
1

Enhancing Search Capabilities of Legacy Internet Resources

Marie Erie, Michelle LeBlanc and Vijay Raghavan*
The Center for Advanced Computer Studies

University of Southwestern Louisiana

Abstract: Many information resources available over the Internet only provide browsing and pre-defined
navigation capabilities. If the user is interested in simple word matches on documents as a whole, search
engines such as Yahoo or AltaVista may be adequate. For resources of high volume, the user should be
able to specify preferences and just obtain the relevant portions of a resource. In this paper, we study the
problem of enhancing the search capability to an existing resource by implementing and evaluating two
approaches: use of (i) structured (relational) database or, (ii) HTML documents enhanced with meta tags.

I. Introduction

The World Wide Web (WWW) has enabled widely dispersed audiences to access
a spectrum of information resources. A variety of Internet search tools [1] exist for
retrieving links to documents of potential user interest. Yahoo and AltaVista are
examples of search engines that normally examine entire documents, but may allow the
user to search only the title or only the body of HTML [2] documents. Searches are for
simple matches on limited combinations of words or a phrase input by the user. Results
are returned as a series of pages with links to documents that satisfy the request. Based
on the brief text associated with a link, the user may then navigate to a document, or a
collection of documents within a given Web site, and perhaps decide to search within that
resource. Of course, a resource of interest may be obtained by other paths, such as a link
from a parent document or directly from a known URL address. Once obtained, it is
often the case that the server offers the user little more than simple navigational links
based on a predefined breakdown of the information at the site. Alternatively, one could
use the FIND function of the browser to look for simple word patterns. For successful
and efficient searching through resources of high volume, the user should be able to
specify one or more terms of interest (e.g. of a certain semantic type) in a search request
that returns only that portion of the document that matches the request.

To this end, in this paper, we address the issue of enhancing the search
capabilities of legacy Internet resources, (i.e. old-style pre-existing resources developed
prior to the advent of more modern methods). In section II, we begin by establishing the
requirements and desired features of a search tool designed to augment an existing
resource. Section III introduces two approaches to creating a user search interface by
which the user may find desired information from a resource. In section IV.A, we
describe a large online document local to the University of Southwestern Louisiana
(USL) as an exemplary legacy Internet resource offering only browsing capability. In
sections IV.B and IV.C, we detail two implementations of a search tool for this resource.
The two approaches are modeled after the architectures described in section III. Both

∗ CACS, 2 Rex St., P. O. Box 44330, USL, Lafayette, LA 70504
 ph: (318) 482 6603, fax: (318) 482 5791, raghavan@cacs.usl.edu

mailto:raghavan@cacs.usl.edu

2

implementations enable the user to specify search terms in particular fields of the
resource in order to obtain only that small portion of the resource matching the sets of
field-term pairs. In section IV.D, we contrast the two approaches with respect to the
requirements outlined in section II. Section V concludes by stating our preferences
among the two implementations.

II. Requirements/Preferences for Tools to Enhance Within-Document Searching

Given that the condition of an existing Internet resource may warrant the
construction of a tailored search tool subsequent to the resource’s availability online, we
outline features to be considered in designing such a tool. We propose the following
criteria for assessing alternative approaches.

♦ Ownership of source database: When the existing Internet resource was developed
from a source database that is owned locally and is available, it may be preferable to
access the original database than to attempt to define search and target elements by
parsing the online document. It may also happen that special agreements could be
worked out with the creator of the source database, if not locally available.

♦ Automation of data transformation: If the original database is available in a structure
that can be queried via DBMS commands embedded in a host language, then no
preprocessing may be required. Otherwise, the original database may be exported to
a structured (relational) database. This will require some degree of preprocessing. If
the source database is not available, the online document must be parsed for
recognizing search and target elements. Thus, in either case, preprocessing may be
unavoidable. What is to be considered is the degree to which any preprocessing
phases can be automated.

♦ Data duplication and storage: Ideal scenarios come in two flavors: (1) The online
document can be parsed for search and target elements and only metadata1 about each
data element’s type and location within the online document is maintained locally in a
relational database. (2) The source database is locally available in a structure ready
for access via host language programming. In the first case, there is no duplication of
data and only minimal information about the existing online document is stored
locally. In the second case, there is no duplication of data from the online document
or from the source database.

