present were left with the unchanged uranium metal. In addition to distilling out many of the fission products, the mechanism in many cases was the formation of carbides with the graphite crucibles, the addition of molten slags, immiscible with the molten metal, tended to remove other fission products. Even more complete removal of the fission products was effected by blowing hot gases, such as HCl and H2, through the molten metal, an operation similar to that in the Bunsen furnace. The gases reacted more readily with the bulk of the remaining fission products than with the plutonium and uranium and thus tended to make their compounds volatile or reactive with the slag.

This research led to another type of metallurgical treatment aimed at a separation process for plutonium. It was found that low concentrations of certain metals, when dissolved in molten uranium, would preferentially extract plutonium by formation of compounds. On cooling, a separation of phases based on the formation of U3g was
applied to determine the extent of the enrichment of plutonium in the
added metal phase. Information was obtained in this manner on the af-
finitv of metallic plutonium for other metals used in the study. Similar
studies were made on the distribution of the fission products.

2. URANIUM CHEMISTRY

A general chemistry group conducted pioneering work on the
inorganic chemistry of uranium. The importance of uranium hydride was
discovered and its chemical and physical properties were extensively
studied. The first observation of UH₂ at Ames, resulted from an
attempt, in June, 1945, to cast uranium in a hydrogen atmosphere.
Pure UH₂ was prepared in March, 1945, and its very interesting prop-
erties suggested a number of applications. Extensive studies were made
of the equilibrium in the formation and decomposition of the hydride
and of the amidos. Differences in these equilibria suggested a
possible U₂H₄-U₂H₄ separation method. Both the hydride and the finely
divided metal, produced on its decomposition, were found to react with
mercury. The hydride forms a pseudo-amalgam which is most probably
a suspension of hydride particles in mercury, while the metal amalgam-
genes in almost all proportions from any liquid or solid amalgam
depending on concentration.

Uranium hydride decomposes readily with heat to give hydrogen gas
and a finely powdered metal; this reaction proved to be an excellent
one for providing finely divided uranium metal. This very active
finely divided metal proved very useful in producing very pure uranium
compounds since it reacted readily with many gaseous compounds.

11.53

SECRET
number of extremely pure alydride uranium salts were prepared in this manner and several of them were shipped to other sites. Among the compounds made in this manner were the tri- and tetraalkyls and bromides, the nitrides, iodides, sulfides and other compounds. The reactivity of the uranium hydride-uranium metal mixtures was utilized in purifying a number of laboratory gases. By passing hydrogen over uranium turnings, in a furnace at controlled temperatures, it was possible to obtain extremely pure hydrogen. Any water vapor, hydrocyanic, carbon monoxide, or hydrocarbon would react with the uranium hydride, in equilibrium with the metal, to produce uranium oxide, nitride, or carbide. Since only the hydrogen is in equilibrium with the metal, only pure hydrogen emerges from the apparatus. If deuterium oxide is passed over the powdered metal only deuterium emerges; this process offers an excellent laboratory method for producing pure deuterium, from D2O, for experimentation.

Starting with powdered uranium metal, prepared from the hydride, advantage can be taken of the U-H2 equilibrium, worked out at once, to purify nitrogen gas. Similarly, the UCl3-DCl3 equilibrium can be used to prepare pure alydride chlorine gas. Pure hydrogen chloride gas can be prepared by passing the gas over the uranium hydride-uranium chloride mixture. Also, the rare gases can be purified by first passing them over hot finely divided uranium metal which removes the oxygen, nitrogen and carbon gases and then passing the rare gases over more metal at a lower temperature to remove the hydrogen. All of the above gases frequently have to be purified, in the physical and chemical laboratories, and these same processes offer a very simple method for their purification.
Other applications of the uranium hydride techniques include the separation of intermetallic compound phases from uranium alloys mentioned above, etching of metallographic specimens and testing the soundness of the jackets on canned uranium fuel rods.

The uranium halides, prepared by the method just mentioned, were used in studies of the fundamental properties of the anhydrous salts, particularly the vapor pressures of the chlorides and bromides. The first step in the preparation, the reaction of HF with the hydrogen halide, gives the tribromide; treatment of this salt with the free halogen produces the tetra-valent salt. Since these compounds are somewhat volatile at high temperatures, distillation was considered as a method for purifying uranium from the fumes. Extensive studies of the vapor pressures were made, using the transport method over a wide temperature range. In addition to the desire for basic scientific facts, there were important applications of this information in the purification of uranium by volatilization, in the use of the halides in the electromagnetic type of isotope separation, and as "stand-ins" for the corresponding platinum compounds.

Of considerable scientific interest were the production, identification and study of oxides and mixed halides of uranium in its various valence states. Other compounds prepared from the hydride, notably the nitrides, were also studied, from the standpoint of refractories as well as from a purely chemical point of view.

The Ames laboratory was requested on a number of occasions to make pure uranium metal from depleted uranium compounds (uranium rich in U235).
but containing very little ^{238}U; this material was usually supplied as $^{238}UO_2$. A process was developed in 1944 for the retention of ^{238}U to ^{235}U by means of HCl. This process was developed on a pilot-plant scale, at Oak Ridge, to produce kilogram quantities, and turned over to the Manhattan Square Area with a view to employment for large-scale development at Oak Ridge.

b. Plutonium Chemistry

One of the major problems facing the Plutonium Project in 1944 and in the number of processes for separating plutonium, which it was contemplated to produce in the proposed piles from the fuel uranium and from the Plutonium products that would be handled during the operation. These processes had to be simple, capable of being engineered on a large scale and capable of operation under remote control with a minimum of operational maintenance.

The radioactivity of the plutonium products was expected to be so great that it would be necessary to conceal all operations behind thick concrete shields, and the equipment was required to be accommodated at the heart of the operation that any subsequent removal, replacement or maintenance would also have to be done by remote control. Furthermore, because of the great value of the plutonium, its recovery had to be practically a hundred per cent, and it was necessary to obtain the material extremely pure and free from residual radioactivity from the fission products. The problem was made more difficult by the facts that the plutonium was expected to be extremely poisonous in the form of the dust and that large amounts of it could not be accumulated in one place without danger of explosion. The problem was still further complicated by the
fact that almost no plutonium existed, nor could it be obtained in any quantity until the piles were constructed and the required processes performed.

The only plutonium available at that time consisted of a few micrograms which could be obtained by cyclotron bombardment. Therefore, one of the first problems facing the chemists was to develop chemical and ultra-microchemical techniques which would enable the chemists to determine the physical and chemical properties of the salt, solutions and metal, using such minute quantities. The major emphasis on plutonium chemistry was centered at Chicago. However, Calabria and AEC also contributed to this program.

A number of processes for separating uncontaminated plutonium were worked out on the project on a laboratory scale. Finally, one of these processes, the bismuth phosphate process primarily developed at Chicago was selected for development to large scale production at Hanford. The alternative processes, although several of them could have been successfully stepped up with further work, were de-emphasized or discontinued at that time in order to advance the selected process. A number of these alternative processes were important as insurance in case the selected process failed in the long run, of being cheaper and more efficient than the one adopted. It seems likely in the future that several of these will be put into operation in connection with the development of peacetime atomic energy power piles.

Conferences were held in Chicago almost weekly, at which the information obtained in the several laboratories was correlated. It is accordingly impossible to say that any process was solely developed

11.37

SECRET
by a single laboratory. In one process, a given laboratory might play a
major role while the reverse might be true for another process. The
Ames Project took an active part in this program.

In the summer of 1942, the Ames Laboratory became interested in a
dry process for separating plutonium from the fission products and uranium.
This process was based on the preparation of uranium hydride from the metal,
followed by conversion to the tetrafluoride and then to the hexafluoride
gas. Subsequent reduction of the uranium hexafluoride to the tetrafluoride,
after separation from plutonium, was to provide a compound which could be
readily reduced to metallic uranium. This process was the outgrowth
of an earlier one, developed at Chicago, in which the uranium was
converted into UF₆ by reactions producing first UF₅, then UF₄, UF₃ and
finally UF₂. A different temperature (1000-1200°) was required for each
step and some of the gases were highly corrosive, for example the UF⁺₆O
mixtures. The discovery of the hydride suggested an alternative procedure
with many advantages. The tetrafluoride could be produced in two steps,
hydride formation and hydrofluorination, both at 2300°, with dry HF the
only corrosive gas. Studies on this procedure showed it to be feasible,
though conversion of large amounts of U to UF₆ was slow. A simultaneous
reaction procedure was also tried, in which both gases were allowed to
attack the uranium at the same time. This was also shown to be feasible,
though again slow because of taking of the reaction products around
the uranium metal. During the process, the rare gases of the
fission products were liberated, and it was demonstrated that they
could be recovered from the other gases for experimental
11.50
use, if desired,

Since the final reaction, conversion of UF₄ to UF₃, required fluorine gas, methods for producing it were studied. A number of electrolytic cells using HF, gH as electrolyte and operating at a medium temperature (73-80°C) were designed and built. Principal features of the design were a trichloroethylene bath for temperature regulation, a rectangular iron tank as container and anode, a nickel plate as anode and the highly resistant polytetrafluoroethylene plastic (Teflon) as anode and insulator material. This design was considerably better than anything then in the literature, although extensive work in another part of the Manhattan District, with which the Ames Laboratory had no contact, had proceeded this.

One of the chief problems in the dry fluorides process was the question of the volatility of the higher fluorides of plutonium. Work was done on this problem by the Ames group which contributed to their knowledge, but no clear-cut understanding yet exists as to the volatility, stability and formula of the higher fluorides of plutonium.

In the dry fluorides process the uranium and a few of the fission products were removed from the rest of the fission product as a product and from plutonium by volatilization of their higher fluorides. Thus, a large percentage of the radioactivity could be collected with the plutonium in a highly concentrated form. The uranium and the volatile fluorides of the fission products could then be separated by fractional distillation or other methods; the uranium could be recovered, in a decontaminated state, in a form which could be directly reduced to the 11.89
metal by the procedure described in the Metallurgical section of this chapter. The specific separation of radioactive uranium was studied at Ame as representative of the volatile fission products whose fluorides could be removed from the plutonium at the temperatures employed. Only preliminary work was completed on the separation of plutonium from non-volatile fluorides by distillation, with subsequent collection of plutonium fluoride. It should be pointed out that this separation could be affected by other means than volatilisation. During this period, attention was called to the fact that the dry fluoride process might be adopted, with further development, to the recovery of uranium from the uranium wastes of the bismuth phosphate process.

Considerable work was done at Ame on a Metallurgical process for the separation of plutonium which is described in the Metallurgical section of this chapter.

An alternative process, worked on at Ame, was the development of a separation method based on the absorption column procedure developed at another site, but with additional steps using a complexing reagent. The reagent, which proved successful, was 2,3-dihydroxy-1,4-naphthoic acid, known as ferrozine, forms a stable complex with Pu which, in a certain pH range, is not adsorbed by the column of ion-exchange resin which does absorb most of the fission products.

Since the plutonium and the bulk of the fission products had already been separated from the uranium by the previous process, these materials could be desorbed, the plutonium could then be complexed with the reagent and repassed through the column at the appropriate pH. Under these conditions, the fission products would again be adsorbed but the

11.40
plutonium would pass through without being adsorbed. This process led to a high decontamination of the plutonium. A hot laboratory, capable of handling 5 curies through the adsorption process, was designed and built. The method proved successful in a number of runs. The uranium and plutonium were separated from one another and from the fission products using lig. samples of uranium, from the pile, and which had an activity of 5 curies.

After appreciable amounts of plutonium became available from the pile, it appeared that it would have to be obtained in the metallic state and extremely free from light element impurities, if it was to be used for weapons. An extensive "purity" program was set up in cooperation with the various sites, and the Ames Project took part in this program.

