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• General overview of pressure drop behavior
• Relationship of pressure drop to pore microstructure for 

bare cordierite filters
• Effects of catalyst on pressure drop
• Optimization of pore microstructure for pressure drop, 

filtration efficiency, strength, and thermal mass
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Experimental StudyExperimental Study

• Objective:  Quantify relationship between pressure drop and 
pore microstructure and utilize to design optimized filter
– Fabricated 2” x 6” cordierite filters (200 cpsi) with over 100 different 

pore microstructures
– Characterized %porosity, median pore size, and width of pore size 

distribution by mercury porosimetry
– Measured clean and artificial soot-loaded pressure drop vs flow rate 

at room temperature
– Derived a model for pressure drop in terms of pore parameters
– Catalyzed selected candidates to determine optimum pore 

microstructure for catalyzed filter

• Objective:  Quantify relationship between pressure drop and 
pore microstructure and utilize to design optimized filter
– Fabricated 2” x 6” cordierite filters (200 cpsi) with over 100 different 

pore microstructures
– Characterized %porosity, median pore size, and width of pore size 

distribution by mercury porosimetry
– Measured clean and artificial soot-loaded pressure drop vs flow rate 

at room temperature
– Derived a model for pressure drop in terms of pore parameters
– Catalyzed selected candidates to determine optimum pore 

microstructure for catalyzed filter



5

Porosity and Median Pore SizePorosity and Median Pore Size

3535

4040

4545

5050

5555

6060

6565

7070

00 1010 2020 3030 4040

Median Pore Diameter (microns)Median Pore Diameter (microns)

% % 
PorosityPorosity

35-65% porosity
4-40 µm pore size
35-65% porosity
4-40 µm pore size



6

Pore Size DistributionPore Size Distribution
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Key Learnings from Data AnalysisKey Learnings from Data Analysis

• Clean pressure drop decreases for larger values of 
(%porosity)(median pore size)2

– Consistent with models of flow through cylindrical capillary pores
– Median pore size is dominant

• Soot-loaded pressure drop decreases for larger values of 
%porosity and smaller values of (d50-d10)/d50, narrower pore 
size distribution
– Better pore connectivity
– Lower gas velocity through pore necks
– Less dense packing of soot in near-surface pores
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Catalysis Coating StudyCatalysis Coating Study

• Six cordierite materials with range in pore microstructures
• 2” x 6” filters, 200 cpsi, 12 mil walls
• Artificial soot loaded and pressure drop tested
• Soot burned out at 650oC
• Catalyzed and soot-loaded pressure drop re-measured 
• Two catalyst systems examined

– Detailed results for System “A”
– Summary of System “B” versus “A”
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Examples of Pore MicrostructuresExamples of Pore Microstructures
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Regeneration and Volumetric Heat CapacityRegeneration and Volumetric Heat Capacity

• Temperatures reached during uncontrolled regenerations 
must be minimized for survivability of both filter and catalyst

• Peak temperature is reduced for filters with high “thermal 
mass” (heat capacity per unit volume)
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SummarySummary

• By tailoring the ceramic pore microstructure or catalyst 
formulation, very low pressure drops have been achieved 
for catalyzed cordierite DPFs

• Soot-loaded ∆P for bare or catalyzed filters is minimized for 
high pore connectivity (high porosity or narrow psd)

• Bare or catalyzed filters with moderate %porosity and fine, 
narrow pore size distribution yield soot-loaded ∆P equivalent 
to high-porosity filters with coarse, broad pore size 
distribution
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ConclusionConclusion

• Research on effects of pore microstructure, cell geometry, 
and catalyst formulation have yielded new catalyzed 
cordierite DPFs with unique combinations of low ∆P, high 
%FE, and higher thermal mass, without sacrificing strength
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