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Abstract 

 

Precipitation-dissolution reactions are important for a number of applications such as 

isotopic tracer transport in the subsurface. This study develops analytical solutions for 

tracer transport in both a single-fracture and a multiple-fracture system associated with 

these reactions under transient and steady state transport conditions. These solutions also 

take into account advective transport in fractures and molecular diffusion in rock matrix.  

It is demonstrated that for studying distributions of disturbed tracer concentration 

(defined as difference between actual concentration and its equilibrium value), effects of 

precipitation-dissolution reactions are mathematically equivalent to a “decay” process 

with a decay constant proportional to the corresponding bulk reaction rate. This important 

feature significantly simplifies our derivation procedure by taking advantage of the 

existence of analytical solutions to tracer transport associated with radioactive decay in 

fractured rock. It is also useful for interpreting tracer breakthrough curves, because 

impact of decay process is relatively easy to analyze. Several illustrative examples 

(breakthrough curves obtained from analytical solutions) are presented and show that 

results are considerably sensitive to fracture spacing, matrix diffusion coefficient 

(fracture surface area), and bulk reaction rate (or “decay” constant), indicating that the 

relevant flow and transport parameters may be estimated by analyzing tracer signals. 

 

 

 

 



 3

1. Introduction 

      Tracer transport in fractured rock involves fast and advection-dominated processes in 

fractures characterized by high permeability and mass transfer between fractures and rock 

matrix (with negligible permeability) in which chemical reactions may occur as well.  

Modeling tracer transport in fractured rock is of interest to a number of practical 

applications, including radionuclide transport in a geological repository (e.g., Sudicky 

and Frind, 1982), groundwater contamination in fractured aquifers (e.g., Freeze and 

Cherry, 1979), and interpretation of isotopic tracer transport signals for characterizing 

flow patterns and fracture-matrix interaction (e.g., DePaolo, 2006).  

      With the significant advance of computational technology in recent decades, 

numerical models have been increasingly employed for modeling tracer transport in 

fractured rock. However, analytical solutions are still playing an important role in 

evaluating the transport processes for several reasons. First, given significant 

uncertainties in site characterization and parameter variability for a practical application, 

analytical solutions have often been used for analyzing field-testing results obtained 

under controlled conditions (Neretnieks, 2002), because they involve a small number of 

parameters and are able to capture key transport processes.  Second, analytical solutions 

are generally more useful for providing physical insights into solute transport processes 

(DePaolo, 2006), because relative importance of key parameters (or parameter 

combinations) and processes can be explicitly identified from relevant analytical 

solutions.  Third, it is well known that analytical solutions are useful for validating 

numerical models by comparing numerical and analytical results. The focus of this study 

is on development of analytical solutions for tracer transport in fractured rock. 
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     A number of analytical solutions for solute transport in fractured rock have been 

published in the literature. These solutions consider fractured rocks associated with a 

single and straight fracture or a set of parallel fractures (or other simplified geometry of 

fractures).  Neretnieks (1980) reported a solution for one-dimensional transport in a 

single fracture without considering longitudinal dispersion. Tang et al. (1981) presented 

both transient and steady state solutions for a single-fracture system, which were derived 

using Laplace transforms. Rasmuson and Neretnieks (1981) provided a one-dimensional 

solution for transport in fractured media consisting of porous blocks separated by fissures 

(fractures). In their solution, the porous blocks are represented by spheres that have a 

finite capacity to store a contaminant. Baker (1982) investigated tracer transport in a 

system of equally spaced fractures separated by slabs of saturated porous rock. However, 

his work was based on numerical inversion of the Laplace transform. Unlike the study by 

Baker (1982), Sudicky and Frind (1982) developed general analytical solutions for 

similar systems using analytical inversion of Laplace transform. Similar analytical 

solutions for parallel fracture systems were also reported by Maloszewski and Zuber 

(1985).       

     In addition to advection and dispersion in fractures and matrix diffusion processes, all 

the previous studies mentioned above consider chemical reactions such as radioactive 

decay and adsorption (represented by a retardation factor). To the best of our knowledge, 

the recent work of DePaolo (2006) probably represents the first effort to develop 

systematic analytical solutions to tracer transport in fractured rock associated with 

precipitation-dissolution reactions. That work was particularly focused on describing 

isotopic tracer transport. Developed relationships between isotopic signals and flow path 
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properties were demonstrated to be useful for characterizing the corresponding fracture-

matrix properties (DePaolo, 2006). However, the analytical solutions of DePaolo (2006) 

are limited to steady-state transport conditions. Transient solutions are required for 

describing isotopic tracer transport in more general cases.  