One of the several lines of action, carried out at Ames, was to conduct an exhaustive study into the organic complexes of plutonium. A number of these complexes should be extractable into organic solvents, and it was hoped that one of these would be specific with respect to plutonium or at least highly selective. The most successful reagents were derivatives of dimethylglyoxime which led to complete extraction of the plutonium. Such a procedure would have been quite effective had not the "purity" program been cancelled six months after its initiation. An attempt was made to use these reagents in a decontamination process, but they did not give sufficient separation from some of the fission products. Some of these complexes offer considerable promise as reagents to be used in the liquid-liquid separation processes for plutonium which are now being developed.
Vegetable amounts of neptunium were available much later than in the case of plutonium. Thus, although it was known that plutonium had stable valences of 3, 4 and 6 with a less stable one of 5, similar information was not available for neptunium. Experiments with tracer neptunium were designed to determine whether there was a stable valence lower than 4. Rather surprisingly, it appeared from the tracer experiments that a value intermediate between the lower valence (4) and the higher one (6) was stable in aqueous solution. It was suggested that NpO₃ existed, a suggestion which was substantiated elsewhere than where amounts of neptunium became available.

Since the handling of small and ultra-small quantities was a necessity, some thought was given to the design of equipment specifically intended for such use. Chief among the results was a magnetically controlled quartz fibre balance which could be operated externally to the system, weightings being made by means of a potentiometer. Development was also made of a magnetic susceptibility balance, using quartz fibre suspension.

4. Therosium Chemisty

4.1 General Chemistry

As soon as the first piles were in operation, and it was generally realised that thorium could be used to extend the available sources of fissionable material, it became necessary to enlarge the then rather meager basic knowledge concerning the chemical, physical and nuclear properties of this element. Practically all of the research programs which had been set up for uranium studies had to be paralleled for thorium. The Ame Project played a major role in this field, specializing in studies on the properties of inorganic compounds of thorium.
among the results which have been reported in numerous project notes, reports and papers, it might be mentioned that the thorium-hydrogen system was found to consist of two different hydrides.

4.9 Purification of Thorium Compounds
By Liquid-Liquid Extraction

Late in the summer of 1944, when the Ames Project started work on the large scale production of thorium metal, research was initiated for developing a method of preparing thorium oxide from five elements having high neutron-capture cross-sections. Thorium oxides available commercially were insufficiently pure with respect to all of the undesirable elements except the rare earths. Hence, the problem became one of separating the rare earths from thorium.

Two approaches were considered in solving the problem: one, to find a suitable complexing agent which would facilitate the separation; and the other, to find a suitable extracting agent to employ in a liquid-liquid extraction. The latter seemed the more feasible approach in view of other extraction of uranium and of the work being done on the common extraction of plutonium. Major emphasis was then placed on the extraction method, after preliminary tests indicated very favorable separation factors.

Preliminary tests of the available solvents indicated hexane to be satisfactory and that calcium nitrate was much better as a salting-out agent than the ammonium nitrate being used in Chicago for other elements. In September, 1944, a preliminary design was drawn up for a unit capable of purifying sufficient thorium nitrate to supply the metal production units with their requirements. An all-glass solvent extraction system
was set up and operated successfully; it also furnished solutions for further investigation and data for improved design. By November 1944, the design for the large scale unit had been completed, the necessary equipment had been ordered, and work had begun on the column structure. The viscosities and densities were determined for all of the solutions involved in the column process, and a rapid method was developed for analyzing the production solution from a refractometer reading and a specific gravity determination. Since thorium fluoride was required for the production of the metal, it was necessary to work out a procedure for processing the product solution into dry thorium fluoride. The method finally adopted involved anion precipitation, calcination of the anionate and hydroxylization of the oxide. This operation corresponds to the "green salt" (U₂O₃) manufacturing step in the production of uranium metal.

By June, 1945, the large scale unit had been installed, and operation had begun. By October 1945, sufficient operational data had been obtained to start daily production runs. However, it became evident that because of the fluidity of the ideal solvent. The possibility was investigated of diluting, with an (more sal鲁ent, one of those which had previously been discarded solely on the basis of unsatisfactory physical properties. Butyl phosphate, diluted with butyl ether, was found to be extremely satisfactory for column operation and was first used in April, 1946. The extraction system finally adopted is capable of producing 85 lbs. of purified thorium per 8-hour day, operating for 30 days a month; this is a monthly production of 1100 lbs. of thorium. If the demand for the metal exceeds the above amount, the production can be greatly increased either by increasing the hours of
operation of the present unit or by enlarging the column diameter.

A. Radiochemistry

The radiochemistry of fission product groups originated with the need during the fission product analyses for the diffusion experiments mentioned earlier in this section. For this purpose, a method for the analysis of fission products was devised which was unique among project schemes, in that a single sample was used for most of the elements and a systematic method was used similar to that employed in qualitative analysis. The fission products were first separated into groups and subsequently into the individual elements. The development of such a method was required because of the low activities which diffused out in the experiments. Of particular interest were methods for separating the radioactive pure gases produced in fission. Since ordinary solution procedures gave large quantities of gases from which the fission product gases must be separated, methods were studied for removing the gases other than by dissolving the metal in acids. The fine subdivision of the metal as hydride formation was found, surprisingly, not to be effective, but if the hydride was decomposed, the resulting metal dissolved in mercury; on boiling, the gases were removed. Another procedure for dissolving the hydride in aqueous solutions of silver salts also gave the gases free of contaminants.

Various problems in the radiochemistry of the fission products were investigated. Among the isotopes discovered or first found by the Ames group were the 50 yr. Sr-90, 40 hr. 190 chain; the 17 min. Pr-144 daughter of 275 day Ce-144; the long-lived Sr-135, etc. A major contribution

11.46

SECRET
In this field was in the radiochemistry of elements 44 and 45, Fr and Ra. Five new radioisotopes of these elements were discovered, chain relationships were established between some of them, and their mass assignments were made definite. In addition, absorption measurements of the beta-ray and gamma-ray energies were made for all of these isotopes and some others. Chemical methods were also devised and tested for many fission product separations.

A. Proc. Radioactivity

Ever since the beginning of the Manhattan Project, there has been a constant demand for samples of pure earths of exceptional purity in small amounts of greater. This demand grows for numerous reasons, but mainly because some of the rare earths are found among the fission products from chain-reacting piles. It was highly desirable, therefore, to have a means of preparing pure rare earths so that their nuclear properties could be studied and also to allow a more thorough consideration of their chemical behavior. Their radio-isotopes are less well understood than those of any other group of elements. Previous methods of preparing these elements involved the well known, but laborious procedure fractional crystallization as used by James and further developed in many laboratories. Exceptions are curium with its tetravalent state and promethium, europium and their divalent states which do permit a means of separation from the normal trivalent rare earth ions.

During the last half of 1944, groups of workers at the Clinton Laboratories developed a procedure for separating fission products by elution, from a bed of ion exchange resin, using nitrate buffers and...
other complexing agents as eluants. This method was shown to be capable of separating cerium and pritrium activities from a carrier-free mixture of rare earths present in fission products.

Experiments were started at Anes in December, 1944, with a view to developing a process for separating large amounts of the rare earths, using the nitrate elution technique. After demonstrating that minute quantities of cerium and pritrium could be separated just as efficiently as the carrier-free activities, the process was applied to a neighboring pair of elements praseodymium and neodymium. Excellent separations were obtained and multigram quantities of spectrographically pure cerates were soon available.

The separation of the light rare earths (cerium group) was stepped up to pilot-plant scale, using the procedures developed in small scale tests. "Pristium Carbonate", obtained from the Lindsey Light and Chemical Company, was the source material for this group. A battery consisting of 24 glass columns, each four inches in diameter and ten feet in height, was set up, together with stainless steel mixing tanks and other equipment to scale. Separation of the complex mixtures was aided by the use of other techniques, principally the neutron analysis separation as developed by Marsch and the amalgamated zinc reduction of europium as developed by Adley. Several of this group were separated in amounts of 500 grams or more.

The above procedures were extended to the heavy rare earths (pritrium group), a much more difficult task because of the greater number of members of the group and the greater similarity of their properties. One of the principal problems was the procurement of source materials.
rich in heavy rare earths. The best sources for gadolinium were concentrates from Neandrite sands obtained from the Lindsay Light and Chemical Company. For the heavier members of the group, the principal sources were the ores gadolinium, klisterlindite, and rocktrite. After preliminary tests to determine operational conditions, a pilot plant was set up similar to that employed for the light rare earths. The principal initial separation was that of the group Dy(III) to La(IV) from praseodymium, which was the major contaminant; these concentrates were taken through additional columns for further purification. Sodium pyrosulfate reduction was used to separate the ytterbium; this step, in addition to yielding the element in the pure form also reduced the complexity of the mixture. Some of the heavy rare earths were separated in multigram quantities, but the low abundance of many of them prevents their separation in similar amounts.

In studies on liquid-liquid extraction, it was found that cerium (IV) nitrate is readily extracted from aqueous solution by tri-n-butyl phosphate, a solvent which, reasonably stable under strong oxidizing conditions. The conditions for extraction are not critical, and favorable extraction is not inhibited by perchlorates or acetates, but sulfates interfere. Evidence was obtained that the cerium (IV) nitrate is extracted from tri-n-butyl phosphate by virtue of the formation of a new complex. By oxidation of cerium (III) with bromates and exhaustive extraction by butyl phosphate, the cerium may be quantitatively extracted. While this method provided a satisfactory separation of cerium (IV) nitrate from iron (III) nitrate, a little samarium nitrate and larger amounts of lanthanum and praseodymium nitrates were extracted.
from mixtures of these salts.

IV. ANALYTICAL CHEMISTRY

1. Chemical

Analytical chemistry is highly important in any type of chemical program. This was especially true in the Manhattan District Project since much pioneering work had to be done in new territory. Very little information was available in the literature with reference to many of the rare elements of major importance in the Manhattan Project. Some of these elements were very frequently present in the various samples which had to be analyzed. Literally, hundreds of analytical procedures had to be developed and even the old established methods had to be modified because of interferences caused by the presence of these elements.

The more analytical group played a major role in this analytical program.

The chemical analytical research which was carried out at Iowa State College consisted mainly of developing a wide variety of methods for analyzing, by chemical means, mixtures of elements which were of importance throughout the Project. Many methods were developed for the analysis of the raw materials, intermediates, and the final products in the processes for the production of metallic uranium, thorium, beryllium, and curium. A few of the major contributions were: (1) a general method was developed for the analysis of metallic fluorides involving their hydrolysis with superheated steam, followed by titration of the resulting hydrofluoric acid; (2) procedures for the determination of trace amounts of fluoride were critically reviewed, improved and adapted to metal samples; (3) methods were developed for determining the free metal...
content of uranium turnings and for the analysis of many alloys of uranium and of thorium; (4) the spectrophotometric method for determining iron was adapted to the analysis of uranium metal and its compounds; (5) titrimetric methods for the determination of thorium were greatly improved and (6) organic analytical reagents were prepared and studied.

In addition, the Ames group cooperated with the National Bureau of Standards and other analytical and spectrographic laboratories in the establishment of standard samples of interest to the overall project and in the exchange of data for the evaluation of analytical methods.

The routine analytical chemists made an important contribution to the successful completion of the various research programs of the Ames Project. They acted as a service group for other groups of the laboratory as well as for other project sites. To this end, they made well over 67,000 analyses for the Manhattan District Project.

B. Spectrographic

The high purity requirements for the uranium, thorium, and beryllium used for nuclear purposes compelled the imposition of rigorous specifications on the impurity content of these materials. Tolerances have been quoted for almost every element in the periodic table, in some cases as low as tenths or hundredths of a part per million. Spectrographic methods were particularly well suited to many of these required analyses, since by these procedures the impurity concentration of a great many elements could be simultaneously determined with adequate sensitivity and accuracy.