♦ Implementation effort: The search tool development can be divided into five phases:
(1) preprocessing to obtain structured data or structured metadata, (2) construct user’s
online input form, (3) retrieve users input, (4) construct query and access data, (5)
construct an online results page to be returned to the user. The expenditure of effort
and time involved in implementing these tasks should be weighed in the design phase.

1

metadata is "information about information". For example, in an HTML document one may deonte that the first phrase in
the document is the title by enclosing that phrase by the metatag pair <title></title>. For bibliographic citations, some
other categories of metadata are 'author', 'publisher', and 'date'.

3

♦ Query types available to user: The existing Internet resource should be examined to
determine the range of query complexity that might be useful to the user. If using a
structured (relational) database, allowable query types can be tailored to user needs.
If using software, such as Isearch [3,4], for automating the indexing and searching of
documents, then the software dictates what type of queries are available to the user.

♦ Maintenance of state: Between the initiation of a search request by the user via the
submission of an input form and the receipt by the user of the final results of the
search, there may be several communications between the server and client2. When
an implementation uses the Hypertext Transfer Protocol (HTTP) [5] and Hypertext
Markup Language (HTML) [2] in combination with the Common Gateway Interface
(CGI) [6,7], a continuous execution state is not maintained and must be mimicked in
the CGI script. One may choose to consider an implementation that integrates with
ANSI Z39.50 [8] servers which operate on a protocol that maintains state. (HTML,
CGI, and Z39.50 are briefly discussed in section III).

♦ Performance: Search methods should take advantage of indexes created on search
elements. This feature will play a significant role in speeding up the return of search
results. A related issue is whether or not a method supports ranked output.

♦ Search tool maintenance: One of the most prominent features of the WWW is its
ever-changing state. Documents are being added or updated at a phenomenal rate.
Since the topic of this paper addresses the issue of creating tools to enhance searches
of existing Internet resources, the design should take into account the fact that the
information in the online document, and perhaps the way it is organized, is likely to
change over time. Although the manner in which an Internet resource may change
cannot be predicted, providing an implementation that renders various phases
modular is likely to equate to less effort in maintenance.

With these guidelines in mind, we now outline two Internet-computing design
approaches that may be applied to the task of Internet resource search enhancement.

III. Two Architectures for Searching within an Internet Resource

A. HTML and CGI with a Relational DBMS (RDB/CGI)

HTML documents are one type of document that a WWW server presents for
display on the client’s browser. HTML tags dictate the document display format. CGI is
a mechanism that allows servers to execute external CGI programs that accept user-
specific data from the client via HTML forms [7]. Figure 1 shows the architecture for
this interface. These HTML documents are authored with FORM, INPUT, and SUBMIT
tags. This allows the user to place values into the form. When the user submits the form,
the values are passed on to the server via a URL request that calls the CGI program
which processes the user input. The figure shows the architecture for a CGI program that
queries a structured database (DB) system by using embedded SQL (Structured Query

2 server is a computer or a program that provides a service on the Internet such as FTP and file access.
clients are the computers or software programs, such as a browser, that access these services.

4

Language) statements. The program completes execution by generating a new HTML
document that contains the program’s results. The server passes this document back to
the Web browser for display. There may be several iterations of this cycle, with new user
input, before the user is satisfied that information retrieval is complete. The HTTP
protocol by which these processes are spawned does not preserve the state of execution
from one cycle to the next. In order to maintain state information, the CGI program is
written such that when it outputs the results to the user, as a new HTML document, it
includes state information from the previous cycle in hidden fields, denoted by user
INPUT tags with a HIDDEN attribute.

A potential bottleneck in this approach is that, since processing is restricted to the
server-side, a large client base could place a heavy load on the server. In addition, the
lack of statefullness associated with HTTP can lead to excessive data transfer during a
cycle of execution.

Figure 1. Architecture for RDB/CGI Application

With respect to the topic of this paper, the structured database in the figure can be
thought of as the original data from which the online resource was created. In the event
the database is not structured or cannot be accessed by a SQL, then the database must be
ported to a structured form.