     In this paper, we derive analytical solutions to tracer transport in fractured rock 

associated with precipitation-dissolution reactions under both steady state and transient 

transport conditions. The derivation is based on the analytical inversions of Laplace 

transform that are similar to those used by Tang et al. (1981) and Sudicky and Frind 

(1982). The usefulness of our solutions in describing tracer transport is also demonstrated 

under a number of conditions.      

 

2. Assumptions and Governing Equations 

     We will investigate tracer transport in a single fracture or a set of equally spaced 

identical fractures. Figure 1 shows a multiple-fracture system, with a single-fracture 

system being considered a special case with infinite fracture spacing. Water flow rate in 

each fracture is assumed to be constant and downward. Each fracture has a constant 

aperture that is much smaller than the fracture spacing. Matrix block has homogeneous 

properties and negligible permeability. Therefore, advection in rock matrix can be 

ignored. Because of transverse diffusion and dispersion, complete mixing across its width 

at all times. We also assume that molecular diffusion process within matrix occurs along 

the direction perpendicular to fractures only. The same assumptions were made in 

previous studies (e.g., Sudicky and Frind, 1982; DePaolo, 2006). Furthermore, we ignore 

the longitudinal dispersion and molecular diffusion within a fracture, because these 
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processes are not important for practical applications (e.g., Neretnieks, 2002) and 

ignoring these processes can significantly simplify mathematical development of 

analytical solutions. Following DePaolo (2006), we also consider dissolution rate to be 

the same as precipitation rate within rock matrix. The justification for this treatment was 

provided in DePaolo (2006) within the context of isotopic tracer transport.  

 

Fig.1. Fracture-matrix system 

 

    With above assumptions, tracer transport process in fractured rock can be described by 

two coupled one-dimensional equations for transport in liquid phase (one for fracture and 

one for rock matrix) and the third equation for solid phase due to precipitation-dissolution 

reactions. While the detailed derivation of these equations was given in DePaolo (2006), 

these equations are briefly discussed herein. 
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      Based on the mass conservation principle, tracer transport in fractures is described by 

(Sudicky and Frind, 1982; DePaolo, 2006): 
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where t is the time (T), z and x are the spatial coordinates (M) (Figure 1), cf is the tracer 

concentration in fractures (M/L3), v is the water velocity in fractures (L/T), Dm is matrix 

diffusion coefficient defined by molecular diffusion coefficient in free water multiplied 

by tortuosity (L2/T), m  is matrix porosity, cp is the tracer concentration in matrix pore 

liquid (M/L3), and 2b is the fracture aperture (L).  The second term on the right hand of 

the equation describes the flux crossing two fracture walls.  

     Within the rock matrix, the pore fluid interacts with the solid phase by dissolution-

precipitation, and the pore fluid communicates with the fracture fluid by diffusion. The 

equations describing these processes are given as (DePaolo, 2006): 
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where cs is the tracer concentration in solid phase (M/L3), Rm is the bulk reaction rate 

(1/T) that was also called  bulk reaction time constant by DePaolo (2006), K is the 

distribution coefficient for solid/fluid system, and M is the mass ratio of solid to liquid 

given by 

 
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In Equation (4), f  and s  are fluid and solid density (M/L3).  
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        For isotopic tracer transport processes with typical Rm values, DePaolo (2006) 

demonstrated that solid phase concentration cs hardly changes because of low tracer 

concentration in the liquid phase in natural fracture rocks. Therefore, he assumed cs to be 

constant during developing steady-state solutions for tracer transport. In this study, we 

follow the similar treatment and therefore need to solve Equations (1) and (2) only (as a 

result of assuming cs to be a constant) for modeling tracer transport in liquid phase.  

      For convenience, we introduce the following variables: 

K

c
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pp                                                                                                                 (5-1) 

K

c
cC s

ff                                                                                                                 (5-2) 

MKRm                                                                                                                   (5-3) 

Note that under equilibrium conditions, Cf = Cp = 0; Cf and Cp can be considered as 

concentration disturbances to equilibrium concentration fields, because they represent 

differences between tracer concentrations and their equilibrium values.  Combining 

Equations (1), (2) and (5) yields 
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It is of interest to note that the transformed equations (6) and (7) are mathematically 

equivalent to equations describing a tracer transport subject to a decay process (with the 

decay constant  ) occurring in the matrix block only. As will be demonstrated later, this 

feature is important for obtaining our analytical solutions based on the existing solutions 
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describing tracer transport subject to radioactive decay in fractured rock, such as those 

derived by Tang et al. (1981) and Sudicky and Frind (1982).  