The spectrographic section was organized in the spring of 1945 to act as a service laboratory for the control of the high standards of
purity required for the uranium that was being produced and to serve as a research laboratory for the development and improvement of spectrographic methods of analysis. During the period the production plant was in operation, approximately 25,000 quantitative analyses were completed. The carrier distillation technique, which was developed at the National Bureau of Standards, was used for the analysis of uranium base materials, while the methods for the analysis of calcium metal, magnesium metal and refractory bond liners were developed at Amco. Simultaneously with the development of processes for the production of metallic thorium, beryllium and carbon, spectrographic procedures for the analysis of these metals were worked out. Fundamental studies on the carrier distillation technique were also undertaken.

Emission spectro method were also extensively applied to the analysis of rare earth. These procedures have been very useful in following the ion-exchange fractionation of the rare earths and for the determination of purity of the end fractions.

The Amco Laboratory cooperated with the National Bureau of Standards and other spectrographic laboratories in the establishment of standard samples of interest to the Manhattan Project and in the exchange of data for the evaluation of analytical methods.

A. Mass Spectrometry

In the fall of 1945, a small group was formed in mass spectroscopy to set up instruments to be used in the analysis of isotope content. During 1946, the group was occupied in designing and constructing three mass spectrometers.
I. X-RAY STRUCTURE

Many of the chemical reactions of interest to the Manhattan Project are carried out in the solid phase. The X-ray diffraction has been an invaluable tool in controlling and analyzing these dry reactions. It rapidly determines whether one or more phases are present and it frequently furnishes the best means for determining phase composition and the amounts of the various compounds present.

The Ames Project started work on X-ray structure in March, 1943. The early problems were undertaken in cooperation with the metallographic group. Later, the studies were extended to include the field of inorganic chemistry, principally research on uranium, thorium, beryllium and the rare earths.

About 90 compounds or phases were thoroughly examined at Ames to obtain unit cell data; complete structures were worked out for 50 compounds. In many cases, chemical data were insufficient to determine the composition; even the formula of many of these compounds was first determined by X-ray studies. In several important instances, new compounds were discovered in whole or in part by the X-ray group; in many cases, important changes in the solid chemistry of uranium resulted from X-ray studies. A few of the more important contributions of the X-ray section are mentioned below.

All of the compounds of nitrogen with uranium were determined; not one nitride of uranium had been assigned the correct formula before these studies. The first demonstration was made that uranium hydride is a true compound, and its structure was determined; UC and U₂O₅ were discovered and the uranium-oxygen system revised. In cooperation with
the metallographic group, UC was discovered, and the uranium-carbon system was classified. The monocarbide has a very high melting point, and during various stages of the project, it was of special interest because of its physical properties and composition. The structure of gamma-uranium was determined, the structure of UF₃, which is isomorphic with PuF₃, was determined at a time when the composition of the latter compound and the valence of Pu were in doubt. A theory was developed of electron-deficient bonding of importance in interstitial carbides, nitrides and certain hydrides such as UF₃,

Thorium dihydride and the lower carbides and nitrides of thoria were discovered, and their structures were determined.

VII. PHYSICS

During the war, the Ames laboratory specialized in research in chemistry and metallurgy, and the work of these divisions was closely integrated with the Divisions of Chemistry, Metallurgy and Physics at the University of Chicago and elsewhere. Almost weekly conferences were held, and the integration between the Ames group and the physics group was particularly close. As the war drew to a close, conferences became less frequent, and it became desirable to set up a physics Section at Ames, particularly because the Iowa State College physicists were returning from other war projects.

The Ames Physics Section was organized in the latter part of 1945 to further strengthen the fundamental approach to problems in chemistry and metallurgy and to pioneer in phases of nuclear physics of special interest to the Manhattan District. Two subsections were formed, one in

11.99

SECRET

RESTRICTED DATA

ATOMIC ENERGY ACT 1946
theoretical physics and the other in experimental physics. The activity of the former group during 1945 was primarily devoted to consulting work within the local project. However, theoretical work was initiated on processes connected with the energy losses of heavy particles in their passage through matter.

The activity of the experimental physics group, during 1946, was largely devoted to the designing, constructing and testing of new equipment. Work was started on a curved crystal X-ray spectrograph to be used in the analysis of X-radiation and soft gamma-radiation accompanying radioactive decay. A major project involved the construction of an iron-free magnetic lens beta-ray spectrometer for precise studies on beta- and gamma-radiation. In this connection, it was found necessary to modify G-M counters and associated circuits. A 70,000,000-volt synchrotron was ordered, on College funds, and plans were made for a building to house the synchrotron, together with adjunct research and control facilities, and work was started on accessory equipment. It is expected that this equipment will be used in connection with Atomic Energy Commission projects.
APPENDIX A. LIST OF REPORTS FROM THE AMES PROJECT

1. Publications for Cooperating Laboratories

Spedding, J. H., et al

- Report for Week Ending April 30, 1943 - Chemistry and Metallurgy
 CC-43 (In part) 4/28/43
- Supplementary Report for Limited Distribution - Material from Report on Chemistry and Metallurgy
 CC-43 4/28/43
- Report for Week Ending May 31, 1943 3C-9b 5/23/43

Wilhelm, H. A., D. Ahnert

- Report for Week Ending June 13, 1943 CC-133 (Part A) 6/13/43
 Chemical Research

- Report for Week Ending June 5, 1943 CC-133 6/5/43
 Study of the Bismuth-Uranium System

Spedding, J. H., et al

- Report for Week Ending June 30, 1943 CC-143 (Part A) 7/20/43
 Chemical Research
- Report of the Ames Chemical and Metallurgical Group for the Week of July 3, 1943
 CC-176 7/3/43
- Report of the Ames Chemical and Metallurgical Group for the Week of July 8, 1943
 CC-177 7/8/43
- Report of the Ames Chemical and Metallurgical Group for the Week of June 30, 1943
 CC-178 7/3/43
- Report of the Ames Chemical and Metallurgical Group for the Week Ending July 10, 1943
 CC-205 7/16/43
- Report for Month Ending August 15, 1943 - Chemical Research
 CC-238 (Part B) 8/15/43
- Report for Month Ending September 15, 1943 - Chemical Research
 CC-258 (Part F) 9/15/43

RESTRICTED DATA

ATOMIC ENERGY ACT 1945
Report for Month Ending: September 15, 1942 - Chemistry of 94

Preliminary Report of the Ames Chemical Group on Diffusion of Fission Products from UO2 and Sintered Metal

Report for Month Ending October 15, 1942 - Chemical Research

Report for Month Ending October 15, 1942 - Chemistry of 94

Johns, J. E., A. S. Newton, V. E. Sullivan

The Diffusion of Fission Products from Cast Metal at 800°C and 1000°C

Brodacin, P. H., et al

Report for Month Ending November 15, 1942 CC-342 (Part C) 11/15/42 Chemical Research

Report for Month Ending November 15, 1942 CC-345 (Part C) 11/15/42 Chemistry of 94

Report for Month Ending November 15, 1942 CC-345 (Part C) 11/15/42 (Ames Metallurgical and Production)

Report for Month Ending November 15, 1942 CC-348 11/15/42 - Ames Chemical Group

Johns, J. E., A. S. Newton, V. E. Sullivan

The Diffusion of Fission Products from Cast Uranium at 1800

Johns, J. E., A. S. Newton, V. E. Clady

Effect of Temperature on the Surface of Cast Uranium Metal

Brodacin, P. H., et al

Availability of Materials CC-373 (In part) 11/25/42

Report for Month Ending December 15, 1942 - Chemical Research - General and Radiochemistry CC-389 (Part C) 12/15/42

A.2

The Diffusion of Fission Products from Polished and Unpolished Metal at 600°C

Spedding, F. H., et al.

Chemistry of 94

Technological Research

Report for Month Ending December 15, 1942 - Production and Construction

Report for Month Ending January 15, 1943 - Technological Research - Sect. II

Report for Month Ending January 15, 1943 - Chemical Research - General and Radiochemistry

Report for Month Ending January 15, 1943 - Chemistry of 94

Report for Month Ending January 15, 1943 - Technological Research and Development - Sect. I

Report for Month Ending January 15, 1943 - Production and Construction

Index to Ames Metallurgical Reports (See also Index to Chemical Reports from Ames CT-423)

Fennel, Y., A. P. Stavebank, J. G. Warf

Segregation of Impurities in a Typical In-92-422 1/22/45

cast uranium

Warf, J. C.

Determination of Carbon in Uranium and Uranium Compounds

Preliminary Survey of a Thermal Method for Removing Fission Products, Developed by the Ames Chemical Group

A.B.

RESTRICTED DATA

ATOMIC ENERGY ACT 1946
Specking, F. E. et al

Index of the Ames Chemical Group through CC-438
January 1, 1943 (See also Index of Metallurgical Reports CT-451)

Butler, T. A.

Report on Recasting Uranium Metal in Air CT-455

Itzel, L.

Spectrophotometric Determination of Iron in the Presence of Uranium CC-450 1/5/43

Specking, F. H., et al

Report for Period Ending February 15, 1943 CC-455 (Part C) 2/15/43
 Chemical Research - General and Radiochemistry

Report for Period Ending February 15, 1943 CC-467 (Part C-II) 2/15/43

Report for Period Ending February 20, 1943 CC-490 2/30/43
 Ames Metallurgical and Metalographic Groups

Report for the Month Ending March 15, 1943 CC-521 3/15/43
 Chemical Research - Radiochemistry

Report for Month Ending March 15, 1943 CC-522 (Part C) 3/15/43
 Chemistry of 94

Report for Month Ending March 15, 1943 CC-523 (Part C) 3/15/43
 Chemical Research - Analytical

Report for Month Ending March 27, 1943 CC-542 3/27/43
 Metallurgical Research - Metallurgy

Report for Month Ending April 15, 1943 CC-578 4/15/43
 Chemical Research - Chemistry of 94

Butt, J. C., A. J. Newton, T. Butler, J. A. Ayres, J. E. Johns

Uranium Hydride CC-580 4/15/43

Johns, L. R., A. S. Newton

The Hydride Reaction as a Means of Testing the Continuity of Contain CC-583 4/5/43

Restricted Data

Atomic Energy Act 1946
Spedding, F. H., et al

Report for Month Ending: April 19, 1943 - Chemical Research - General and Radiochemical

The diffusion of Fission Products from Cast CC-594 Uranium at 1000°C 4/43

Karf, J. C.

Spectrophotometric Determination of Calcium to be Adapted to the Determination of Calcium in Uranium Metal

Spedding, F. H., et al

Part II of Report for Month Ending April 24, 1943 - Technological Research - Metallurgy

The diffusion of Fission Products from Uranium at 1185°C 5/43

Spedding, F. H., et al

Report for Month Ending May 15, 1943 - Chemical Research - General and Radiochemical

Report for Month Ending May 15, 1943 - Chemical Research - Chemistry of U

Report for the Month Ending May 15, 1943 - Chemical Research - Analytical and General

Part II of Report for Month Ending May 22, 1943 - Technological Research - Metallurgy

Newton, A. S.

Production of Deuterium and Uranium Deuteride CC-695 from Heavy Water 5/26/43
The Diffusion of Fission Products from Uranium (Errata) 6/7/43

Johnson, A. S., C. Johnson, A. Kant, E. V. Netterf

The Preparation of Trivalent and Tetravalent Compounds of Uranium from the Metal 6/17/43

Spedding, F. H., E. S. Newton, C. Johnson

The Dry Fluoride Process for separating 84 6/17/43

Spedding, F. H., et al

Report for Month Ending June 15, 1942 6/15/43
Chemical Research - General and Radiochemical

Report for the Month Ending June 15, 1943 6/15/43
Chemical Research - Analytical

Report for Month Ending June 15, 1943 6/15/43
Chemical Research - Chemistry of 84

Part II of Report for Month Ending June 24, 1943 - Technological Research - Metallurgy 6/24/43

Part II of Report for Month Ending June 24, 1943 - Technological Research - Metallurgy 6/24/43

Part II of Report for Month Ending June 24, 1943 - Technological Research - Metallurgy 6/24/43

The Beta and Gamma Radiations from the Chain 77 h Te 2.4 h I (Joint publication of Chicago and Ames) 5/15/43

Sullivan, W. H.