B. HTML Metatag Insertion Integrated with an Information Retrieval System

The Isite/Isearch system [3,4,9] is a text retrieval system that allows one to
retrieve documents according to several classes of queries. We describe this alternative
approach to providing search enhancement assuming that Isite is used as the information
retrieval engine. This alternative uses a client/server architecture involving Z39.50
protocol and thus maintains state information throughout a search session. The
architecture of such an application is shown in Figure 2. The architecture is similar to

 CLIENT SERVER CGI PROGRAM

 user query & user query &
 preferences preferences
 b

 query results in
 HTML format
 query results

 SQL Query results
 Query in relational
 tabular format

*display HTML form

*get input from user

*display HTML with
 results

*invoke CGI
 program

*send HTML
 documents

*input parsing

*Query
 construction

*HTML generator

 SQL Query
 Processor
 DBMS

Database

5

that of RDB/CGI applications shown in Figure 1 but with the distinction that HTTP is a
transaction oriented protocol whereas Z39.50 is session oriented, meaning it preserves
state. When a client contacts a server with a Z39.50 protocol request, the server
establishes a connection to a Z39.50 server via the Z39.50 Gateway. The Z39.50
Gateway and Server functions in a way somewhat analogous to the CGI program in the
RDB/CGI architecture. That is, the Z39.50 server executes the search against a database
(or a distributed database). The database system shown uses Isite’s Isearch/Iindex
software which adheres to Z39.50 information retrieval standards. The Isite database is
composed of documents, indexed by Iindex, accessible by Isearch.

Figure 2. Architecture for Isearch Application

Isearch features give the user many options for composing queries with search
and target elements; options not offered by a SQL embedded CGI application without
significant programming effort. The Simple Search allows the user to perform case-
insensitive search on one or more search elements (fields). Partial matching to the left is
allowed. The Boolean Search allows the user to compose a two-term query where the two
terms are related by one of the Boolean operators AND, OR, or ANDNOT. “Full Text”
is the default search domain unless the user selects a particular element for a term from
the term’s pull-down menu. The Advanced Search form accepts more complex Boolean
queries that are formed by nesting two-term Boolean expressions; for example: “Acadian
AND (language OR dialect)”. To narrow a search domain from “Full Text” to hits
occurring within a single search element, the term is prefixed with the element name and
a forward slash. For example, the query “AUTHOR/Dobbs AND TITLE/education”
searches for ‘Dobbs’ only in the ‘AUTHOR’ element.

The information targeted for return by a query may be specified by choosing
target elements from a pull-down menu. The user may also choose to view a maximum
number of items in the results set at a time. Isearch is capable of performing a weighted
search based on search term frequency. A term’s weight increases proportionately to a
term’s occurrence frequency within a document, but decreases as the number of

 CLIENT SERVER Z39.50 GATEWAY
 & SERVER
 user query & user query &
 preferences preferences

results set records from
 results set
 query results

 execute
 search

*display HTML form

*get input from user

*display HTML with
 results

*establish
 communication
 with Z39.50
 server

*send HTML
 documents

*access Retrieval
 System

*create results set
 in HTML format

 Isite's
 Isearch/Iindex
Retrieval System

Isite DB

6

documents in which the term appears increases. The statistics for all search terms are
combined to establish a ranking among the members of the results set. The results set is
ordered, for viewing, with the highest ranked results first.

To compare these two design architectures, we selected an existing Internet
resource for which a real-world community of users exists and who expressed to us a
wish for a better search interface to this resource. We have implemented two different
document-specific search engines that address their needs. The next section is devoted to
the details of this work.

 IV. A Case Study:
Two Implementations that Enhance Searches of a Local Internet Resource

A. The 1996 Abridged Bayou State Periodical Index as an Internet Resource

The Bayou State Periodical Index [10] is a guide to Louisiana periodicals which
is published yearly by the USL Edith Garland Dupre Library. It is organized into three
main sections. The first is a listing of cited Journals with publisher and distribution
information. The second and largest section, the Subject Index, lists all journal citations
alphabetically by subject. The last section is the Author Index which lists all journal
citations alphabetically by author. The existing Internet resource for this index , The
1996 Abridged Bayou State Periodical Index, is an HTML document located at
URL: http://www.usl.edu/Departments/Library/departments/larm/abspi.html. It contains
approximately one quarter of the entries from the unabridged hard-copy version. This
resource is limited in that it only allows the user to browse the index sequentially by
subject. Additionally, the entire document is partitioned into four segments grouped by
alphabetical links for navigational purposes: A-C, D-K, L-P, Q-Z. The citations in the
unabridged (hard-copy) index contain one or more of the following attributes: subject,
author, title, journal (or periodical), volume, issue number, pages, date, and year. In
addition, in the subject index, there may exist cross-references to other subjects, prefixed
by See or See Also. For such resources of high volume, information retrieval would be
greatly enhanced by a search engine that allowed the user to go directly to only one or a
few citations by specifying values of some subset of the available attributes (search
elements). We addressed this problem by implementing the architectures described in
section III above. The details for each are outlined in the following subsections.

