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rpose nature of TOUGH2 means that 
different matrix characteristics may arise for different 
types of problems. This explains the past heavy 
reliance of TOUGH2 on the direct solver MA28 

ABSTRACT 
T2SOLV is an enhanced package of matrix solvers for 
the TOUGH2 family of codes. T2SOLV includes all 
the Preconditioned Conjugate Gradient (PCG) solvers 
used in T2CGI. the current solver package, as well as nt TOUGH2 version, T2CG1, a package 
LUBAND, a new direct s and DLUSTB, a PCG of preconditioned conjugate gradient solvers, comple- 
solver based ments the MA28 direct solver and significantly in- 
Additionally, T2 creases the size of tractable problems. T2CGl in- 
ing scheme and two sets of preprocessors. Results cludes three Preconditioned Conjugate Gradient (PCG) 
from test problems indicate that LUBAND is faster, solvers: (a) DSLUBC, a routine based on the Bi- 
more reliable and requires less storage than MA28, Conjugate Gradient (BiCG) method, (b) DSLUCS, a 
the BiCGSTAB solver is superior to the other .PCG Conjugate Gradient Squared (COS) routine, and (c) 
methods in 'I2SOLV, and that the preprocessors im- DSLUGM, a Generalized Minimum Residual 
prove the performance of the PCG solvers and allow (GMRES) routine. kests of T2CGl [Modis and 
the solution of previously intractable problem Pruess, 19951 on a variety of computing platforms 

'and for problems with up to 30,000 equations have 
.shown that the PCG routines in T2CGl are 

TRODUCTION significantly (and inv y) faster than MA28 and 
require far less memory. 

e and fast solver package for most 
TOUGH2 simulations. In limited cases; however, 
the PCG solvers in T2CGl are challenged by classes 
of certain very demanding numerical simulation 
problems, as well as by limitations in the underlying 
algorithms of the KG (such as occasional oscillatory 

[Duff; 19771. . 

Most of the computational work in 
simulations of fluid and heat flow in permeable media 
arises from the solution of large systems of linear 
equations Ax = b, where A is a banded matrix of or- 
der N, x is the vector of theunknowns,'and b the 

solved using either direct 
most reliable solvers are 
The robustness of direct 

solvers comes at the expense of large storage require- 
ments and execution times. Iterative techniques ex- 
hibit problem-specific performance and lack the gen- 
erality. predictability and 
h e s e '  disadvantages are 

, 

DLUSTB, based on [Pruess, 19911 the matrix A is a Jacobian with'a 
consistent structure. A 
with well defined sparsi 
non-symmetric, not positive definite, not diagonally 
dominant and ill-conditionep. Due to the fact that A 

acobian,^the elements of A in a single row may 
y many orders of magnitude. TOUGH2 creates 

very challenging matrices with all the attributes that 
cause most iterative techniques to fail. In addition, 



E LUBAND SOLVER 

LUBAND is a direct solver which replaces the MA28 
solver currently used in the TOUGH2 family of 
codes. It is derived from routines in the M A C K  
[ 19931 package, which have been enhanced and exten- 
sively modified to conform to the TOUGH2 architec- 
ture and memory management approach. It is based 
on a LU decomposition with partial pivoting and row 
interchange, and allows the solution of systems with 
a large, number of zeroes on the main diagonal. 
Unlike MA28 (which is a general solver), LUBAND 
is a banded matrix solver, and as such it capitalizes on 
the significantly lower and well defined memory 
requirements of this class of solvers. 

LUBAND can be applied without any problem in the 
current TOUGH2 version and is fully backward com- 
patible with all older input data files. The 
MESHMAKER routine was also enhanced to mini- 
mize the bandwidth of matrix A. Defining work W 
as the number of multiplications and divisions neces- 
sary to convert the full matrix to an upper triangular 
form and to perform back substitution, Price and 
Coats [ 19741 showed that for direct solvers W = N M  
and the minimum storage S = NB, where N is the or- 
der of the matrix and M its half-bandwidth, the full 
bandwidth being B = 2M+Z. 

For a given problem size N, work and storage are 
minimized when M is minimized. If 1,. J, K are the 
number of subdivisions in the x-, y- and z-directions 
respectively, the shortest half-bandwidth is M= JK 
when Z>J>K. This is called standard ordering [Aziz 
and Settari, 19791, and the resulting matrices are 
banded. As W increases with the square of M, it is 
obvious that the penalty for non-optimization of the 
ordering of equations may be substantial. 