Chemical Methods for the Separation of the Fission Products 6/20/43
<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report for Month Ending July 15, 1943, Chemical Research - Analytical</td>
<td>CC-796</td>
<td>7/15/43</td>
</tr>
<tr>
<td>Report for Month Ending July 15, 1943, Chemical Research - Chemistry of 94</td>
<td>CC-795</td>
<td>7/15/43</td>
</tr>
<tr>
<td>Report for Month Ending July 15, 1943, Chemical Research - General</td>
<td>CC-803</td>
<td>7/15/43</td>
</tr>
<tr>
<td>Part II of Report for Month Ending July 24, 1943, Technological Research - Metallurgy</td>
<td>CT-815</td>
<td>7/24/43</td>
</tr>
<tr>
<td>Report for Month Ending July 15, 1943, Chemical Research - Radiochemistry</td>
<td>CC-837</td>
<td>7/16/43</td>
</tr>
<tr>
<td>Report for Month Ending August 8, 1943, Chemical Research - Chemistry of 94</td>
<td>CC-852</td>
<td>8/8/43</td>
</tr>
<tr>
<td>Report for Month Ending August 7, 1943, Chemical Research - General</td>
<td>CC-856</td>
<td>8/7/43</td>
</tr>
<tr>
<td>Report for Month Ending August 8, 1943, Chemical Research - Analytical</td>
<td>CC-862</td>
<td>8/8/43</td>
</tr>
<tr>
<td>Part II of Report for Month Ending August 21, 1943, Technological Research - Metallurgy</td>
<td>CT-891</td>
<td>8/21/43</td>
</tr>
<tr>
<td>Report for Month Ending September 15, 1943, Chemical Research - Radiochemistry</td>
<td>CC-921</td>
<td>9/15/43</td>
</tr>
<tr>
<td>Report for Month Ending September 8, 1943, Chemical Research - Chemistry of 94</td>
<td>CC-925</td>
<td>9/8/43</td>
</tr>
<tr>
<td>Part II of Report for Month Ending October 2, 1943, Technological Research - Metallurgy</td>
<td>CT-954</td>
<td>10/2/43</td>
</tr>
<tr>
<td>Part II of Report for Month Ending October 24, 1943, Technological Research - Metallurgy</td>
<td>CT-1007</td>
<td>10/24/43</td>
</tr>
<tr>
<td>Report for Month Ending October 8, 1943, Chemical Research - Chemistry of 94</td>
<td>CN-1048</td>
<td>10/8/43</td>
</tr>
</tbody>
</table>

Review of the Metallurgical Properties of CN-1056
Tracer Plutonium to October 15, 1943 - Chemical Research Chemistry of Plutonium

Report for Month Ending October 9, 1943 - Chemical Research - Radiochemistry

Report for Month Ending November 6, 1943 - Chemical Research - Chemistry of Plutonium

Report for Month Ending October 9, 1943 - Chemical Research - Analytical

Review of Metallurgy of Uranium and Some of Its Binary Alloys. Technological Research - Metallurgy

Report for Month Ending November 6, 1943 - Chemical Research - Radiochemistry

Keller, W. H.

Progress Report on Study of Factors Affecting Reduction of Green Salt to Metal

Report for Month Ending January 7, 1944 - Chemical Research - Analytical

Part II of Report for Month Ending Nov. 28, 1944 - Technological Research - Metallurgy

Hunkle, E. E., A. S. Wilson, P. A. McDonald

Hydride Report of the X-ray Group A.8
Spedding, F. E., et al

Report for Month Ending: December 27, 1943, Technological Research - Metallurgy	CC-1180	12/27/43
Report for Month Ending: December 9, 1943 - Chemical Research - Analytical	CC-1194	12/9/43
Report for Month Ending: December 10, 1943 - Chemical Research - Chemistry of Flutonium	CC-1199	12/10/43

Riven, A. S., I. C. Ward, C. Johnam, R. Nettorf

| Uranium Hydride - A Review to January 1, CC-1201 | 1/1/44 |

Spedding, F. E., et al

Report for Month Ending December 10, 1943 CC-1212	12/10/43	
Chemical Research - General		
Report for Month Ending January 8, 1944 - Chemical Research - Chemistry of Flutonium	CC-1243	1/8/44
Report for Month Ending January 8, 1944 - Chemical Research - Radiochemistry	CC-1244	1/8/44
Report for Month Ending January 8, 1944 - Chemical Research - General	CC-1245	1/8/44
Part II of Report for Month Ending Jan. 28, 1944 - Technological Research - Metallurgy	CT-1270-A,C,D	1/28/44
Part II of Report for Month Ending January 29, 1944 - Technological Research - Metallurgy	CT-1270-B	1/29/44

Keller, W. H.

Comparison of Refractories as Dumb Lining A-1038 Materials in Production of Metal

Excess of Magnesium Used as Reducant in A-1038 Production of Metal

Comparison of Various Types of K.E.I. and A-1039 Amco Magnesium | 2/4/44 |
Sullivan, W. E., H. E. Sleight, R. H. Gladrow

A Low Absorption Counter of Improved Design CC-1280 3/25/44
Radioactivities of Ruthenium and Rhodium CC-1493 5/6/44

Snedding, F. H., et al

Report for Period of March 10 to April 10, 1944 - Chemical Research - Purification of Pa and U CC-1494 4/10/44
Report for Period of March 10 to April 10, 1944 - Chemical Research - Chemistry of Plutonium CC-1495 4/10/44
Report for Period of March 10 to April 10, 1944 - Chemical Research - General Chemistry CC-1496 4/10/44
Report for Period of March 10 to April 10, 1944 - Metallurgical Research CC-1497 4/10/44
Report for Period of April 10 to May 10, 1944 - Chemical Research - Chemistry of Plutonium CC-1498 5/10/44
Report for Period of April 14 to May 5, 1944 - Chemical Research - Analytical Chemistry CC-1499 5/5/44
Report for Period of April 10 to May 10, 1944 - Chemical Research - General CC-1500 5/10/44
Report for Period of April 10 to May 10, 1944 - Metallurgical Research CC-1501 5/10/44

Koselbach, E. B.

A Method for Determining Fluorine in Uranium Metal CC-1502 5/6/44

Snedding, F. H., et al

Report for Period of May 10 - June 10, 1944 CC-1503 6/10/44
Chemical Research: Chemistry of Plutonium

Report for Period of May 10 to June 10, 1944 - Chemical Research: General Chemistry CC-1504 6/10/44

A.10
Report for Period of February 1 to March 10, 1944 - Metallurgical Research	CC-1515	3/10/44
Report for Period of February 1 to March 10, 1944 - Chemical Research - Chemistry of Plutonium	CC-1516	3/10/44
Report for Period of February 1 to March 10, 1944 - Chemical Research - Analytical Chemistry	CC-1517	3/10/44
Report for Period of February 1 to March 10, 1944 - Chemical Research - General Chemistry	CC-1524	3/10/44

Uranium Trifluoride - Summary Report | CC-1536 | 3/14/44 |

Spedding, F. E., et al.

Report for Period of February 1 to March 10, 1944 - Chemical Research - Purification of Pu and U	CC-1536	3/10/44
Report for Period of May 10 to June 10, 1944 - Chemical Research - Analytical Chemistry	CC-1774	6/10/44
Report for Period of May 10 to June 10, 1944 - Metallurgical Research	CC-1775	6/10/44

Bleich, H. E.

Radiations Associated with the 830 Day Half Second β Decay Chain - Radiochemistry | CC-1776 | 7/10/44 |

Spedding, F. E., et al.

Report for Period June 10 to July 10, 1944 - Chemical Research - Chemistry of Plutonium	CC-1777	7/10/44
Report for Period June 10 to July 10, 1944 - General Chemistry	CC-1778	7/10/44
Report for the Month June 10 - July 10, 1944 - Chemical Research - Analytical Chemistry	CC-1779	7/10/44

RESTRICTED DATA

ATOMIC ENERGY ACT 1946
<table>
<thead>
<tr>
<th>Report for Period</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 10 to July 10, 1944 - Metallurgy</td>
<td>7/10/44</td>
</tr>
<tr>
<td>July 10 to August 10, 1944 - Chemical Research - General</td>
<td>8/10/44</td>
</tr>
<tr>
<td>July 10 to August 10, 1944 - Chemical Research - Analytical Chemistry</td>
<td>8/10/44</td>
</tr>
<tr>
<td>July 10 to August 10, 1944 - Chemical Research - Chemistry of Plutonium</td>
<td>8/10/44</td>
</tr>
<tr>
<td>July 10 to August 10, 1944 - Technological Research - Metallurgy</td>
<td>8/10/44</td>
</tr>
<tr>
<td>Mixed Uranium Halides - A Summary</td>
<td>9/10/44</td>
</tr>
<tr>
<td>A Summary of the Properties, Preparation, and purification of the Anhydrous Chlorides and Bromides of Uranium</td>
<td>9/15/44</td>
</tr>
<tr>
<td>For Period August 10 to September 10, 1944 - Chemical Research - General</td>
<td>9/10/44</td>
</tr>
<tr>
<td>For Period August 10 to September 10, 1944 - Chemical Research - Chemistry of Plutonium</td>
<td>9/10/44</td>
</tr>
<tr>
<td>For Period August 10 to September 10, 1944 - Technological Research - Metallurgy</td>
<td>9/10/44</td>
</tr>
<tr>
<td>Report for the Month Ending September 10, 1944 - Chemical Research - Analytical Chemistry</td>
<td>9/10/44</td>
</tr>
<tr>
<td>Report for Period September 10 to October 10, 1944 - Chemical Research - Chemistry of Plutonium</td>
<td>10/10/44</td>
</tr>
<tr>
<td>For the Period September 10, 1944 to October 10, 1944 - Chemical Research - General</td>
<td>10/10/44</td>
</tr>
</tbody>
</table>
Report for the Month Ending October 10, 1944 - Chemical Research - Analytical Chemistry

For the Period September 10 to October 10, 1944 - Technological Research - Metallurgy

Report for the Month Ending November 10, 1944 - Chemical Research - Analytical Chemistry

For the Period October 10 to November 10, 1944 - Chemical Research - General

For the Period October 10 to November 10, 1944 - Technological Research - Metallurgy

Progress Report of Ames Chemical Group to Y-12 on Assigned and Suggested Problems

Progress Report of Ames Metallurgy Group to Y-12 on Assigned and Suggested Problems

Annotations:
- **Ayer:** E. O., J. A. Fessel
 - The Spectrographic Determination of Baran in Thorium Fluoride

Favrholdt, E. D.:
- The Determination of Fluorine in Metals

Spedding, F. H., E. A. Wilhelm, A. R. Beams, D. H. Ahmann, A. I. Snow:
- Final Report on Problem No. 18; Progress A-3193
 - Report on Problem No. 19

Spedding, F. H., A. Kent, J. R. Wright, J. C. Warf, J. S. Powell, A. S. neutron:
- Extraction Purification of Thorium Nitrate

Powell, J., A. S. neutron:
- The System Nitric Acid-Water-Methyl Isobutyl Ketones

