Delivering smart, global search technologies to speed discovery

U.S. Department of Energy
Office of Science
Office of Scientific and Technical Information (OSTI)
June 2006
Updated February 2013
Table of Contents

The Vision: Speeding Discovery 1
The DOE Science Accelerator 4
The Broader Agenda: Global Discovery 5
OSTI’s Unique Position 7
Foreword: Why We Need a DOE Science Accelerator

To accelerate discovery, it is essential to accelerate the diffusion of science knowledge. This calls for a new era in the sophistication and breadth of the tools to access and use scientific knowledge. Herein, the Office of Scientific and Technical Information (OSTI), an organization of the U.S. Department of Energy (DOE) Office of Science, proposes the “DOE Science Accelerator.”

Why build the DOE Science Accelerator? Because it is impractical for researchers to spend time finding and sifting through hundreds, if not thousands, of information sources in various disciplines and still have time for life-altering discoveries of their own. Scientists and science-attentive citizens need a time-saving single-search interface for the whole of science. They need to explore the deep Web, where specialized databases are beyond the reach of surface Web crawlers such as Google and Bing. They need transformational knowledge-diffusion technologies that enable robust and rapid scientific discovery. The DOE Science Accelerator meets those needs.

A significant milestone was achieved in 2002 when Science.gov introduced the capability to search 30 major databases of federal science agencies. OSTI pioneered this effort, but it has taken the cooperative effort of over 16 information organizations from 12 executive branch agencies to successfully launch and sustain this authoritative gateway to scientific knowledge. It is estimated that there are as many as 1,000 additional sources of scientific merit throughout the world of university, non-federal and foreign research entities. Information customers will only be able to reap the full benefit of these resources with the help of global search technology. Specifically, to accelerate advances in science and maximize the return on research investment, it is essential to create a global search capability to make these resources searchable and accessible.

But first we must dispense with the popular misconceptions that Web technology is mature and that the Web provides access to all meaningful information. We only have to look at the evolution of other transformational technologies to recognize that we are just beginning to exploit the Web. Alexander Graham Bell could not have envisioned the cell phone; Henry Ford could not have envisioned the hybrid vehicle. Invented by physicists for communicating about physics, the Web surfaced as a tool for posting and viewing static Web pages. While this remains an important application today, new models have also emerged.

OSTI pioneered several federal government Web 2.0 applications for the public—and we have only just begun.

The DOE Science Accelerator continues to answer the call to make DOE information widely available.

Walter L. Warnick, Ph.D.

Director, OSTI

The inability to globally search the Web is an enormous gap that frustrates the diffusion of science knowledge.
New discovery is required to meet national and worldwide needs for major advances to power our economy, develop energy independence, and protect our environment. But advances in science are only possible if knowledge is shared. Further, accelerating discovery is enabled by speeding the diffusion of knowledge.

Hence, scientists need the technology to access and search—en masse and with precision—all of the important science document databases worldwide.

The DOE Science Accelerator will yield that technology.

Building upon the DOE Office of Scientific and Technical Information (OSTI) success in deploying technology that enables search across distributed document databases, the DOE Science Accelerator will develop the capability to search thousands of distributed databases in parallel. To do this, resources must be marshaled to overcome the technological barrier of applying this capability to large numbers of distributed databases.

While technology has greatly accelerated the availability of scientific information on the Web, the tools and capabilities to search that information have not kept pace. This lag in search technology has created a giant chasm in the Internet where scientific databases reside but cannot be globally searched.

Because a way does not currently exist to search across large numbers of scientific databases with one query, scientists and science educators are blind to an untold quantity of untapped information. Much like the 19th century physician without x-rays or the 20th century Web surfer without Google, today’s scientists and science educators cannot fathom the quantity and quality of information they are missing without the DOE Science Accelerator. Instead, they are left the tedious and time-consuming task of searching “door-to-door” in only the
What is the deep Web and why can’t Google reach it?

Search engines, such as Google, rely upon automated crawlers and are great for finding Web pages, such as www.osti.gov. However, these Web page search engines typically cannot reach information within a database. Rather, database content is retrieved through the database’s own search engine.

