'); ?>

Published by Judy Gilmore

 

2015 DOE STIP Working Meeting Attendees2015 DOE STIP Working Meeting Attendees

Each year, representatives of the Department of Energy (DOE) Scientific and Technical Information Program (STIP), led by the Office of Scientific and Technical Information (OSTI), convene for their annual meeting.  At this year’s working meeting of STIP representatives, held in April and hosted by Los Alamos National Laboratory, there was something different in the air.  Each year there is lively discussion, new contacts are made, and important information is shared, but this year's meeting had a different feel overall.  Perhaps it was the record number of participants, perhaps it was the number of first-time participants who were eager to learn and gain insight from strong scientific and technical information (STI) management programs in place at other labs and offices, or perhaps it was the feeling of being part of something groundbreaking as the DOE STIP community works together to implement the Department of Energy Public Access Plan.  In reflecting on the April meeting, I have concluded that it was “all of the above.”  

Published by Kathy Chambers

Argonne Leadership Computing Facility, Brown University: Brain blood flow simulation with NekTar; a continuum modelArgonne Leadership Computing Facility, Brown University: Brain blood flow simulation with NekTar; a continuum modelEmerging mesoscale science opportunities are among the most promising for future research.  The in-between world of the mesoscale connects the microscopic objects (atoms and molecules) and macroscopic assemblies (chemically and structurally complex bulk materials) worlds, giving a complete picture – the emergence of new phenomena, the understanding of behaviors, and the role imperfections play in determining performance.  Because of the ever-accelerating advances in modern experimental, theoretical, and computational capabilities, Department of Energy (DOE) researchers are now realizing unprecedented scientific achievements with mesoscale science.  

George Em Karniadakis is one of the notable mesoscale researchers who are changing what we know about medicine.  Dr. Karniadakis, a joint appointee with Pacific Northwest National Laboratory and Brown University, serves as principal investigator and director of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4), a major project sponsored by the Applied Mathematics Program within the DOE’s Office of Advanced Scientific Computing Research (ASCR).  CM4 focuses on developing rigorous mathematical foundations for understanding and controlling fundamental mechanisms in mesoscale processes to enable scalable synthesis of complex materials. 

Published by Kathy Chambers

Image credit: HAWCImage credit: HAWCCheers of celebration erupted in March 2015 as the High-Altitude Water Cherenkov (HAWC) Gamma- Ray Observatory was formally inaugurated on the slopes of the Sierra Negra volcano in the State of Puebla, Mexico.  The inaugural ceremony marked the completion of HAWC, the latest tool for mapping the northern sky and studying the universe’s violent explosions of supernovae, which are neutron star collisions and active galactic nuclei that produce high-energy gamma rays and cosmic rays that travel large distances, making it possible to see objects and events far outside our galaxy.  

This extraordinary observatory uses a unique detection technique that differs from the classical astronomical design of mirrors, lenses, and antennae.  From its perch on top of the highest accessible peak in Mexico, HAWC observes TeV gamma rays and cosmic rays with an instantaneous aperture that covers more than 15% of the sky.  The detector is exposed to two-thirds of the sky during a 24-hour period.  The observatory's ability to operate continuously and its location at 14,000 feet above sea level allow HAWC to observe the highest energy gamma rays arriving anywhere within its field of view.

Published by Sara Studwell

The Office of Scientific and Technical Information (OSTI) became a member of and a registering agency for DataCite in 2011—making the Department of Energy the first U.S. federal agency to assign digital object identifiers (DOIs) to data through OSTI’s Data ID Service.  DataCite is an international organization that supports data visibility, ease of data citation in scholarly publications, data preservation and future re-use, and data access and retrievability.   

Through the OSTI Data ID Service, DOIs are assigned to research datasets and then registered with DataCite to establish persistence and aid in citation, discovery, and retrieval.  The assignment and registration of a DOI is a free service for DOE researchers to enhance the management of this increasingly important resource.  Citations to these datasets are then made broadly available in OSTI databases such as DOE Data Explorer and SciTech Connect and in resources such as Science.gov and WorldWideScience.org.  They are also indexed by commercial search engines like Google and Bing.  

Published by Dr. Jeffrey Salmon


For science agencies, access to federally funded research is a key part of our mission.  And the very first requirement for federal agency public access plans directed by the White House Office of Science and Technology Policy (OSTP) was that the plans must encompass “a strategy for leveraging existing archives, where appropriate, and fostering public-private partnerships with scientific journals relevant to the agency’s research [emphasis added].”  This 2013 OSTP memo is replete with calls for public-private partnerships.  When it comes to the key issue of repositories, for example, agencies are told that “[r]epositories could be maintained by the Federal agency funding the research, through an arrangement with other Federal agencies, or through other parties working in partnership with the agency including, but not limited to, scholarly and professional associations, publishers, and libraries [emphasis added].”  Under the section on “Objectives for Public Access to Scientific Publications,” the OSTP memo states that agency plans “shall …[e]ncourage public-private collaboration to: maximize the potential for interoperability between public and private platforms and creative reuse to enhance value to all stakeholders, avoid unnecessary duplication of existing mechanisms, maximize the impact of the Federal research investment, and otherwise assist with implementation of the agency plan [emphasis added].”  And public-private partnerships are also called out in the memo’s section on data management plans.