B. Relational Database Accessed via HTML forms and CGI Scripts (RDB/CGI)

In the implementation discussed in this section, we chose to create a search tool
that accesses the original source data used for the hard-copy publication rather than
process the abridged version located at the URL noted in the previous section. The URL
for this implementation is located at http://www.cacs.usl.edu/cs561-bin/Bayou.cgi.

The original data for the Bayou State Periodical Index resides in an AUTHEX
Plus [11] database system in two main files. The “database” file is composed of records
containing data on bibliographic citations. Each record is unique by a <title> field and
contains other fields for entering the citation data. A “database” record also includes an

http://www.usl.edu/Departments/Library/departments/larm/abspi.html
http://www.cacs.usl.edu/cs561-bin/Bayou.cgi

7

attribute <subject> whose value is a list of subjects under which the citation is a member.
The “subject” file contains records which are unique by <subject>. Two of the subject
file fields relevant to this implementation are the See and See also subject cross-
referencing fields. The “database” and “subject” files are ultimately joined by the
<subject> field, even though a “database” record’s subject field may contain a list and a
“subject” record’s subject field may not. Since the AUTHEX Plus software does not
provide a host language-based access to its data, the “database” and “subject” files were
obtained in export format: ASCII files with delimited records and fields. The files were
parsed for relevant data items which were then loaded into a relational database,
ORACLE® [12]. Proprietary structure existing within a field in the AUTHEX Plus
export files is accounted for at the outset during parsing, thus precluding any need for
manual editing of the load data files. The tables comprising the schema are defined as
follows:

SUBJECT
SUBJ_NO SUBJ_NAME

SUBSUB
SUBJ_NO REF_TYPE REFERENCE

BIBLIOGRAPHY
BIB_NO TITLE JOURNAL VOLUME ISSUE PAGES MONTH YEAR

BIBSUB
BIB_NO SUB_NO

AUTHORS
BIB_NO NAME

Assuming some knowledge of structured databases, these tables are self-
explanatory with perhaps the exception of the SUBSUB table. It’s REFERENCE field
holds a subject number value for one of the two mutually exclusive subject cross-
reference types, See and See also. REF_TYPE holds a flag to indicate which reference
type is in the REFERENCE field. These fields were placed in a separate table since most
subject entries have NULL cross-reference fields. The overall design was chosen so as to
compress the data while allowing full join capability.

We organized the originating HTML form into four options (via radio buttons) to
a journal list, an author list, a subject search form, and an author search form. Selection
of one of the four categories followed by selecting the SUBMIT button, invokes a CGI
script which, depending on the query type, produces an HTML page specific to that
search. Each page has a link back to the originating page so as to permit the user to
perform another search. A link to the 1996 Abridged Bayou State Periodical Index is also
provided.

The journal list submission returns the results of a query to the BIBLIOGRAPHY
table and is simply a listing of all journals cited in the Bayou State Periodical Index. The

8

author list submission similarly returns the results of a query to the AUTHOR table. It is
an HTML form which alphabetically lists all authors associated with bibliographic
entries. The list is headed by an alphabetical index that allows the user to link to a
particular section of the list. Each author’s name is the value of a radio button, and when
selected and submitted, the CGI script initiates a new database search for all
bibliographic citations by the chosen author. The results are returned as an HTML page
in the format found in the Bayou State Periodical Index’s Author Index.

The Subject Search and Author Search forms allow the user to input a subject and
author name respectively. These searches allow for partial matching and are case-
insensitive. An optional “year” field allows the user to narrow the search further. This
field was included in anticipation of the addition to the database of journal citations for
future years. All matching bibliographic entries are returned, organized by subject or
author, depending on which form was submitted. The results returned for the Subject
Search have the added feature that the See and See also cross-reference fields, if present,
have the associated subject as the value of a radio button. The cross-reference may be
selected and submitted, taking the user immediately to the results of that subject search.