Security Information:
- 10/10/44

Restricted Data:
- Atomic Energy Act 1946
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Code</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linkind, R. A. E. Newton</td>
<td>The Precipitation of Thorium Oxalate</td>
<td>CO-2395</td>
<td>2/19/45</td>
</tr>
<tr>
<td>Keller, F. H., E. Arison, C. Hack</td>
<td>Production of Cerium in the Massive Metallic State</td>
<td>CT-2396</td>
<td>2/45</td>
</tr>
<tr>
<td>Bundle, R. E., E. C. Haensler, L. S. Wilson, R. A. McDonald</td>
<td>A Summary of X-ray Information on Hydrides, Denuerides, Carbides, Nitrides and Oxides of Uranium</td>
<td>CO-2397</td>
<td>2/17/45</td>
</tr>
<tr>
<td>Vilhelm, N. A.</td>
<td>The Direct Pouring of Liquid Metal from the Reduction Bomb</td>
<td></td>
<td>3/9/45</td>
</tr>
<tr>
<td>Hubbard, J. C.</td>
<td>Air Corrosion of Thorium</td>
<td>CT-2400</td>
<td>3/26/45</td>
</tr>
<tr>
<td>Ward, J. C.</td>
<td>The Extraction Purification of Cerium Solution of Caria</td>
<td>CO-2402</td>
<td>4/3/45</td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Code</td>
<td>Date</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Ayres, A. S.</td>
<td>Analysis for Oxide in Thoria Metal</td>
<td>CC-2403</td>
<td>5/12/45</td>
</tr>
<tr>
<td>Hoxey, W. E., A. E.</td>
<td>A Dilatometric Study of Beryllium in the Range 700-800°C</td>
<td>CT-2404</td>
<td>3/15/45</td>
</tr>
<tr>
<td>Loferski, Elsie</td>
<td>Determination of Nitrogen in Thorium</td>
<td>CC-2710</td>
<td>4/10/45</td>
</tr>
<tr>
<td>Spedding, P. E., E. A.</td>
<td>Production of Uranium by Reduction of Uranium Tetrafluoride by Calcium</td>
<td>CT-2711</td>
<td>4/13/45</td>
</tr>
<tr>
<td></td>
<td>The Production of Uranium by the Reduction of UF₄ by Mg</td>
<td>CT-2712</td>
<td>5/26/45</td>
</tr>
<tr>
<td>Powell, J. E., W. E., Hoxey</td>
<td>Preparation of Anhydrous Beryllium Chloride</td>
<td>CC-2714</td>
<td>4/25/45</td>
</tr>
<tr>
<td>Feith, J. L.</td>
<td>Water Corrosion of Alloys of Thoria and of Uranium</td>
<td>CT-2715</td>
<td>4/25/45</td>
</tr>
<tr>
<td>China, V. D.</td>
<td>Analysis of Chromium-Uranium Alloys</td>
<td>CC-2716</td>
<td>5/12/45</td>
</tr>
<tr>
<td>Carlson, O. O., A. E.</td>
<td>The Tuballoy-Thorium Binary System</td>
<td>CT-2717</td>
<td>4/27/45</td>
</tr>
</tbody>
</table>
Preliminary Report on a Rapid Method for CC-2720 Separating Rare Earths 5/2/45

F unfold, J. E.
The X-ray Structures of UAl₂ and UAl₃ CT-2721 5/10/45

To tterl, E. W., A. S. Wilson, B. E. Fundle, A. S. Kenton, J. E. Powell
Physical Study of the Thorium Hydrogen System CT-2722 5/6/45

Beaus, A. E.
The Tantalum-Chromium Binary System 0T-3335 6/28/45

Sline, M. E.
Pyrohydrolysis in the Analysis of Fluorides and Other Halides CC-2723 6/30/45

Eriessen, E. E., E. J. Warmeld
Analysis of Iron in Thorium, Beryllium, and Curium CC-2733 9/10/45

Wilhelm, E. A., C. L. Gray, R. Griffith
The Casting of Uranium Rods at Iowa State College 8/25/45

Eriessen, E. E.
Analysis of Uranium-Nickel Alloys CC-3934 8/7/45

Lirking, E. A. R. Kenton
Preparation of Binary Compounds of Thorium from Thorium Metal CC-3935 6/19/45

Powell, J. E., C. Bach, E. W. Hottorf
Recovery of Iodine from Cerium Slag CC-3936 6/19/45

Banks, A. F.
The Titrmetric Determination of Thorium CC-3937 6/6/45
Forsfeld, E. V., G. V. Banks

Analysis of Thorium-Tantalum Alloys CC-2939 6/5/45

Feinle, A. G., J. C. Wark

Determination of Water in Fluorides CC-2939 6/21/45

Forsfeld, E. V., Y. A. Pasco

The Spectrographic Analysis of Thorium and its Compounds CC-2940 12/31/45

Smith, A. J.

The Spectrographic Analysis of Beryllium CC-2941 6/22/45

Banks, G. V., E. L. Horsz, J. E. Paterson, J. C. Wark

Notes on Miscellaneous Reactions and Properties of Cerium, Thorium and Uranium Compounds CC-2942 7/15/45

Keller, W. H., D. Paterson, L. Hamlin

Production and Properties of Ceramic Bodies of Alkaline Earth and Other Refractory Oxides CC-2943 8/15/45

Paterson, J. E.

Electrolytic Analysis for Rhenium in the Presence of Thorium CC-2944 8/1/45

Buddle, R. E., H. C. Reamiger, A. S. Wilson

The Metal Compounds U,W and U,N in Alloys of CT-2945 the First Transition Group Elements with Uranium 8/15/45

Ahmann, L., A. L. Snow, A. S. Wilson

The Uranium-Molybdenum Binary System CC-2946 7/45

Buddle, R. E., H. C. Reamiger, A. S. Wilson

Crystal Structures of Some Uranium Compounds - A Summary from the Ames Laboratory CC-2947 6/15/45
Baldwin, R. E., P. C. Edwards
A Magnetically Controlled Quartz Fiber Balance CO-2948 9/12/45

The Small Scale Preparation of Uranium by the CT-2949 9/17/45
Reduction of its Halides with Calcium

The Production of Thorium Metal by the CT-2950 9/24/45
Metallehermic Reduction of Thorium Fluoride

Keller, W. E., V. Lyon, H. J. Frenz, E. Thompson
The Casting of Thorium Metal and Some CT-2961 10/2/45
Properties of the Cast Metal

Peterson, D. N., Lyon, W. H. Keller
The Casting of Cerium and Some Properties CT-2952 10/5/45
of the Cast Metal

The Production of Beryllium by the CT-2953 9/30/45
Metallothermic Reduction of Beryllium Fluoride

Johnson, O. A., E. Hewett
Extraction of Uranium Nitrate and Thorium CO-2964 11/5/45
Nitrate by Organic Solvents

Calderwood, V.
The Production of Ceramic Ware by CT-2955 10/20/45
Slip-Casting

Carlson, O. K.
Uranium–Manganese Binary System CT-2956 3/4/46

Avery, A. G.
Analysis of Uranium–Manganese Alloys CO-2937 10/5/45

A. 18
Stev. C. F.

Early Methods for Casting Uranium at Iowa State CT-2956 7/45
College

Abmann, D. H.

Note on Attempts to Prepare Magnesium and CT-2956 11/12/45
Calcium Alloys of Uranium

The Uranium-Mercury System CT-2960 10/27/45

Abmann, D. H., E. R. Baldwin

The Uranium-Sphalerum System CT-2961 11/12/45

Atten. A. S.

Precipitation of Thorium Oxalate from Nitric Acid Solutions CO-2962 10/5/45

Newton, A. E., J. Pecell, E. Picard

The Rapid Determination of Nitric Acid and Thorium in Thorium Nitrate Solutions CO-2944 11/27/45

Newo. Y. K., A. H. Beans

The Uranium-Cobalt System CT-2943 5/1/46

Varf. J. C., J. R. Patterson, C. V. Banks

Analysis of Th(NO₃)₄-Ca(NO₃)₂-HNO₃ Solutions CO-2944 12/20/45

Pudden. E. E. et al

Progress Report for September, October and November, 1945- Analytical Group CO-2945 12/18/45

Newton, A. E., C. Johnson, W. Tucker, E. V. Fisher, E. Linkin

A Pilot Plant for the Purification of Thorium Nitrate by Countercurrent Extraction CO-2945 1/30/46

Atten. J. A., E. E. Reis

Progress Report on the Separation of Plutonium by Adsorption on Amberlite Columns CO-2947 1/19/46
SECRET

Sudding, F. H., E. F. Gladrow, E. K. Sleight, A. E. Velik, T. A. Butler,
J. R. Powell, L. Picard, J. H. Wright

Progress Report on the Adsorption Process CC-3348 1/19/46
for Separating the Rare Earths

Patterson, J. E. J. C. Wark

Volumetric Determination of Zinc in
Thorium-Zinc Alloys CC-3349 2/1/46

Wark, J. C.

Index of Ames Analytical Reports up to February 1, 1946
CC-3351 2/30/46

Vulter, T. J., H. D. Brown

Report on the Study of the Organic
Complexes of Plutonium CC-3352 5/5/46

Arns, A. S.

Determination of Thorium in Analyses CC-3353 5/12/46

Patterson, J. E. J. C. Wark

The Determination of Trace Uranium in
Thorium and in Monazite
CC-3354 4/1/46

Benjamin, E. A., Villem, A. Ivey

Progress Report of the L-ray Group for
September, 1945, February, 1946
CC-3355 3/1/46

Arna, A. S., K. H. Mein

Terminal Report on Decontamination of
Plutonium by Means of Adsorption
Columns
CC-3356 7/17/46

Arna, A. S.

Determination of Free Metal Content in
Beryllium
CC-3357 9/20/46

Abram, P. E.

Note on the Uranium-Tantalam System
CT-3494 8/1/46

A.20
2. Plutonium Project Report Reports

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faidic, J. C.</td>
<td>Corrosion of Thorium and Related Materials</td>
<td>6B</td>
</tr>
<tr>
<td>Voigt, A. F.</td>
<td>General Introduction to Fission</td>
<td>6A</td>
</tr>
<tr>
<td>(Voigt, A. F., editor)</td>
<td>The Separation of Long-Lived Fission Gases from Metallic Uranium</td>
<td>6A</td>
</tr>
<tr>
<td></td>
<td>The Behavior of the Fission Products in Uranium at High Temperatures</td>
<td>6A</td>
</tr>
<tr>
<td>Speeding, F. R., I. B.</td>
<td>The Separation of Long-Lived Fission Gases</td>
<td>6B</td>
</tr>
<tr>
<td>Johns, A. E. Neuton,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y. E. Sullivan, A. F. Voigt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliott, E. W. K.</td>
<td>Low Absorber Counters</td>
<td>6B</td>
</tr>
<tr>
<td>Sullivan, E. F. Sleight,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. N. Gladrow, S. Hayner,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. S. Freedman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betters, B. V.</td>
<td>The Identification of Sr90 and Y90 in U Fission</td>
<td>6B</td>
</tr>
<tr>
<td>Sleight, E. F.</td>
<td>Identification of a 46-54h Eu Chain in Slow Neutron Fission</td>
<td>6B</td>
</tr>
<tr>
<td>Sullivan, E. R., N. E.</td>
<td>Characterization of the 4.5h Eu Produced in Fission</td>
<td>6B</td>
</tr>
<tr>
<td>Sleight, E. N. Gladrow</td>
<td>Characterization of the 56.5h Eu Daughter of 4.5h Fission Eu</td>
<td>6B</td>
</tr>
<tr>
<td></td>
<td>Identification and Mass Assignment of 72 a 4.5h Eu-56.5h Eu Decay Chain in Neutron and Deuterons-Irradiated Eu</td>
<td>6B</td>
</tr>
<tr>
<td></td>
<td>Characterization of the 4.5h Eu Produced in Neutron and Deuterons-Irradiated Eu</td>
<td>6B</td>
</tr>
<tr>
<td></td>
<td>Characterization of the 56.5h Eu Daughter of 4.5h Eu Produced in Neutron and Deuterons-Bombarded Eu Eu</td>
<td>6B</td>
</tr>
<tr>
<td></td>
<td>Identity of the 4.5h Eu 56.5h/Decay Chain Produced in Fission and in Neutron and Deuterons-Bombarded Eu</td>
<td>6B</td>
</tr>
</tbody>
</table>