THE DLUSTB SO LVER 

DLUSTB was developed based on the BiCGSTAB(m) 
algorithm [Sleijpen and Fokkema, 19931, a recent ex- 
tension of the more traditional BiCGSTAB algorithm 
of van der Vorst [1992] which is still an option i n  
T2SOLV. It was developed to address the problem of 
irregular convergence behavior of the PCG solvers in 
situations where the iterations are started close to the 
solution (e.g. when approaching steady state). This 
is a weakness which afflicts most PCG solvers, and 
may lead to severe residual cancellation and errors. 
BiCGSTAB(m) alleviates the irregular (oscillatory) 
convergence common to the BiCG [Fletcher, 19761 
and CGS [Sonneveld, 19891 methods, thus improving 
the speed of convergence. It also alleviates potential 
stagnation or even breakdown problems which may 
be encountered in traditional BiCGSTAB. According 
to Sleijpen and Fokkema [ 19931, BiCGSTAB(m) 
combines the speed of BiCG with the monotonic 

residual reduction in the Generalized Minimum 
Residual (GMRES) method, while being faster than 
both. Theoretical analysis indicates that the 
BiCGSTAB(m) algorithm is especially well-suited to 
the solution of very large (i.e. Ab50,OOO) problems 
[van der Vorst , 19921. 

DLUSTB uses the Boeing-Harwell matrix storage 
scheme of TOUGH2, and has the same architecture as 
the other routines in "2SOLV. As in all other PCG 
solvers in T2SOLV, it uses a modified LU decomp 
sition for preconditioning. Its memory requirements 
increase linearly with the order m ofthe Minimal 
Residual polynonlial. For m = 4, it requires twice 
the memory of BiCG or CGS. The optimum value 
of m is calculated internally in DLUSTB. 

- 

THE D4 SCHE: ME 

The Alternating Diagonal Scheme (D4) for gridblock 
ordering was added as an option to T2SOLV. D4 is a 
matrix-banding technique, which derives its benefits 
from the numberin$ of the grid points. More details 

be found in Price and Coats 

ordering partitions the matrix into four distinct 
entities. This structure allows forward elimination 

,through the equations in the lower half of A, which 
zeroes all original enhies in the lower left quadrant of 
A and transforms it into a null matrix, while creating 
non-zero entries in the submatrix ALU in the lower 
right quadrant of A. The submatrix ALU is of order 
Nn, and allows the calculation of the lower half of x, 
from which the upper half is obtained by simple sub- 
stitution. The resulting reduced matrix ALU can be 
solved using either direct (D4-direct) or iterative (D4- 
iterative) methods. 

D4 numbering reduces the order of the matrix by 50% 
while not increasing the bandwidth. Depending on 
the grid geometry, D4 makes possible execution 
speed improvement by a factor ranging between 2 and 
5.85 [Price and Coats, 19741 over standard ordering. 
Moreover, it reduces storage requirements by a factor 
of 2. Compared to iterative solvers, DCdirect is 
competitive in 2-D problems and slower in 3-D 
problems, while yielding a robust solution. D4 with 
LUBAND makes possible the robust direct solution 
of large multidimensional problems. However, D4 
can only be used with regular grids. 

THE 2-PREPROCESSORS . 

Some of the most numerically challenging matrices 
arising in TOUGH2 simulations involve a large 
number of zero entries on the main diagonal of the 
Jacobian. Such matrices are quite common in non- 
isothermal two-component systems (such as model- 
ing of two-water geothermal systems using the EOSl 
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module) and result in at least 0.5N of non-zero entries 
on the main diagonal of the matrix. 

Such matrices pose no problem for the LUBAND di- 
rect solver. The iterative solvers, however, are di- 
rectly affected by the diagonal dominance of the ma- 
trix and the relative number of the z e r ~  entries on the 
main diagonals. Up to 0. IN zero elements have little 
discernible effect on the PCG solvers in T2SOLV. 
Matrices with as many as 0.3N (and occasionally up 
to O S N )  zero elements are tractable without any spe- 
cial treatment, but usually require a large number of 
iterations for convergence, i.e. exceeding OSN. 