It might be desirable to add optional author input to the subject form, and vice-
versa, allowing the user to refine the search. Furthermore, any other attribute of the
tables could be included in a form for search purposes, accompanied by minor changes to
the CGI script.

C. HTML Documents Enhanced with HTML Metatags

In this approach, the existing resource, The 1996 Abridged Bayou State Periodical
Index, was standardized by extending the HTML document with metatags. These are
tags which delimit data elements in the document to indicate information about those
elements. The syntax of their use is the same as that of standard HTML tags but a Web
browser ignores them. One HTML document was produced for each set of citations
under <subject>. This set of documents was indexed by the Isite software [9] for
subsequent searching using the Isearch utility [3,4]. The inserted metatags are recognized
by this software. The Dublin Core scheme [13] was used, which has been proposed as a
standard for metadata for bibliographic citation data. The Dublin Core metadata element
set is a core set in that it is a small number of elements of general applicability. Of this
set, the ones relevant to the current implementation are Subject, Title, Author and Date.
The extensibility of the Dublin Core scheme allows for the addition of other elements to
the set. For enhancing the search and selectively displaying certain target portions of the
existing resource, Periodical, Volume and Page elements were added to the set. Figure 3
shows an example of one entry from the index’s HTML source.

<P>ACADEMY OF THE SACRED HEART, New Orleans

Sacred Heart restores shutters and cupola.

<I>Preservation in Print</I>v23 n6 p28, Aug, 1996

Figure 3: HTML tags used in the index

9

It was noted that and enclosed the subject, and <I> enclosed the title, <I>
and </I> enclosed the periodical, and </I> and </BR> enclosed the volume, pages, and
date. The online resource was parsed and reproduced in a form that could be used for
indexing and later search. Figure 4 shows the HTML metadata resulting from parsing the
citation shown in Figure 3.

<Subject> ACADEMY OF THE SACRED HEART, New Orleans</Subject>
<Title> Sacred Heart restores shutters and cupola.</Title>
<Periodical><I> Preservation in Print</I></Periodical>
<Volume>v23 n6</Volume><Page>p28,</Page>
<date>Aug. 1996</date>

Figure 4: HTML meta-data used for citation indexing

The syntax in Figure 3 is not consistent throughout the resource and some manual editing
was required to produce accurate HTML metadata for all citations. For example, many
citations have no entries for some of the fields. In addition, after the subject field, a small
percentage of the citations have the See and See also fields delimited by the <I></I> tag
pair. Similar inconsistencies were found in other fields.

The interface for the indexed abridged dataset offers links to a Simple Search
page, a Boolean Search page, and an Advanced Search page. This menu is located at
URL: http://www.cacs.usl.edu/cs561-bin/wmb2/wmb2.cgi.

The Simple, Boolean and Advanced Searches are discussed above (in III.B).
Search and target elements are: Subject, Title, Periodical, Volume, Page and Date. A
range of dates is allowed. This built-in Isearch feature may become relevant in future
years when a separate HTML page for another year is expected to be available for
processing.

Detailed information about the user’s results are available in the ‘Search
Summary’ entry at the top of each search’s “results page”. It shows how many times
each query term occurred and in how many documents, as well as total time required to
perform the search. An on-line Help page is accessible via a Netscape browser.

D. Strengths and Limitations of Implementations

Equipped with the above details of both implementations, we turn to evaluating
the degree to which they meet the requirements and preferences outlined earlier.

♦ Ownership of source database: The relational database implementation is a true
replica of the source database since it offers up to the user the entire unabridged
resource and bypasses the legacy Internet resource altogether. The Internet resource
represents one quarter of the source database and author information is not included.
In this respect, the RDB/CGI scenario is preferable to the second implementation.

♦ Automation of data transformation: The completeness and accuracy of the parsing
phase in the RDB/CGI approach is attributed to the precise delimiting of records and

http://www.cacs.usl.edu/cs561-bin/wmb2/wmb2.cgi

10

fields in the source database export files. The ordering and adjacency of fields is
preserved by delimited NULL values. Thus, data element type identification is not
corrupted in the DB porting process. This is to be contrasted with the HTML metatag
approach, where parsing the online resource relies on the pairing of HTML tags. The
syntax varies from one citation to the next since NULL fields are left undetected. The
attribute of a given field may then be ambiguous. The attributes Volume, Number,
Page and Date must be extracted from between the single tag-pair </I>
. The
fact that each attribute is not guaranteed to be present, poses some problem for
automation. It is also noted that the abridged online document required some manual
editing before the final version became available at its current URL site.