*RESTRICTED DATA
ATOMIC ENERGY ACT 1946
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sullivan, W. E., N. E.</td>
<td>Identification, Characterization and Assignment of a 42d Ru Activity in Neutron and Deuteron-Irradiated Ru</td>
<td>9B</td>
</tr>
<tr>
<td>Sleight, E. K. Cladrow</td>
<td>Identity of the 30d Fission Ru with the 42d Ru<sup>40</sup>. Produced in Neutron and Deuteron-Irradiated Ruthenium</td>
<td></td>
</tr>
<tr>
<td>Sleight, E. K. Cladrow</td>
<td>The 57m E<sup>79</sup> Activity and its Ru Parent 9B</td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. E., N. E.</td>
<td>Search for the Beta Radiation of the 8B <sup>42</sup>Ru<sup>110</sup> Activity</td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. E., C. W.</td>
<td>The 92s Sr<sup>127</sup> Activity</td>
<td>9b</td>
</tr>
<tr>
<td>Campbell, E. K. Sleight</td>
<td>Discovery of Long-Lived Sr in Fission 9B</td>
<td></td>
</tr>
<tr>
<td>Hovest, T. E., W. U.</td>
<td>The Beta and Gamma Radiations from the 9B</td>
<td></td>
</tr>
<tr>
<td>Sullivan, C. D., Caryall, A. S., Newton, E. E. Sleight, C. Johnson</td>
<td>Chain 77 h To 2.4h 1 A. S. Newton, E. E. Sleight, C. Johnson</td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. E., O. Johnson</td>
<td>Characteristics of Some Iodine Isotopes Produced in Fission</td>
<td>9B</td>
</tr>
<tr>
<td>Nolton</td>
<td>Discovery of the 17.9s Pr<sup>144</sup></td>
<td>9B</td>
</tr>
<tr>
<td>Spedding, F. E., I. B.</td>
<td>The Thermal Diffusion of Fission Pro-9B</td>
<td>9B</td>
</tr>
<tr>
<td>Johns, A. S. Newton, A. F. Veigt, W. H.</td>
<td>Oxide</td>
<td></td>
</tr>
<tr>
<td>Spedding, F. E., I. B. Johns,</td>
<td>Removal of Fission Products from 9B</td>
<td>9B</td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Volume</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Spedding, T. E., J. E.</td>
<td>The Partition of the Fission Products Between the Phases of U Alloys</td>
<td>9B</td>
</tr>
<tr>
<td>Johns, T. A., Butler, E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gladrow, G. Johnson, J. K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kant, E. W. Rottorf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. H., E.</td>
<td>Observations Concerning the 210Po Br102 Activity</td>
<td>9B</td>
</tr>
<tr>
<td>Sleight, E. K. Gladrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. H., E.</td>
<td>Discovery of a 5.9 d El(100) Activity 9B</td>
<td></td>
</tr>
<tr>
<td>Sleight, E. K. Gladrow</td>
<td>in Deuterium-Bombarded Uranium</td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. H., E.</td>
<td>Discovery and Characterization of a 94h El(101) Activity in Deuterium-</td>
<td>9B</td>
</tr>
<tr>
<td>Sleight, E. K. Gladrow</td>
<td>Bombarded Uranium</td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. H., E.</td>
<td>Discovery, Characterization, and Mass 9B</td>
<td></td>
</tr>
<tr>
<td>Sleight, E. K. Gladrow</td>
<td>Assignment of a 2.6c Uranium</td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. H., E.</td>
<td>Search for the Daughtor Element 4.5</td>
<td>9B</td>
</tr>
<tr>
<td>Sleight, E. K. Gladrow</td>
<td>Activity of 2.6c El</td>
<td></td>
</tr>
<tr>
<td>Sullivan, W. H., E.</td>
<td>Search for the Previously Reported 20m El Activity</td>
<td>9B</td>
</tr>
<tr>
<td>Sleight, E. K. Gladrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spedding, F. H., J. C.</td>
<td>The Chemical Properties of Uranium Hydride</td>
<td>11B</td>
</tr>
<tr>
<td>Warf, A. S. Newton, C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, J. B. Johns, J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Ayres, T. A. Butler, E. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher, R. Rottorf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tevbaugh, A. D., R. D.</td>
<td>The Conversion of UF₆ to U₂O₆</td>
<td>11B</td>
</tr>
<tr>
<td>Tevbaugh, V. D. Cline, J. C. Varf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spedding, F. H., A. S.</td>
<td>Preparation and Physical Properties of Uranium Hydrides</td>
<td>11B</td>
</tr>
<tr>
<td>Newton, I. B. Johns, C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, A. Deane, E. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rottorf, J. C. Varf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warf, J. C., K. Balzinger</td>
<td>The Preparation and Properties of Some Mixed Uranium Halides</td>
<td>11B</td>
</tr>
<tr>
<td>Spedding, F. H., A. S. Newton,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Rottorf, J. Powell, V.</td>
<td>The Preparation and Some Properties of UBr₃, UBr₄, UCBR₂, and UO₂BR₂</td>
<td>11B</td>
</tr>
<tr>
<td>Salkins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warf, J. C.</td>
<td>The Preparation and Properties of Uranium Trifluoride</td>
<td>11B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Volume</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Johnson, C., T. Butler,</td>
<td>The Preparation, Purification, and Properties of Anhydrous Uranium Chlorides</td>
<td>118</td>
</tr>
<tr>
<td>A. E. Newton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warf, J. C.</td>
<td>Some Reactions of Uranium Metal</td>
<td>118</td>
</tr>
<tr>
<td>Newton, A. S.</td>
<td>The Use of Uranium and Uranium Compounds in Purifying Gases</td>
<td>118</td>
</tr>
<tr>
<td>Bundel, R. E., E. S. Wilson & A. E. McDonald</td>
<td>X-ray Investigation of the Uranium–Hydrogen System: The Structure of UH₃</td>
<td>118</td>
</tr>
<tr>
<td>Wilson, A. E., R. E. Bundle</td>
<td>X-ray Studies of Alpha, Beta and Gamma Uranium</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Early Methods for Producing Uranium Metal</td>
<td>12A</td>
</tr>
<tr>
<td></td>
<td>Present Methods for Large Scale Casting of Uranium</td>
<td>12A</td>
</tr>
<tr>
<td></td>
<td>Present Methods for Production of Uranium</td>
<td>12A</td>
</tr>
<tr>
<td></td>
<td>Production of Uranium by Reduction of UF₄</td>
<td>12A & B</td>
</tr>
</tbody>
</table>

A. 24
Keller, W. H.

Title: Small Scale Production of Uranium

by Stationary Bomb

Volume: 12A

Spedding, F. H., H. A.
Wilhelm, C. F. Gray,
A. Boyt

Title: Developments in Cutting and Machining

Uranium at the Iowa State College
Laboratory

Volume: 12B

Spedding, F. E., H. A.
Wilhelm, C. F. Gray

Title: Early Methods for Casting Uranium

at Iowa State College

Volume: 12B

Spedding, F. E., H. A.
Wilhelm, K. HulT, C. F. Gray

Title: Machining Graphite and Special Operations

Volume: 12B

Spedding, F. H., H. A.
Wilhelm, C. F. Gray,
E. Thompson

Title: Present Practices in the Uranium

Casting Laboratory at Iowa State College

Volume: 12B

Spedding, F. H., H. A.
Wilhelm, C. F. Gray,
A. J. Boyt

Title: Radiation Shields and their Fabrication

Volume: 12B

Spedding, F. H., H. A.
Wilhelm, C. F. Gray,
E. Thompson

Title: Recovery of Uranium Turnings, Chips

and Boretings

Volume: 12B

Ahmann, D., A. I. Snow,
A. S. Wilson

Title: The Uranium-Molybdenum Binary System

Volume: 12B

Wilhelm, K. A., A. E.
Beane, J. H. Carter,
A. I. Snow

Title: The Uranium-Carbon System

Volume: 12B

Carlsen, C. N., J. H.
Carter, R. C. Baenninger

Title: The Uranium-Copper System

Volume: 12B

Beane, A. R., A. S. Wilson

Title: The Uranium-Chromium System

Volume: 12B

Treick, D. A., J. H. Carter

Title: The Uranium-Tin System

A. I. Snow, R. F.
Baldwin, A. S. Wilson

Carlsen, C. N., A. E.
Beane, A. S. Wilson

Title: The Uranium-Thorium System

Volume: 12B

Warf, J. C.

Title: Analytical Chemistry of Uranium

(Chapter 14 - Div. E of NPS 75)

Volume: 18A

A.25
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warf, J. C.</td>
<td>Analytical Chemistry of Thorium (Chapter 16 - Div. 6 of MTS)</td>
<td>13A</td>
</tr>
<tr>
<td>Fassol, V. A.</td>
<td>Procedures for Analysis of Project Materials Calcium, Magnesium, Line</td>
<td>13A</td>
</tr>
<tr>
<td>Warf, J. C.</td>
<td>Pyrohydrolysis</td>
<td>13A</td>
</tr>
<tr>
<td>Tevesbaugh, R. D.</td>
<td>The Analysis of Certain Metals for Trace Quantities of Fluorine</td>
<td>13B</td>
</tr>
<tr>
<td>Banks, Charles V.</td>
<td>Analysis of Certain Uranium Alloys</td>
<td>13B</td>
</tr>
<tr>
<td>Warf, J. C.</td>
<td>Analysis of Metallic Uranium for the Free Element</td>
<td>13B</td>
</tr>
<tr>
<td>Arison, E. F., E. J.</td>
<td>Determination of Iron, Thorium, Beryllium, Cerium, Calcium, Magnesium, and their Compounds</td>
<td>13B</td>
</tr>
<tr>
<td></td>
<td>General Discussion - Production of Uranium, Raw Materials, Purity Specifications, etc.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Solution of Uranium and its Insoluble Compounds</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Procedure for the Analysis of Uranium Tetrafluoride for Fluorine by the Ferric Nitrate Method</td>
<td>13</td>
</tr>
<tr>
<td>Dane, A., A. Wilson</td>
<td>Note on the Preparation of Uranium-Cadmium Alloys</td>
<td>12</td>
</tr>
<tr>
<td>Baldwin, R., E. Baensiger</td>
<td>Note on the Uranium-Zinc System</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Precipitation of Uranium with Hydrogen Peroxide</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Volume</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Fassel, V. A.</td>
<td>The Direct Spectrophotometric Determination of Iron in Uranium and Its Compounds</td>
<td>152</td>
</tr>
<tr>
<td>Fassel, V. A.</td>
<td>The Spectrographic Analysis of High Purity Magnesium Metal</td>
<td>153</td>
</tr>
<tr>
<td>Voigt, A. F., E. R. Sleight</td>
<td>A Tracer Study of the Valence States of Neptunium</td>
<td>142</td>
</tr>
<tr>
<td>Kant, A., A. F. Voigt, J. E.</td>
<td>The Co-Precipitation of Plutonium with Salts of Organic Acids</td>
<td>143</td>
</tr>
<tr>
<td>Voigt, A. F., A. Kant, E.</td>
<td>The Separation of PuIV and PuIII</td>
<td>143</td>
</tr>
<tr>
<td>(Voigt, A. F., editor)</td>
<td>Hydroxide Intermediate Process</td>
<td>164</td>
</tr>
<tr>
<td>Kant, A., A. F. Voigt</td>
<td>Separation of Plutonium from Rare Earth Fission Products by Precipitation of Salts of Organic Acids</td>
<td>163</td>
</tr>
<tr>
<td>Spedding, F. H., A. S. Newton,</td>
<td>Some Studies on the Improved Dry Fluoride Process</td>
<td>165</td>
</tr>
<tr>
<td>Spedding, F. H., I. B. Johna</td>
<td>Separation Processes Involving Alloy Formations</td>
<td>163</td>
</tr>
<tr>
<td>parked, S. Newton, W. E. S.</td>
<td>Uranium and Plutonium by Heat</td>
<td></td>
</tr>
<tr>
<td>Sleight, A. D. Tevebaugh, J. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worley, J. J. Walter</td>
<td>Desalination Studies Involving the Extraction of Organic Complexes of Plutonium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Volume</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Wilhelm, E. A., A. S. Newton, A. E. Deane, C. Meur</td>
<td>Thorium Metallurgy</td>
<td>17A</td>
</tr>
</tbody>
</table>
Sullivan, W. E., E. K. Discovery Identification and Characterization of
Sleight, E., E. Gladrow 2.6 Day Ruthenium 97.