2-preprocessors i ented in T2SOLV 
enhance the performance of the PCG solvers in matri- 
ces with a large number of maindiagonal zeroes. 
These preprocessors are invoked only when (a) PCG 
solvers are used to solve (b) matrices with main diag- 
onals populated with a large number of zeroes and (c) 
. the number of the primary variables NEW1 . 

. I  
, r  

The first option, Z1, 
number (t&cally Id"), and can substantially de- 
crease the number of iterations for convergence in ma- 
trices with as many as 05N zero maindiagonal ele- 
ments. The performance of the PCG solvers in Z1- 
pro&ssed matrices deteriorates rapidly when the main- 
diagonal zero elements 

The second pre-processing option, 22, is more com- 
putationally intensive and involves linear combina- 
tions of the flow equations in each gridblock. 22 in- 
-dudes a search algorithm which identifies the appro- 
lpriate equation to be added to the equation comespond- 
'ing to the zero maindiagonal element, By adding the 
two equations, the corresponding elements in the 

computational effort and significantly improves the 

tive, 22-preprocessi 
ing because of persisting lack of 
and large differences in the mag- 
lements. The problem 

times be alleviated by the 23 option, whi 
the linear combination with normalization with re- 
-spect to the largest element in the corresponding row. 
Addition of the normalized elements leads to an im- 
proved PCG performance because the relative magni- 
tude of the elements and the corresponding roundoff 
error can be reduced. The 23 option is more compu- 
tationally intensive than 22. The 22 and 23 prepro- 
cessors can easily handle up to 0.75N zero diagonal 
elements. 

The Z4 option is somewhat more computationaily in- 
tensive than 23. It creates unit maindiagonal subma- 
trices through multiplication by the inverse matrix 

AM-*, computed by the method of determinants. 
The PCG performance improvement delivered by 24 
can be affected by roundoff errors; under favorable 
conditions, it matches those of 22 and 23. 

THE 0-PREPROCESSORS 

sors are applied to matrices with no 
zero entries on the main diagonal and aim to improve 
the PCG solver performance by improving the matrix 

ur such preprocessors are available 
e first three options, 0 1  through 03, 
teps in the replacement of the AM 

submatrix by the unit matrix through a central pivot- 
. ing process, and involve increasing levels of compu- 
tational effort. 

n eliminates the Jower half of the main- 
diagonal submatrix, and thus removes NEQl subdi- 
agonals from the global matrix. This reduces the 
computational effort by reducing the number of non- 
zero matrix entries and can improve the PCG perfor- 
mance. Execution times are burdened by the addi- 
tional work for the elimination of the lower half of 
the matrix, but usually this is overcome by the sav- 

in addition to 0 1  the upper half of 
the maindiagonal submatrix is eliminated, resulting 
in a diagonal submatrix and eliminating an additional 
NEQ-1 superdiagonals from the global matrix. 
Compared to the original, the 0 2 - p r e p m e d  matrix 
is significantly sparser and better-conditioned and the 
performance of the PCG solvers can be enhanced. 
The increased computationd effort for the 0 2  prepro- 
cessing is usually ensated by the reduction in 

s in the PCG computations. 

The 03 option involves normalization of the 0 2  
matrix, resulting in a unity main diagonal. 03 ddes 
not further increase matrix sparsity, but may improve 
the matrix conditioning. Finally, the 04 option is 

Performance' results are presented in 

TOUGHZ, as they routinely create matrices with 
0.67N zeros on the main diagonal. The PCG rou- 
tines in T2CG1 have in the past been unable to solve 
even the smallest of this class of problems. The 
problem discussed here involves injection of "water 
2" at a temperature of 30 OC into a geothermal reser- 
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voir of "water 1" at 280 OC. The EOSl module is 
used. The 3-D domain consists of 9 ~ 8 x 5  = 360 grid- 
blocks in (x,y,z), with NK = 2 and NEQ = 3, result- 
ing in a total of N = 1080 equations. 