Recognizing the distinction between searching Web page content and database content is important for science. This is because the bulk of authoritative science information resides in databases within the deep Web, which, as we’ve just seen, is off limits to Web page search engines. This is why OSTI is proposing to create the capability to search large numbers of databases in the deep Web, making it easier for students, teachers, researchers, corporate R&D labs, and government scientists to find the information they need.

Already, OSTI has pioneered the use of a new class of search engine specifically designed to access distributed resources in the deep Web, enabling a single query to launch searches across a limited number of databases. By using this innovative technology, it no longer matters where the information resides nor what format it is in, and the patron need not know the specific location of the information. While these factors no longer pose barriers to the process of information discovery, a new limitation has emerged—ramping up to larger numbers of databases. The associated technological barriers need to be overcome.
scientific communities and databases with which they are already familiar.

Commercial search engines, such as Google and Bing, crawl across billions of pages of information on the surface of the Web, but they cannot reach into scientific databases (the deep Web). Government efforts, such as OSTI’s pioneering deployment of cross-database search in Science.gov, have made significant inroads, but there are likely thousands of additional science resources still under-utilized.

While the barrier is large, so is the payoff. The DOE Science Accelerator is an important tool to ensure the Office of Science makes its R&D results readily accessible to speed discovery and raise scientific literacy.

With the DOE Science Accelerator available, scientists and science educators will no longer need to identify and search one-by-one every database useful to their particular knowledge-discovery pathway. Instead, our nation’s innovators will have the capability to search all the important science databases useful to the physical sciences via one query. Often obscure databases are illuminated, which in turn increases the probability of further and more rapid innovation and discovery. We call this “global discovery.” The end result is the acceleration of scientific advancement.
The DOE Science Accelerator is an initiative to accelerate the diffusion of research results, thereby accelerating innovation and the advancement of science.

The DOE Science Accelerator is a search capability that consolidates and exposes to distributed search all of the important Web-accessible collections of scientific knowledge in every scientific community.

The DOE Science Accelerator is an innovation engine that drives state-of-the-art knowledge tools and technologies, including implementation of grid computing and data discovery to make global discovery a reality.

The Mission

The mission of the DOE Science Accelerator is to advance science by accelerating science knowledge diffusion, using innovative tools and resources to speed access to R&D results and educational resources.

The Key Objectives

- **Global Discovery**: Develop integrated, full-text search of R&D results from disparate scientific communities to better equip scientists to rapidly travel pathways to innovation.
- **Education**: Build and deliver a searchable “gateway” to the nation’s vast but under-used federal government education resources.
- **Collaboration**: Capitalize on multi-agency and institutional open-access initiatives to speed and ease search of and access to text and data and to promote use and re-use of R&D results.
- **Policy**: Promote development of policy and infrastructure for consistent and effective integration and management of textual information and underlying data.

Who benefits? Examples include:

The student who can complete assignments more thoroughly and follow his/her natural curiosity

The teacher who is creating lesson plans in areas where he/she is not expert

The researcher entering a new field

The industrial entrepreneur who needs a solution fast to get the product to market
We stand on the rim of a new era of global discovery. As science communication evolves due to the Internet, grid computing, simulation, collaboratories, and other technological advances, the opportunity exists to create a single-search interface for the whole of science.

Beyond the immediate focus on education, the DOE Science Accelerator addresses major challenges in access to and use of science information—specifically, the huge gap in the Internet when it comes to accessing science databases. The DOE Science Accelerator bridges that gap with robust and time-saving precision search tools.

The DOE Science Accelerator advances R&D creativity through a world-class user facility for the testing and application of federated search, analysis and other emerging information science technologies. The DOE Science Accelerator enables the information consumer—whether in high school, college, graduate or post-graduate school, or whether a researcher, teacher, policy maker, or simply a science-attentive citizen—to rapidly navigate through petabytes of information and, with precision, find the precious few nuggets required to advance the science project at hand.
The portability of knowledge is essential to workforce competitiveness.