Banks, C. V., E. Diehl The Titrimetric Determination of Th.

Spedding, F. J., et al A Rapid Separation of the Rare Earths Employing
Ion Exchange. I. Cerium and Yttrium.
J. Am. Chem. Soc. Accepted for publication 1947.

Spedding, F. J., et al A Rapid Separation of the Rare Earths Employing
Ion Exchange. II. Neodymium and Praseodymium.
J. Am. Chem. Soc. Accepted for publication 1947.

Newton, A. S. The Purification of Some Laboratory Gases.

Bundle, E. E. A New Interpretation of Interstitial Compounds.
Acta Crystallographica. To be submitted for publication 1947.

Bundle, E. E., et al Structures of Carbides, Nitrides and Oxides of
Uranium.
J. Am. Chem. Soc. Accepted for publication 1947.

Spedding, F. J., et al Uranium Hydride. I. Preparation, Composition
and Physical Properties.

Newton, A. S., et al Uranium Hydride. II. Radiochemical and Chemical
Properties.

Bundle, E. E. The Structure of Uranium Hydride and Deuteride.

Smith, A. L., V. A. Fassel A Combined Shutter and Projection Device for the
Alignment of Electrodes in Spectrographic
Analysis.
Ind. Eng. Chem. Accepted for publication 1947.

McClure, J. C., V. Banks Use of a Zinc Spiral in the Titrimetric
Determination of Uranium.
H. Diehl

Ayres, J.
Purification of Zirconium by Ion Exchange Columns.
J. Am. Chem. Soc. Accepted for publication 1947.

Evins, E., C. V. Banks
Analysis of Thorium-Chromium Mixtures
Anal. Chem. Accepted for publication 1947.

Voter, E., C. V. Banks, Nicoline: A Reagent for Palladium
H. Diehl

Spedding, J. H., et al
The Separation of Rare Earths by Ion Exchange.
III. Pilot Plant Separations.
J. Am. Chem. Soc. Accepted for publication 1947.
APPENDIX B

Typical Examples of Service Work Done at Ames
for Other Sites of the Manhattan District

The Ames laboratory has been very successful in producing pure
chemicals, rare metals, very pure metals, and specially fabricated
objects when it has been difficult or impossible to obtain them from
ordinary commercial channels for use at other sites. The Ames labora-
tory does not wish to become a service laboratory, however, it is felt
that it is worthwhile, in the interest of the national welfare and
safety, to do a certain amount of this type of work providing it does
not become so burdensome as to threaten the stability of Ames as a
research laboratory. Much of this work requires the services of re-
search men of outstanding ability. While these men are willing to do a
certain amount of service work, they are not willing to devote a major
part of their time to it. They feel quite rightly that they have made
major financial sacrifices in order to stay in the academic atmosphere
in which they can do fundamental research. They feel that, if they
have to devote the major part of their time to service work, they might
better resign and go into industry where the financial rewards are
greater.

The nature of these service demands is varied and it is very dif-
ficult to say what the demands will be in the future since they usually
arise suddenly and are supplied in a relatively short time. The only
thing about which one can be certain is that a number of services
requests will be received each month. A few typical examples of serv-
ices rendered, to other sites of the Manhattan District, by the Ames
Project are listed below.

Supplied about 2,000,000 pounds of uranium metal, largely as billets but also considerable amounts in various specially shaped objects. Some special uranium disks were made from depleted uranium salt (almost pure U238) for use as targets in cyclotron studies.

Supplied about 4,500 pounds of pure thorium metal largely in the form of billets; in a number of cases the metal was made in special shapes. A number of machined thorium disks were prepared for use in cyclotron bombardment studies.

Supplied about 450 pounds of highly pure cerium metal in the form of billets.

Supplied a number of specially fabricated objects of other materials such as lanthanum metal, beryllium metal and special alloys. A beryllium ingot was prepared from radioactive beryllium salts.

Ground several hundred pounds of calcium metal and manufactured fluorine gas which was shipped in cylinders.

Fabricated and supplied ceramic bodies such as crucibles, high temperature defining-slots, rods and filaments made of such materials as CaO, MgO, BeO, U$_2$O$_7$, UO$_2$, UC, U$_2$O$_3$, UC$_2$, UN, TaN, ZrN, ZrC, TaN, TiN, N$_2$C, WC, TaC, TiC, CbC, and MoC.

Supplied samples of extremely pure chemicals such as UBr$_4$, UBr$_3$, UF$_3$, U$_2$O$_7$, UC, UN, UOCl$_2$, UOsBr$_2$, HF, K$_2$UCl$_5$, HBF, CaO, rare earths, anhydrous TaCl$_4$, ThO$_2$, ThF$_4$, diethyl zinc, dimethyl zinc, disalisylaethylenediamine and α-naphthohydroxamic acid.

B. 2
Made metallurgical examination and conducted corrosion studies of tantalum filaments, stainless steel sheets and other parts from Y-12 apparatus subjected to corrosion. Studied the depth of penetration of uranium metal into walls and parts of a salutron.

Prepared specially bonded bi-metallic strips of copper and uranium.

Studied the applicability of the multisource unit for the spectrographic determination of boron in calcium nitrate solutions.

Made analytical studies of the effectiveness of the removal of silicon, phosphorus and zirconium from uranium content by hydrofluorination of ore samples supplied by U. S. Geological Survey.

Participated in a number of analytical programs in which standard samples had to be completely analyzed by various methods and the results compared with those of other laboratories to establish best analytical procedure.
APPENDIX C

List of Scientific Personnel

of the

Ames Project under the Manhattan District

One of the outstanding characteristics of the Ames Project was the
wholehearted and selfless cooperation of the entire group. Without
this teamwork the success of the project would have been impossible
under the stress and strain of the urgency of the war effort. A list
of scientific personnel of the Ames Project, under the Manhattan
District, follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Appointed</th>
<th>Resigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmann, Donald H.</td>
<td>Junior Chemist</td>
<td>8/42</td>
<td></td>
</tr>
<tr>
<td>Anderson, Charles H.</td>
<td>Research Assistant</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Ayers, Augustus Sidney</td>
<td>Junior Chemist</td>
<td>7/43</td>
<td></td>
</tr>
<tr>
<td>Ayers, Emile C.</td>
<td>Associate Chemist</td>
<td>1/44</td>
<td></td>
</tr>
<tr>
<td>Ayers, John A.</td>
<td>Chemist, Section Chief</td>
<td>8/43</td>
<td>5/47</td>
</tr>
<tr>
<td>Beensiger, Herman C.</td>
<td>Associate Chemist</td>
<td>12/43</td>
<td>8/45</td>
</tr>
<tr>
<td>Baker, Richard D.</td>
<td>Research Associate</td>
<td>9/42</td>
<td>12/45</td>
</tr>
<tr>
<td>Baldwin, Robert M.</td>
<td>Associate Chemist</td>
<td>6/43</td>
<td></td>
</tr>
<tr>
<td>Banks, Charles V.</td>
<td>Chemist</td>
<td>2/43</td>
<td></td>
</tr>
<tr>
<td>Banees, John E.</td>
<td>Junior Chemist</td>
<td>12/43</td>
<td>12/44</td>
</tr>
<tr>
<td>Boyd, Arthur J.</td>
<td>Research Assistant</td>
<td>3/43</td>
<td></td>
</tr>
<tr>
<td>Brooklander, Lawrence</td>
<td>Junior Research Assistant</td>
<td>8/42</td>
<td>4/43</td>
</tr>
<tr>
<td>Brown, Horace D.</td>
<td>Junior Chemist</td>
<td>1/44</td>
<td>4/44</td>
</tr>
<tr>
<td>Bruce, Clarence V.</td>
<td>Junior Research Assistant</td>
<td>3/43</td>
<td>8/43</td>
</tr>
<tr>
<td>Buchner, E. G.</td>
<td>Associate Chemist</td>
<td>7/43</td>
<td>9/43</td>
</tr>
<tr>
<td>Butler, Tom A.</td>
<td>Junior Chemist</td>
<td>8/42</td>
<td></td>
</tr>
<tr>
<td>Byrd, Darwin</td>
<td>Research Assistant</td>
<td>4/43</td>
<td>6/43</td>
</tr>
<tr>
<td>Calderwood, Wayne, Jr.</td>
<td>Research Assistant</td>
<td>1/43</td>
<td>6/46</td>
</tr>
<tr>
<td>Calkins, Vincent P.</td>
<td>Junior Chemist</td>
<td>7/43</td>
<td>9/46</td>
</tr>
<tr>
<td>Carlson, John F.</td>
<td>Physicist</td>
<td>7/44</td>
<td></td>
</tr>
<tr>
<td>Carlsen, Oscar H.</td>
<td>Junior Chemist</td>
<td>5/43</td>
<td></td>
</tr>
<tr>
<td>Carter, James E.</td>
<td>Research Associate, Group Leader</td>
<td>11/43</td>
<td>9/43</td>
</tr>
<tr>
<td>Chiotti, Freme</td>
<td>Associate Chemist</td>
<td>2/43</td>
<td></td>
</tr>
<tr>
<td>Oline, Donald</td>
<td>Junior Chemist</td>
<td>1/44</td>
<td>4/44</td>
</tr>
<tr>
<td>Goobs, John H.</td>
<td>Research Assistant</td>
<td>9/42</td>
<td>9/44</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Appointed</td>
<td>Resigned</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Darke, Adrian</td>
<td>Associate Chemist, Section Chief</td>
<td>2/43</td>
<td></td>
</tr>
<tr>
<td>Dolgan, Paul</td>
<td>Research Assistant</td>
<td>9/43</td>
<td>12/43</td>
</tr>
<tr>
<td>Donohue, Ruth (Mrs. A. Tovsebaugh)</td>
<td>Associate Chemist</td>
<td>1/43</td>
<td>12/43</td>
</tr>
<tr>
<td>Edwards, Frank C.</td>
<td>Junior Chemist</td>
<td>2/45</td>
<td>3/45</td>
</tr>
<tr>
<td>Eriksen, Robert P.</td>
<td>Junior Chemist</td>
<td>2/45</td>
<td></td>
</tr>
<tr>
<td>Ewing, Richard</td>
<td>Junior Research Assistant</td>
<td>6/46</td>
<td></td>
</tr>
<tr>
<td>Fassel, Velmer A.</td>
<td>Chemist</td>
<td>11/42</td>
<td></td>
</tr>
<tr>
<td>Fassel, Mary</td>
<td>Analyst</td>
<td>9/43</td>
<td></td>
</tr>
<tr>
<td>Feibig, Joseph</td>
<td>Research Assistant</td>
<td>2/45</td>
<td>6/45</td>
</tr>
<tr>
<td>Figard, Paul H.</td>
<td>Junior Chemist</td>
<td>3/45</td>
<td>5/45</td>
</tr>
<tr>
<td>Fisher, Ray V.</td>
<td>Junior Chemist</td>
<td>1/43</td>
<td></td>
</tr>
<tr>
<td>Fornesfeld, Eugene J.</td>
<td>Research Assistant</td>
<td>2/45</td>
<td>9/45</td>
</tr>
<tr>
<td>Fornesfeld, Eloise M.</td>
<td>Research Assistant</td>
<td>9/44</td>
<td>4/46</td>
</tr>
<tr>
<td>Palmer, Elise I.</td>
<td>Assistant to the Director</td>
<td>7/46</td>
<td></td>
</tr>
<tr>
<td>Palmer, Robert</td>
<td>Research Assistant</td>
<td>12/42</td>
<td>1/45</td>
</tr>
<tr>
<td>Gladrow, Elroy</td>
<td>Assistant Chemist</td>
<td>6/43</td>
<td>9/47</td>
</tr>
<tr>
<td>Gerald, Park R.</td>
<td>Junior Research Assistant</td>
<td>9/43</td>
<td>6/43</td>
</tr>
<tr>
<td>Gebush, Michael</td>
<td>Research Assistant</td>
<td>5/43</td>
<td>7/47</td>
</tr>
<tr>
<td>Gray, C F</td>
<td>Associate Chemist, Section Chief</td>
<td>4/43</td>
<td></td>
</tr>
<tr>
<td>Hach, Clifford</td>
<td>Junior Chemist</td>
<td>5/44</td>
<td>10/45</td>
</tr>
<tr>
<td>Handlin, Louis</td>
<td>Junior Chemist</td>
<td>1/45</td>
<td>6/45</td>
</tr>
<tr>
<td>Hayes, Aassen W.</td>
<td>Research Assistant</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Heidell, Robert</td>
<td>Junior Chemist</td>
<td>7/46</td>
<td></td>
</tr>
<tr>
<td>Hain, Richard E.</td>
<td>Junior Chemist</td>
<td>9/42</td>
<td></td>
</tr>
<tr>
<td>Honberg, Robert V.</td>
<td>Research Assistant</td>
<td>3/44</td>
<td>10/44</td>
</tr>
<tr>
<td>Hoxeg, Raymond</td>
<td>Research Assistant</td>
<td>3/48</td>
<td></td>
</tr>
<tr>
<td>Hoke, Frank</td>
<td>Junior Chemist</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Hunt, Elton</td>
<td>Research Assistant</td>
<td>5/45</td>
<td></td>
</tr>
<tr>
<td>Iliff, James</td>
<td>Junior Research Assistant</td>
<td>6/43</td>
<td>8/43</td>
</tr>
<tr>
<td>Jacobsen, Theodred R.</td>
<td>Research Assistant</td>
<td>5/43</td>
<td>9/43</td>
</tr>
<tr>
<td>Jensen, Erling</td>
<td>Assistant Physicist</td>
<td>7/46</td>
<td></td>
</tr>
<tr>
<td>Johns, Iral D.</td>
<td>Associate Director</td>
<td>5/43</td>
<td>2/44</td>
</tr>
<tr>
<td>Jones, Vernal A.</td>
<td>Junior Research Assistant</td>
<td>6/43</td>
<td>8/43</td>
</tr>
<tr>
<td>Johnson, Harlan</td>
<td>Research Assistant</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Johnson, Oliver</td>
<td>Associate Chemist</td>
<td>1/43</td>
<td>4/48</td>
</tr>
<tr>
<td>Kent, Arthur</td>
<td>Junior Chemist</td>
<td>6/43</td>
<td>8/43</td>
</tr>
<tr>
<td>Keller, Joseph N.</td>
<td>Physicist, Section Chief</td>
<td>8/44</td>
<td></td>
</tr>
<tr>
<td>Keller, Wayne N.</td>
<td>Senior Chemist</td>
<td>6/43</td>
<td>10/45</td>
</tr>
</tbody>
</table>