The fundamental weakness of MA28, i.e. its large 
(especially for 3-D problems) and not well defined 
memory requirement, was obvious in the problem. 
Despite memory allocation which sufficed for the 
LUBAND solution of 3-D problems 15 times larger 
on the same computer, MA28 could not complete 
the LU decomposition due to in 

Table 1 and Figure 1 show that DLUSTB with and 
without the Zpreprocessors has the best performance. 
It is the fastest and requires the least number of PCG 
iterations to convergence. DLUSTB seems to be the 
only solver that can proceed without %preprocessing. 
Note that the use of the Zpreprocessors makes possi- 
ble the solution of a previously-intractable problem 
by all the PCG solvers in T2SOLV. The 22 prepro- 
cessor seems to offer the best overall 

Test Prob lem 2 
Test problem 2 involves a laboratory convection cell 
experiment. A porous medium consisting of glass 
beads fills the annular region between the two vertical 
concentric cylinders. Application of heat generates a 
thermal buoyancy force, giving rise to the develop 
ment of convection cells. This problem has been dis- 
cussed in detail by Moridis and Pruess [1992]. The 
EOSl module is used. The domain consists of 
16x26 = 416 gridblocks in (r,z), with NK = 1 and 
NEQ = 2, resulting in a total of N = 832 equations. 

Table 2 and Figures 2 and 3 show the performance of 
the various solvers in Problem 2, which does not 
pose any significant challenges to the T2SOLV rou- 
tines. DLUSTB is the fastest routine and requires the 
least number of iterations to convergence. 

In this 2D problem LUBAND appears as a c 
tive alternative. The effect of the 0-preprocessors 
vary. With 01, it is pronounced in terms of PCG 
iterations and execution times in DSLUBC and 
DLUSTB, but seems to be limited in DSLUCS and 
DSLUGM. The evolution of residuals of DSLUCS 
and DSLUGM in the first Newtonian iteration of the 
first timestep is identical with and without 0 1  
preprocessing (Figures 2 and 3), while-the DSLUCS 
execution time with 0 1  increases. C 
use of the 02 and 0 3  preprocessors 
greatest improvement in the performance of DSLUCS 
and DSLUGM. 

Test Problem 3 
Test problem 3 examines fluid and mass flow in a 
large three-dimensional model of a geothermal reser- 
voir. The basic computational grid is composed of 

15x15~20 = 4500 grid blocks in (x,y,z). Cold water 
is injected through 4 wells, while hot water is with- 
drawn from 5 wells. EOSl is used with NK = 1, 

- NEQ = 2, resulting in a total of N = 9OOO equations. 

This is a relatively large but well-behaved problem, 
the size of which precluded the use of a direct solver. 
The use of D4 allowed a direct solution by LUBAND, 
which is competitive with the PCG solutions. D4 

8 with DLUSTB had a performance on a par with 
DLUSTB, the fastest PCG solver. In light of the 
overhaed needed to set up system, this result 
is very encouraging. 
DLUSTB demonstrated its superiority by being the 
fastest and requiring the least number of PCG itera- 
tions to convergence. DSLUGM seems to be an in- 
appropriate method for this type of problem. As ex- 
pected, the benefits of 0-preprocessing in this well- 
behaved system are not evident in the execution 
times, although the PCG iterations are often reduced. 
It is noteworthy, however, that despite the increased 
computational load, the execution times for the 0- 
preprocessed solutions are practically identical to 
those without any preprocessing. 

Test Problem 4 
Test problem 4 describes a vari 
Enhanced Vapor Extrac stem process, which is 
designed to extract sol d chemicals contained 
in the Chemical Waste Landfill at Sandia National 
Laboratories. No NAPL is present in this system. 
In this process the ground is electrically heated, and 
boreholes at the center of the heated zone are main- 
tained at a vacuum to draw air and vaporized contami- 
nants into the borehole and to a subsequent treatment 
facility. The 3-D grid consists of 1300 gridblocks. 
EOS3 is used (NK = 2, NEQ = 3), and N = 3900 
equations are solved. Additional information can be 
found in Moridis 

Without any prepr the performance of 
DLUSTB in this rather well-behaved problem is 
practically identical to that of DSLUCS. These two 
are the fastest solvers, but DLUSTB requires the least 
number of PCG iterations. D4 with LUBAND 
appears as a competitive alternative. DLUSTB is the 
most responsive to 0 1  preprocessing, which results 
in the fastest solution with the least number of PCG 
iterations. 