      Assuming the existence of equilibrium at t = 0 and considering a continuous injection 

case, we can have initial and boundary conditions for (6): 

0)0,( zC f                                                                                                               (8-1) 

0),0( CtC f                                                                                                              (8-2) 

0),(  tC f                                                                                                              (8-3) 

The initial and boundary condition for the matrix equation (7) are 

0)0,,( zxC p                                                                                                           (9-1) 

),(),,( tzCtzbC fp                                                                                           (9-2) 

0),,( 



tzB

x

C p                                                                                                 (9-3) 

The coupling of the matrix to the fracture is expressed by (9-2). Note that (9-3) is applied 

to multiple-fracture systems. For a single-fracture system, it may be replaced by (Tang et 

al., 1981) 

0),,(  tzC p                                                                                                    (9-4) 

 

3. Analytical Solutions for a Single-Fracture System 

    We will start with deriving analytical solutions for a single-fracture system. Although a 

single-fracture system rarely exists in reality, it is a good approximation for many 

realistic fractured rocks when tracer penetration depth is much smaller than fracture 

spacing, because in this case, effects of surrounding fractures can be ignored. Analytical 

solutions are obtained with the strategy used by Tang et al. (1981) and Sudicky and Frind 
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(1982) for developing analytical solutions to radioactive tracer transport in fractured rock. 

Specifically, we apply Laplace transform to (7) and solve the transformed equation in 

Laplace space first, and then apply Laplace transform to (6). The transformed equations 

are coupled through the term describing mass transfer between fractures and rock matrix 

and Equation (9-2). Finally, solutions in the Laplace space are inverted.      

   Applying Laplace transform to (7) yields 
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where 'pC  is the Laplace transformation  of pC and given by 
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Considering boundary conditions (9-2) and (9-4), the solution to ordinary partial 

differential equation (10) is obtained as  
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and 'fC  is the Laplace transformation of fC . Based on (12), we have 
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      Applying the Laplace transform to (6) yields 
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Substituting (15) into (16), we obtain the following solution to (16) 
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The original tracer concentration fC  can be given in terms of the inverse transform 1L  

as 
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   The relation between fC and rC  can be interpreted in the following way. The latter is 

the concentration at a location z in the fracture for a tracer with decay constant  . As 

previously indicated, fC may also be mathematically viewed as a tracer concentration (in 

the fracture) associated with decay constant  , while the decay occurs in the matrix only. 

Consider two tracer particles that initially have the same mass m0 and are released from 

fracture inlet (z = 0). They have exactly the same transport path.  The first one is subject 

to decay in both fracture and the matrix, and the second one to decay in rock matrix only. 

When they reach a given location z within a fracture, the mass for the first particle will 

become   fmm  exp0 , m  and 
v

z
f   are particle residence times (T) in matrix 

and fracture, respectively, and the mass for the second particle is  mm exp0 . Ratio of 

the corresponding tracer concentrations is the same as the ratio of particle masses (i.e., 









v

z
exp ). However, it should be emphasized that although fC  can be mathematically 

viewed to be subject to decay in rock matrix, it is the dissolution-precipitation reaction, 

rather than real decay, that occurs in rock matrix for the problem under consideration.   

      To study isotopic tracer transport in fractured rock, DePaolo (2006) introduced a 

parameter of the diffusive reaction length given by 

2/1
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This reaction length (L) has the property that diffusion through the pore fluid is faster 

than reaction at length scales smaller than L, and reaction is faster than diffusion at length 

scales greater than L (DePaolo, 2006). In some practical applications, it is also often 

useful to relate tracer concentration signals to fracture surface areas, because the surface 
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areas are important parameters for mass and heat transfer between mobile fluid in 

fractures and rock matrix. Under steady state flow conditions, we have the following 

conservation equation for fluid volume in fractures 

AbQ f                                                                                                                   (22) 

where Q is fluid flux in a fracture (L3/T), and A is the fracture  surface area (L2). In terms 

of diffusive reaction length and fracture surface area, (20) can be rewritten as  
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      Using the properties of   0erfc and   2erfc , we can easily obtain the 

steady-state solution by letting T : 
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4. Analytical Solutions for a Multiple-Fracture System 

    In the previous section, we derived analytical solutions for a single-fracture system 

which is a good approximation of many realistic fractured rocks when the tracer transport 

within fracture does not significantly interact with tracer transport in surrounding 

fractures. However, for relatively small fracture spacing and/or long tracer travel times, 

interactions between adjacent fractures become important. In this case, solutions for 
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multiple-fracture systems are needed for modeling tracer transport in fractured rock.  