C.2

RESTRICTED DATA

ATOMIC ENERGY ACT 1944
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Appointed</th>
<th>Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knipp, Julian</td>
<td>Physicist</td>
<td>7/46</td>
<td></td>
</tr>
<tr>
<td>Knott, Philip</td>
<td>Physicist</td>
<td>3/46</td>
<td>8/46</td>
</tr>
<tr>
<td>Larson, Jane</td>
<td>Junior Research Assistant</td>
<td>6/46</td>
<td>9/47</td>
</tr>
<tr>
<td>Laselett, Lawrence J.</td>
<td>Physicist</td>
<td>1/46</td>
<td></td>
</tr>
<tr>
<td>Leachman, Robert</td>
<td>Junior Physicist</td>
<td>6/46</td>
<td></td>
</tr>
<tr>
<td>Legvold, Sam</td>
<td>Physicist</td>
<td>11/45</td>
<td></td>
</tr>
<tr>
<td>Lipkind, Henry</td>
<td>Associate Chemist</td>
<td>2/45</td>
<td>8/45</td>
</tr>
<tr>
<td>Lyon, Ward</td>
<td>Research Assistant</td>
<td>9/42</td>
<td>7/47</td>
</tr>
<tr>
<td>McClure, John H.</td>
<td>Research Assistant</td>
<td>12/46</td>
<td></td>
</tr>
<tr>
<td>McDonald, Richard</td>
<td>Junior Research Assistant</td>
<td>12/45</td>
<td>6/45</td>
</tr>
<tr>
<td>Martin, Donald</td>
<td>Chemist</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Maxwell, Elizabeth E.</td>
<td>Junior Research Assistant</td>
<td>8/45</td>
<td>7/43</td>
</tr>
<tr>
<td>Moulton, George H.</td>
<td>Junior Chemist</td>
<td>4/43</td>
<td>1/44</td>
</tr>
<tr>
<td>Naber, Charles</td>
<td>Associate Chemist</td>
<td>2/45</td>
<td>3/45</td>
</tr>
<tr>
<td>Newton, Anne B.</td>
<td>Chemist, Section Chief</td>
<td>6/42</td>
<td>4/42</td>
</tr>
<tr>
<td>Nettorf, Robert V.</td>
<td>Associate Chemist</td>
<td>5/43</td>
<td>8/45</td>
</tr>
<tr>
<td>Noyes, William K.</td>
<td>Associate Chemist</td>
<td>5/44</td>
<td>9/45</td>
</tr>
<tr>
<td>Olsen, Mary Lou</td>
<td>Junior Research Assistant</td>
<td>4/44</td>
<td>9/44</td>
</tr>
<tr>
<td>Patterson, James H.</td>
<td>Junior Chemist</td>
<td>5/44</td>
<td></td>
</tr>
<tr>
<td>Petersen, David</td>
<td>Research Assistant</td>
<td>12/46</td>
<td></td>
</tr>
<tr>
<td>Petersen, Daniel W.</td>
<td>Research Assistant</td>
<td>9/43</td>
<td>9/44</td>
</tr>
<tr>
<td>Pflueger, Willard</td>
<td>Research Assistant</td>
<td>9/45</td>
<td></td>
</tr>
<tr>
<td>Pierick, Edward G.</td>
<td>Research Assistant</td>
<td>9/43</td>
<td>11/47</td>
</tr>
<tr>
<td>Porter, Paul E.</td>
<td>Junior Chemist</td>
<td>3/46</td>
<td></td>
</tr>
<tr>
<td>Powell, Jack E.</td>
<td>Junior Chemist</td>
<td>4/43</td>
<td></td>
</tr>
<tr>
<td>Powers, Richard</td>
<td>Research Assistant</td>
<td>7/46</td>
<td></td>
</tr>
<tr>
<td>Pratt, William V.</td>
<td>Research Assistant</td>
<td>9/45</td>
<td></td>
</tr>
<tr>
<td>Ramsey, Richard F.</td>
<td>Junior Chemist</td>
<td>3/44</td>
<td></td>
</tr>
<tr>
<td>Reed, Sherman A.</td>
<td>Research Assistant</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Randle, Robert</td>
<td>Senior Chemist, Section Chief</td>
<td>5/49</td>
<td></td>
</tr>
<tr>
<td>Sleight, Norman A.</td>
<td>Associate Chemist</td>
<td>6/43</td>
<td>3/46</td>
</tr>
<tr>
<td>Smith, Albert L.</td>
<td>Junior Chemist</td>
<td>4/43</td>
<td>10/47</td>
</tr>
<tr>
<td>Smith, Francis C.</td>
<td>Junior Research Assistant</td>
<td>1/44</td>
<td>5/48</td>
</tr>
<tr>
<td>Smith, Robert</td>
<td>Research Assistant</td>
<td>3/45</td>
<td>8/45</td>
</tr>
<tr>
<td>Snow, Adolf</td>
<td>Junior Chemist</td>
<td>1/43</td>
<td></td>
</tr>
<tr>
<td>Spedding, Frank E.</td>
<td>Director</td>
<td>2/42</td>
<td></td>
</tr>
<tr>
<td>Spencer, Walter</td>
<td>Research Assistant</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Stokes, Richard H.</td>
<td>Research Assistant</td>
<td>9/46</td>
<td></td>
</tr>
<tr>
<td>Stoeckel, Arthur J.</td>
<td>Chemist</td>
<td>8/46</td>
<td></td>
</tr>
<tr>
<td>Sullivan, William E.</td>
<td>Chemist</td>
<td>6/43</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Appointed</td>
<td>Resigned</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Svec, Harry</td>
<td>Junior Chemist</td>
<td>5/44</td>
<td></td>
</tr>
<tr>
<td>Towseough, Arthur D.</td>
<td>Associate Chemist</td>
<td>6/42</td>
<td>10/47</td>
</tr>
<tr>
<td>Thamer, Barton</td>
<td>Research Assistant</td>
<td>7/46</td>
<td></td>
</tr>
<tr>
<td>Thompson, Richard</td>
<td>Junior Research Assistant</td>
<td>9/42</td>
<td>8/47</td>
</tr>
<tr>
<td>Treick, Dalton A.</td>
<td>Junior Chemist</td>
<td>5/43</td>
<td>8/46</td>
</tr>
<tr>
<td>Tucker, Walter D.</td>
<td>Associate Chemist</td>
<td>1/45</td>
<td>9/47</td>
</tr>
<tr>
<td>Vaslov, Fred</td>
<td>Junior Chemist</td>
<td>2/43</td>
<td>6/45</td>
</tr>
<tr>
<td>Voigt, Adolf</td>
<td>Chemist, Section Chief</td>
<td>7/42</td>
<td></td>
</tr>
<tr>
<td>Vetter, Roger</td>
<td>Research Assistant</td>
<td>5/42</td>
<td></td>
</tr>
<tr>
<td>Walsh, Kenneth A.</td>
<td>Research Assistant</td>
<td>4/43</td>
<td></td>
</tr>
<tr>
<td>Varf, James C.</td>
<td>Chemist, Section Chief</td>
<td>6/43</td>
<td>9/47</td>
</tr>
<tr>
<td>Wilhelm, Harley A.</td>
<td>Associate Director</td>
<td>2/43</td>
<td></td>
</tr>
<tr>
<td>Wilkinson, John A.</td>
<td>Junior Chemist</td>
<td>7/43</td>
<td>9/43</td>
</tr>
<tr>
<td>Williams Wayne</td>
<td>Junior Research Assistant</td>
<td>2/44</td>
<td>8/46</td>
</tr>
<tr>
<td>Wilson, Archie</td>
<td>Research Assistant</td>
<td>1/43</td>
<td>8/46</td>
</tr>
<tr>
<td>Wimmer, Eugenie E.</td>
<td>Junior Research Assistant</td>
<td>1/44</td>
<td>10/44</td>
</tr>
<tr>
<td>Welker, Frederick</td>
<td>Associate Chemist</td>
<td>4/42</td>
<td>6/46</td>
</tr>
<tr>
<td>Wright, James N.</td>
<td>Junior Chemist</td>
<td>1/44</td>
<td></td>
</tr>
</tbody>
</table>