CONCLUSIONS AND SUMMARY 

The following conclusions can be drawn: 

(1) Without any matrix p essing, DLUSTB is 
shown to be a fast and efficient solver which outper- 
forms the other PCG routines. It is the fastest and 
the most robust in T2SOLV and is shown to be prac- 
tically free of stagnation, oscillation, and divergence 
problems. 
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(2) The use of the Zpreprocessors makes possible the 
solution of problems which were previously in- 
tractable to all the PCG solvers. The combination of 
the Z-preprocessors with the BiCGSTAB routine 

(3) In problems which are known to confound the 
other PCG solvers, DLUSTB converges smoothly 
but slowly to a solution without invoking the 

ives the best performance in such problems. 

shown to impbve the ro- 
bustness and decrease the number of itektions to con- 
vergence, but their effect depends on the PCG solver 
in T2SOLV. DLUSTB appears to be the solver most 
consistently responsive to the 0-preprocessors. In 
well-behaved problems the effect of the O-preproces- 
sors on the executi 

(5) LUBAND is s to be consistently Taster and 
more reliable than MA28, and can solve much larger 

speed is not significant. 

LUBAND 
DSLUBC 

problems. . . -  

I 

- 1 8 I 25 1 - I - I - p32 
- I Fails 

(6) The gains in execution speed when the D4 scheme 
is used in regular grids are shown to be significant 
(especially compared to the direct solution). M r e c t  
seems to be competitive (in speed) to the PCG 
solvers in medium-sized problems. 

In larg IlY tems) and 
when si memory 
requirements, D4-direct will still offer-a predictabl 
large improvement in execution speed over the di 
solution, but is expected to be consistently an 
significantly outperformed by .the PCG solvers. The, 
brformance of the D4-iterative approach (in which 
the reduced matrix is solved by the PCG solve 

enables theuser of the T 

fully assessed. 

codes to solve some of the most challenging numeri 
cal problems (previous1 
solvers) using the PCG 

of DLUSTB (based on 
thm), which combines speed of 
otonic residual reduction and 

leviates the oscillatory behavior of solutions 
teady-state is approached (a common problem t 
ost PCG solvers). T2SOLV enhances the perfor- 
ance and robustness of the PCG solvers by intro- 
cing a set of matrix preprocessors. Additionally, it 

es LUBAND, a new direct solver capable of 
ems-or&rs of magnitude Iarger than the 
e in T2CGl. It also doubles the size of 

problems tractable with direct solvers by implement- 
ing a D4 Alternative Diagonal Numbering option. 

ISLUGM 

Table 1. Sdver Performance in Problem 1 
(Macintosh PowerPC 95W132) 

I I I 1 I - Fails 
z1 Fails 

I I 1 I 

M A 2 8 1  Fails - insufficient memory 

Fails 

Fails 
Fails 

Z? 12 I 41 lo9 4 1OOe 3&6 
a 1 2 i 4 6  io9 4 1 2 5 3 4 6 . 5  

PP Preprocessors 
Ats: Number of timesteps 
UI: Ne&oni& iterations 
Imx: Maximum number of PCG iterations 
Imn: Minimum number of PCG iterations 
fir. Total FCG iterations 
E T  Execution time (sec) 
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1 10 100 

DLUSTB 

Number of PCG iterations 

I - 26 106 37 1 1829 42.1 
01 26 ~.96 41 1 16% 389 

Fig. 1. PCG solvers with Z2 preprocessing in Test 
Problem I (1st NZ of the 1st At). 

0 10 20 30 40 
Number of PCG iterations 

Fig. 2. DSLUBC and DSLUCS performance with 
and without 0 1  preprocessing in Test 
Problem 2 (1st NI of the 1st At). 

lo2 - - 
+- DLUSTB+Ol 

- 
- 
- 
- 
- 

- 

l B * * B 1 * * * ' l * B I B I B B B B l  
0 10 20 30 40 

Number of PCG iterations 

Fig. 3. DSLUGM and DLUSTB performance with 
and without 0 1  preprocessing in Test 

- 

Table 2 Solver Performance in Prd 
(Macintosh PowerPC 950Ofl32 

[ern 2 9 
2m 503 
2&67 50.4 

2437 49.7 
131 23 18 2851 58.0 
111 36.l8m 486 
106 35- 18 2/87 46.9 
107 5B 21 3644 503 
106 5B 21 3532 .49.4 
96 5B 2lm44.0 
96 93 21 3118 452 
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SOLVER 
MA28 

LUBAND 

LUBAND 

DLUSTB 

P P I ~ t ~ M I b n x l b n n ~ I T  I E T  
Insufficient Memory 

Insufficient Memory 

DSLUBC 

DSLUCS 

DSLUGM 
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