Similar procedure for solving tracer transport problem in a single fracture system is 

followed here for a multiple-fracture system. Also note that governing equations are the 

same for both fracture systems except for some boundary conditions. 

        We first solve transformed tracer transport equation for rock matrix. The general 

solution to the transformed equation (10) is of the form (Sudicky and Frind, 1982) 
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where again 'fC  is the Laplace transformation of fC  and 
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      The coupling between transformed tracer transport equations for fractures and matrix 

is done through the concentration gradient term in (16). In this case, that term is   
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 Then the transformed equation for tracer transport in fracture (Equation 16) becomes 
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Solution to the above equation subject to boundary condition defined by (8-2) is  
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     The original tracer concentration Cf can be determined by the inverse transform of Cf’. 
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      Similar to the analytical solutions to the single-fracture system as discussed in the 

previous section, Equation (32) can also be written in terms of diffusive reaction length 

defined in (21), fracture surface area A and liquid flux Q. In this case, we have   
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   It seems to be difficult to derive steady state solutions from (32) or (33), because these 

transient solutions involves an integration from 0 to  . An alternative way to derive 

steady state solutions is to directly use governing equations (6) and (7) for tracer 

transport. While DePaolo (2006) obtained steady state solutions for a multiple-fracture 

system in terms of both Laplace transform and Fourier series representation, this paper 

offers a more straightforward approach to derive them.  

    Under steady-state conditions, Equation (7) becomes 

22

2

L

C

dy

Cd pp                                                                                                                  (34) 

where 

bxy                                                                                                                       (35) 

Solution to (34) is of the form 
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The constants, C1’ and C2’, are obtained by substituting boundary conditions defined in 

Equations (9-2) and (9-3) into the above equation. Then Equation (36) becomes 
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The (matrix) tracer concentration gradient at fracture wall can be expressed as 
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Substituting the above equation into steady-state version of equation (6) for tracer 

transport in fractures yields 
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Solution to the above equation subject to boundary condition defined by Equation (9-2) is 
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                (40)                                 

Equation (40) is essentially the same as the steady state analytical solution derived by 

DePaolo (2006). As expected, for B , Equation (40) is reduced to Equation (24) that 

gives the steady-state solution for a single-fracture system.  
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5. Illustrative Examples 

     Analytical solutions for a single-fracture system and a multiple-fracture system are 

presented in Sections 3 and 4. Note that focus is on solutions to tracer transport in 

fractures, rather than in matrix, although impact of rock matrix is exactly considered. 

This simply because tracer concentration data are often obtained from fractures in 

practical applications (Neretnieks, 2002; DePaolo, 2006). Analyses of these tracer data 

are generally used to understand flow and transport processes in fractured rock and to 

infer values of important parameters characterizing the relevant processes including 

fracture-matrix interaction. 

     This section presents several illustrative examples (in terms of breakthrough curves) 

calculated from the analytical solutions to demonstrate the validity of these solutions and 

effects of parameter variations on tracer transport. To evaluate analytical solutions for a 

multiple-fracture system, numerical integration is needed over an interval between 0 and 

infinity (Equation 32). As indicated by Sudicky and Frind (1982), although the upper 

limit of the integration extends to infinity, the numerically significant portion of the 

integrand extends over a much smaller range. They also suggested using a scanning 

procedure prior to integration to calculate numerically significant range. In this study, the 

range is determined by   )20exp(exp 0 R . Beyond that range, values for function I 

(Equation 32) will be extremely small and therefore can be ignored. Within the 

numerically significant range, the relatively robust Euler integration algorithm is 

employed. Typically, about several hundred to a couple of thousand subintervals are 

needed to get satisfactory and oscillation-free results. In this study, we use 5000 
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subintervals for evaluating analytical solutions to tracer transport in a multiple-fracture 

system.     

    The parameter values used in our illustrative examples are typical ones given in 

DePaolo (2006) for studying isotopic tracer transport in fractured rock. In this study, we 

use these parameter values for the purpose of demonstrating the usefulness of the 

analytical solutions, rather than investigating tracer transport in a practical problem. 

These parameter values are: bulk reactivity Rm = 1.E-5 yr-1, matrix diffusion coefficient 

Dm = 0.1 m2 /yr, matrix porosity m = 0.01, mass ratio of solid to liquid phase M = 250, 

distribution coefficient K = 35, advective time in fracture 
v

z
= 0.1 yr., and fracture 

aperture 2b = 1.E-3 m.  

