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Talk OutlineTalk Outline
• Introduction

• Plasma-facilitated catalysis for NOx 
reduction

• Active catalysts
• What is the plasma doing?

• Catalyst synthesis and reactivity
• What is the optimum catalyst composition?
• Some optimization of catalyst synthesis

• Studies of the reaction mechanism
• Differences in rates of the back reaction 

(NO2 to NO) on different catalysts
• Concept of the Cascade Reactor
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Modeling of the Gas-Phase 
Plasma Reaction Mechanisms

Under lean-burn engine exhaust conditions, 
a non-thermal plasma is oxidative.
• A primary reaction is conversion of NO -> NO2

• The oxidation of NO in a NTP is promoted by added 
hydrocarbon.

• Added hydrocarbon is partially oxidized, and 
aldehydes are a crucial product as they are most 
reactive as reductant for NOx.

• Thermal catalytic reaction of aldehydes + NO2 yield 
activities of >90% for reasonable flow rates.

• Understanding the products of exhaust ‘reforming’ by 
the plasma has guided catalyst development efforts.
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NaNa--Y, BaY, Ba--Y, AluminaY, Alumina
NOx Conversion
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• Alumina effective at 
high temperature

• Zeolite effective at 
lower temperature

• Combination 
effective over wide 
range

Subsequently, we have developed alkaliSubsequently, we have developed alkali-- and and 
alkaline earthalkaline earth--exchanged exchanged zeolitezeolite--Y catalysts for Y catalysts for 
plasmaplasma--assisted assisted NOx NOx reduction.reduction.

Panov, et al., SAE 2001-01-3513
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What is the optimum 
cation substitution into 
Zeolite-Y?

Kwak, Szanyi, and Peden – Catalysis Today 
(2003) in press.
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YY--Zeolites Zeolites are Crystalline are Crystalline SilicaSilica--Alumina Alumina 
Materials with 3Materials with 3--D PoreD Pore--StructuresStructures

• Cations compensate 
charged sites in 
zeolite present due 
to Al substitution. 
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Catalyst Synthesis by Ion Exchange Catalyst Synthesis by Ion Exchange Catalyst Synthesis by Ion Exchange 
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Experimental Procedure and ApparatusExperimental Procedure and Apparatus
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Exhaust

Gas composition 
(flow ~ 12,500 hr-1)

• C3H6 – 525 ppm (C:N ~ 6)
• NO – 250 ppm
• Oxygen – 9%
• H2O – 2%
• N2 - balance

Plasma Power
• ~ 10 Joules/liter

Analysis
• Chemiluminescent 
NOx AnalyzerReaction rates were measured at 

‘steady-state’ to assure that NOx 
‘reduction’ is not due to adsorption.

Discharge
Volume
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Comparison of AlkaliComparison of Alkali-- and Alkaline Earthand Alkaline Earth--Exchanged NaExchanged Na--YY
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• Alkaline earth-exchanged catalysts are generally more 
active than alkali metal-Y materials.

• Ba-Y is most active and has high activity over a wide-
temperature range. 
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Alkali- and Alkaline Earth-Substituted Zeolite Y:
Activity variation vs ionic radius
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Activity is a monotonic function of Activity is a monotonic function of Ba Ba substitution for Nasubstitution for Na

Activity of Ba2+

and Na+ sites is 
simply additive  
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Some optimization of 
catalyst synthesis:
The role of calcination and its effect on 
catalytic activity

Kwak, Szanyi, and Peden – Journal of Catalysis 
(2003) in press.
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BaBa2+ 2+ ionion--exchange exchange –– no intermediate no intermediate calcinationcalcination
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• Aqueous ion 
exchange 
solutions 
contained an 
excess of Ba+2.

• A single solution 
ion exchange 
was sufficient to 
‘saturate’ the 
zeolite with Ba.
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BaBa2+ 2+ ionion--exchange exchange –– calcined calcined in air prior to additional exchangein air prior to additional exchange
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• Again, the 
aqueous ion 
exchange 
solutions 
contained an 
excess of Ba+2.

• Each solution ion 
exchange was 
followed by a 
calcination step.

• Solid state cation 
exchange?

“Cation Migration in Zeolites:  An in Situ Powder Diffraction and MAS NMR 
Study of the Structure of Zeolite Cs(Na)-Y during Dehydration”, Grey and 
coworkers, J. Phys. Chem. B 102 (1998) 839-856.
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For mechanistic insight, 
compare NO2
conversion rather than 
NO conversion.

NO  —> NO2 (in the plasma)
NO2 —> N2, N2O, HCN, etc. (over the catalyst)
NO2 —> NO (over the catalyst – different site?)

Tonkyn, Kwak, Szanyi, and Peden –
in preparation
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• While virtually all NO2 is reacted over alkaline earth zeolite-Y, a 
considerable fraction does not react over alkali-Y catalysts.

• These differences suggest a significant difference in the reaction 
mechanism over these two classes of catalysts.

AlkaliAlkali-- and Alkaline Earthand Alkaline Earth--Exchanged Exchanged 
NaNa--Y Y –– NONO22 ConversionConversion
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NOxNOx Conversion ChemistryConversion Chemistry
• Fate of Nitrogen:

• NO  --> NO2 -->  N2 + N2O + HCN + NO
• Fate of Carbon:

• C3H6 --> CH2O + CH3CHO + CO + CO2
+ CH3OH + C3H6

• After Treatment by Plasma and Catalyst:
• > 50% propene remains
• NOx is mainly NO again



U.S. Department of Energy 
Pacific Northwest National LaboratoryDEER Workshop, August 24-28, 2003

New MultiNew Multi--Step, “Cascade” System Design Achieves Step, “Cascade” System Design Achieves 
90% 90% NOx NOx Conversion Target with Conversion Target with NaY NaY Catalyst!!Catalyst!!
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R.G. Tonkyn and S.E. Barlow, SAE 2001-01-3510
S.E. Barlow, et al., SAE 2001-01-3509

• Patent filed, 9/01.
• Modeling has 

provided insight into 
optimum system 
design for obtaining 
maximum NOx 
reduction concurrent 
with minimum fuel 
economy penalty.
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Summary and ConclusionsSummary and Conclusions
• Y-zeolites and alumina are very active for plasma-

facilitated NOx reduction in different temperature ranges.  
NOx conversion levels of greater than 90% are 
achievable.

• The plasma reactor performs NO oxidation to NO2 with 
chemistry that is coupled to partial hydrocarbon 
oxidation.

• Aldehydes, produced in the plasma, are excellent
reductants for the thermal catalytic reduction of NOx over
zeolite Y-based catalysts.

• Ba-Y catalysts are the most active with the widest 
temperature “window”.  Improved catalyst synthesis 
procedures have been developed.

• Mechanistic studies point to some clear differences for 
the alkali- and alkaline earth-zeolite Y catalysts, 
especially with respect to the strength of NO2 adsorption.