The Office of Science’s ability to demonstrate a high return on increased basic research funding depends, in large part, on the success with which scientific knowledge generated by its extensive R&D programs is diffused and re-used. Demonstrating this return on investment is increasingly important. The DOE Science Accelerator specifically supports the Office of Science Strategic Plan.
OSTI’s Unique Position

OSTI has a long history of recognizing gaps in scientific knowledge diffusion and developing innovative approaches for filling those gaps. In its early days, OSTI was charged with creating an agency-wide R&D information program from scratch. Over the next 50 years, OSTI capitalized on early adoption of technology, maximizing the use of computers for information search and retrieval. In the late 1990s, OSTI led the way among federal science agencies in going beyond electronic bibliographic information to bringing electronic full text to the desktops of scientists. To this day, the volume of DOE’s electronic full-text R&D information far outpaces any other science agency.

As agencies began hosting Web-searchable R&D databases, the science community certainly benefited but was still left with an inefficient means to locate and navigate through disconnected, disparate collections. Again, OSTI recognized this and pioneered groundbreaking distributed precision searching technology with the launch of Science.gov. OSTI has brought Google-like capabilities to the deep Web through products such as E-print Network and Science Conferences.

Now, OSTI sees another need: The huge gap in the Internet where search engines do not reach often obscure

OSTI’s Unique Position

OSTI’s unique STI collection

A repository invaluable to the science community:
- Over 1 million documents, classified and unclassified
- From the Manhattan Project to present, with daily additions
- Comprehensive and current
- Legacy research results not available anywhere else
- Over 125,000 full-text reports, fully searchable online
- Over 4 million R&D citations to research of interest to DOE plus other R&D information, such as active research projects.

Milestones Pioneered by OSTI

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First DOE homepage</td>
<td>First searchable documents</td>
<td>First parallel searching of databases and websites</td>
<td>First distributed search portal for government-wide science</td>
<td>First relevancy ranking of science.gov.</td>
<td>First alert services & fielded searching of databases and websites</td>
<td>First distributed search portal for scientific research data collection</td>
<td>First scientific research data collection</td>
<td>First distributed search portal for federal science education resources</td>
<td>First one-stop global science search</td>
<td>First scientific research data collection</td>
<td>First distributed search portal for scientific research data collection</td>
<td>First distributed search portal for scientific research data collection</td>
</tr>
<tr>
<td>Over 290 million transactions in FY ’12</td>
<td></td>
</tr>
</tbody>
</table>
science databases, disconnected education resources and non-federal sources such as university and international R&D.

As in the past, OSTI also sees a solution: We must overcome the challenge of scalability to take distributed searching beyond its current capacity limitations and enhance precision searching and Web 2.0 applications, accommodating exponential increases in information, while still delivering results in seconds. We can do this because we have a history of rising to big challenges; we can do it because we have a technological path forward; and we can do it because we are energized by the role we will play in accelerating science.

Statutory Authority

The Energy Policy Act of 2005 states: “The Secretary, through the Office of Scientific and Technical Information, shall maintain within the Department publicly available collections of scientific and technical information resulting from research, development, demonstration, and commercial applications activities supported by the Department.”

Since 1999, the number of annual transactions (page views and downloads) for science R&D information in OSTI’s databases has increased from 1.5 million to over 280 million.
Conclusion

Just as science advances only if knowledge is shared, accelerates the sharing of knowledge will speed up the advancement of science. The DOE Science Accelerator accelerates the sharing of knowledge by converting comprehensive cross-community searches from the impractical to the routine. Specific benefits include:

- Providing easily searched, relevant information, ranging from practical information for the consumer to highly technical scientific data for the research scientist
- Supporting future scientists and engineers with information and science education resources, initially converting DOE education resources from isolated islands of information to a virtual integrated whole
- Raising scientific and technical literacy

“The calculus of innovation is really quite simple:
- Knowledge drives innovation;
- Innovation drives productivity;
- Productivity drives our economic growth.
That’s all there is to it.”

William R. Brody
President
Johns Hopkins University

U.S. Competitiveness: The Innovation Challenge
Testimony to the House Committee on Science
July 21, 2005