     Figure 2 shows tracer breakthrough curves for a multiple-fracture system with half 

fracture spacing B = 2.0 and 0.5 m, respectively. The relative concentration in this figure 

and other figures is defined as 
0C

C f . For the comparison purpose, a breakthrough curve 

for a single fracture system is also presented. All these breakthrough curves are obtained 

using the parameter values given above. For B = 2.0 m, results from the single fracture 

system (with infinite fracture spacing) and the multiple-fracture system are essentially 

identical, indicating that for a relatively large fracture spacing, impact of surrounding 

fractures can be ignored, as expected. This also demonstrates the validity of analytical 

solutions obtained for the two systems.  For relatively short travel time (less than one 

year), all the breakthrough curves remain essentially the same, because tracer penetration 

depth during this time period is much smaller than the given fracture spacing values, and 

therefore tracer transport process is close to that for the single-fracture case.  For a travel 
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time longer than one year, tracer concentration for B = 0.5 m becomes larger than that for 

B = 2.0, resulting from that interaction between tracer transport from adjacent fractures 

reduces diffusive transport from fractures into matrix.    
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Fig.2. Breakthrough curves for a single fracture system and a multiple fracture system 

with half fracture spacing B = 2.0 and 0.5 m.  

 

      Figure 3 presents tracer breakthrough curves for a single-fracture system with two 

different L values (Equation 21). The base case corresponds to parameter values given at 

the beginning of this section and the other curve to the case with a reduced L value (or 

increased   value that is 4 times as large as the base-case value). The two curves are 

very similar at an early time, but become considerably different later. The base case has a 

smaller   value, and therefore a higher concentration at a late travel time. This example 
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demonstrates the usefulness to view effects of precipitation-dissolution reactions as a 

“decay” process with decay constant   that is proportional to the bulk reactivity in the 

matrix (Equation 5-3). The differences between the two curves in Figure 3 result from 

that tracer mass loss owing to “decay” is time dependent and becomes significant only for 

a relatively long travel time.    
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Fig.3. Breakthrough curves for a single fracture system with different L values.  

    

       Shown in Figure 4 are breakthrough curves for a single fracture system with different 

values for matrix diffusion coefficient Dm. The base case and the “increased Dm” case 

(dashed line) have the same parameter values (given at the beginning of this section) 

except that the latter has a Dm value that is four times as large as the base case. As 

expected, a large diffusion coefficient gives relatively low concentration at a given time. 
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This is because a larger matrix diffusion coefficient increases diffusive tracer transfer 

between a fracture and its surrounding matrix. An increased fracture-matrix surface area 

would play the similar role. Figure 4 also includes the third breakthrough curve that has 

the same (increased) Dm value as the dashed curve, but an increased   value such that its 

L value is the same as the base case. Difference between the two “increased Dm” cases is 

similar to the difference between the two curves shown in Figure 3 as a result of effects 

of “decay” processes with different   values.  
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Fig.4. Breakthrough curves for a single fracture system with different Dm values. 
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5. Conclusions 

     While significant progress has been made in developing analytical solutions for tracer 

transport in fractured rock under a variety of conditions, analytical solution for tracer 

transport associated with precipitation-dissolution reactions are limited in the literature. 

These reactions are important for a number of applications such as isotopic tracer 

transport in the subsurface.         

       This study develops analytical solutions for tracer transport in both a single-fracture 

and a multiple-fracture system associated with precipitation-dissolution reactions under 

transient and steady state transport conditions. These solutions also take into account 

advective transport in fractures and molecular diffusion in rock matrix.  It is 

demonstrated that for studying distributions of disturbed tracer concentration (defined as 

difference between actual concentration and its equilibrium value), effects of 

precipitation-dissolution reactions are mathematically equivalent to a “decay” process 

with a decay constant proportional to the corresponding bulk reaction rate. This important 

feature significantly simplifies our derivation procedure by taking advantage of the 

existence of analytical solutions to tracer transport associated with radioactive decay in 

fractured rock. It is also useful for interpreting tracer breakthrough curves, because 

impact of decay process is relatively easy to analyze. Several illustrative examples 

(breakthrough curves obtained from analytical solutions) are presented and show that 

results are considerably sensitive to fracture spacing, matrix diffusion coefficient 

(fracture surface area), and bulk reaction rate (or “decay” constant), indicating that the 

relevant flow and transport parameters may be estimated by analyzing tracer signals. 
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     Finally, our analytical solutions are developed based on several assumptions and 

approximations. One of them is that change in tracer concentration of the solid phase is 

not significant. The adequacy of this approximation for isotopic tracer transport was 

demonstrated in DePaolo (2006). However, for a more general case where this 

assumption is not valid any more, solutions considering concentration change in the solid 

phase need to be developed in the future.   
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