♦ Data duplication and storage: Both implementations require that a duplication of
data reside locally, in addition to the original HTML abridged index. Were it not for
the need for manual editing of the original abridged index for proper insertion of the
metatags, the HTML metatag method would have the potential for maintaining only
the metadata locally, in addition to the existing online Internet resource. Multi-level
parsing of the abridged index may yet resolve this issue. By contrast, non-local data
storage is not a possibility for the RDB/CGI approach since the Internet version of the
resource is never accessed. It is precisely the local structured DB that must be
available to the CGI application.

♦ Implementation effort: Referring to the five phases of application development
enumerated in section II under 'implementation effort', only the first phase,
preprocessing to obtain structured data, poses a challenge to the HTML metatag
approach. All other phases are provided for by the software package. For the
RDB/CGI case, all phases must be coded by the developer of the search tool. Most
phases are straightforward in terms of program development. With respect to query
construction, coding effort will depend on the range of query types made available to
the user.

♦ Query types available to user: The RDB/CGI implementation has the potential for a
full range of query types equivalent to that of the Isearch software. The simplicity of
the periodical index does not warrant the need for complex searches, so the query
versatility offered by Isearch may be considered extravagant. With respect to partial
matches, the two approaches interpret search terms differently. For a relational
approach, an atom is the whole string (possibly, with several words) stored as the
value of an attribute, with partial matching occurring at the ends of the string. For
Isearch, each individual word in a phrase is atomic. If the user wishes to search on
part of an atomic unit, it is the user who inputs the wild card. If a wild card is used in
querying a relational DB, then in many systems (e.g. ORACLE®), sequential
searching is performed, regardless of index structures created on the search element.

 The ability of CGI scripting to provide special-purpose applications enabled us to
construct query types that are not possible with Isearch without significantly
modifying its source code. Specifically, we were able to return results with values
associated with radio buttons: (1) subjects associated with See and See also in Subject
Search returns and (2) author names in the Author List return. The ability to initiate a
new search by selecting these buttons is a very attractive feature of the RDB/CGI

11

approach. In the current HTML metatag implementation, the user would have to
make a note of any subject referenced by See or See also, return to some type of
search input form, enter the subject name and submit. Since the online periodical
index has been generated without author data, author searches are not available in the
latter implementation.

♦ Maintenance of state: It is well documented that a main disadvantage of the
RDB/CGI option is its dependence on HTTP, which is a stateless protocol. In this
respect, building an application that interfaces Isite/Isearch through a Z39.50 client is
clearly preferred.

♦ Performance: We have not made a quantitative comparison between the two
implementations on this criterion. What Isearch does have to offer are the ranking
and timing statistics that are returned as part of the results page. As of this writing,
we have not indexed the relational DB that is accessed by the CGI script. This is a
simple matter and would need to be done before any quantitative comparison can be
considered meaningful. Qualitatively, the two implementations appear satisfactory in
terms of response time.

♦ Search tool maintenance: Addition of new data to the online resource poses a
maintenance problem for the HTML metatag implementation since the creation of
new HTML “citation” documents to be indexed by Isite will require the
preprocessing to be redone. For the RDB/CGI option, the preprocessing is fully
automated. All that is required for update is a session of parsing AUTHEX export
files for a new year and loading the data into the ORACLE® DB.

V. Conclusion

Although the use of HTML metatags for indexing and searching is a new and
sometimes desirable approach to the problem of search enhancement, the peculiarities of
a given resource may prove cumbersome enough to warrant the use of more traditional
methods such as porting one database to another, even at the expense of duplicate
storage. The original database for the resource of this study is maintained locally,
making the relational database approach a viable option. Weighing the above
requirements, we suggest that, when the source database is available, it is preferable to
construct a tailored search engine that accesses the source directly rather than adopt a
method requiring the processing of an output document from that source.

Acknowledgments: The implementation using HTML metatag insertions and use of Isite/Isearch software
as described in section IV.C. was created by Weil M. Badawy, a Ph.D. computer science graduate student
at CACS, USL. We acknowledge Ms. Sheryl Moore and Ms. Jean Kiesel of the USL Dupre Library and
Ms. Judy Buys of the National Wetlands Research Center for their guidance during the implementation of
the systems described in this paper. This work is supported in part by a grant from the U.S. Department of
Energy (under Grant No. DE-FG02-97ER1220).

12

Author biography:
Marie Erie and Michelle LeBlanc are Computer Science Ph.D. students at the Center for

Advanced Computer Studies (CACS), University of Southwestern Louisiana. Marie’s interests are in
medical visualization and physics-based modeling in computer graphics. Michelle’s interests include
artificial intelligence, database systems, and user interface design.

Vijay Raghavan is a professor of computer science at CACS. His research interests are in
information retrieval, database mining and Internet computing. He directs a project, funded by the DoE,
aimed at developing an Energy and Environmental Information Resources Center.

REFERENCES

1. V.N. Gudivada, V.V. Raghavan, and R. Kasanagottu, Information Retrieval on the
World Wide Web, IEEE Internet Computing, Vol. 1, No. 5, Sept.-Oct. 1997, pp. 58-
68. Also available at RL:http://www.cacs.usl.edu/~raghavan/raghavan.html

2. A Beginner's Guide to HTML, NCSA,
URL: http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

3. Isearch Text Search Engine, URL: http://www.cnidr.org/ir/isearch.html
4. A brief tutorial on using Isearch, URL:

http://vinca.cnidr.org/software/Isearch/Isearch.html
5. Barners-lee, T., Fielding, R., Frystyk, H., Hypertext Transfer Protocol – HTTP/1.0,

Network Working Group, RFC1945, May 1996., URL:
http://www.ics.uci.edu/pub/ietf/http/rfc1945

6. Robinson, D.R.T., The WWW Common Gateway Interface Version 1.1,
URL: http://weeble.lut.ac.uk/System-docs/Internet-drafts/draft-robinson-www-interface-01.txt,
IETF, Feb. 1996, and http://www.w3.org/pub/WWW/CGI/Overview.html

7. An Instantaneous Introduction to CGI Scripts and HTML Forms, Academic
Computing Services, University of Kansas,
URL: http://www.cc.ukans.edu/~acs/docs/other/forms-intro.shtml

8. Information Retrieval (Z39.50): Application Service Definition and Protocol
Specification, URL: http://www.lcweb.loc.gov/z3950/agency/

9. Isite Information System, URL: http://www.cnidr.org/ir/isite.html
10. Bayou State Periodical Index 1996, Jean S. Kiesel and Ashley E. Bonnette, eds.,

U.S.L. Libraries, Lafayette, LA, 1997.
11. AUTHEX Plus Manual, Reference Press, Ontario, Canada, 1990.
12. ORACLE Corp. WWW Home page at URL: http://www.oracle.com/
13. “Mapping the Dublin Core Metadata Elements to USMARC”, report 86, URL:

gopher://marvel.loc.gov:70/00/.listarch/usmarc/dp86.doc, June 1995.

http://www.cacs.usl.edu/~raghavan/raghavan.html
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html
http://www.cnidr.org/ir/isearch.html
http://vinca.cnidr.org/software/Isearch/Isearch.html
http://www.ics.uci.edu/pub/ietf/http/rfc1945
http://weeble.lut.ac.uk/System-docs/Internet-drafts/draft-robinson-www-interface-01.txt
http://www.w3.org/pub/WWW/CGI/Overview.html
http://www.cc.ukans.edu/~acs/docs/other/forms-intro.shtml
http://www.lcweb.loc.gov/z3950/agency/
http://www.cnidr.org/ir/isite.html
http://www.oracle.com/
gopher://marvel.loc.gov:70/00/.listarch/usmarc/dp86.doc

	Abstract
	I. Introduction
	II. Requirements/Preferences for Tools to Enhance Within-Document Searching
	III. Two Architectures for Searching within an Internet Resource
	A. HTML and CGI with a Relational DBMS (RDB/CGI)
	B. HTML Metatag Insertion Integrated with an Information Retrieval System

	IV. A Case Study: Two Implementations that Enhance Searches of a Local Internet Resource
	A. The 1996 Abridged Bayou State Periodical Index as an Internet Resource
	B. Relational Database Accessed via HTML forms and CGI Scripts (RDB/CGI)
	C. HTML Documents Enhanced with HTML Metatags
	D. Strengths and Limitations of Implementations

	V. Conclusion
	Author biography
	REFERENCES

