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ABSTRACT 

Differences in the lung toxicity and bacterial 
mutagenicity of seven samples from gasoline and diesel vehicle 
emissions were reported previously [1].  Filter and vapor-phase 
semivolatile organic samples were collected from normal and 
high-emitter gasoline and diesel vehicles operated on chassis 
dynamometers on the Unified Driving Cycle, and the 
compositions of the samples were measured in detail.  The two 
fractions of each sample were combined in their original mass 
collection ratios, and the toxicity of the seven samples was 
compared by measuring inflammation and tissue damage in rat 
lungs and mutagenicity in bacteria.  There was good agreement 
among the toxicity response variables in ranking the samples 
and demonstrating a five-fold range of toxicity.  The relationship 
between chemical composition and toxicity was analyzed by a 
combination of principal component analysis (PCA) and partial 
least squares regression (PLS, also known as projection to latent 
surfaces).  The PCA/PLS analysis revealed the chemical 
constituents co-varying most strongly with toxicity and 
produced models predicting the relative toxicity of the samples 
with good accuracy.  The results demonstrated the utility of the 
PCA/PLS approach, which is now being applied to additional 
samples, and it also provided a starting point for confirming the 
compounds that actually cause the effects. 
 
INTRODUCTION 

Two interrelated issues pertaining to the health 
hazards of engine emissions continue to present serious 
challenges to manufacturers, regulatory decision makers, 
toxicologists, and risk assessors.  First, it is important to identify 
the most important contributors to health risk among the myriad 
physical-chemical species contained in emissions.  Second, it is 
important to be able to estimate changes in health risks, for 
better or worse, that will result from changes in the composition 
of emissions.  Both issues are important for ensuring that the 
most health-relevant components are controlled and that 
technological strategies for meeting emissions regulations 
reduce, rather than increase, hazards.  The current knowledge 
base does little to support such judgments because there have 
been few direct comparisons of the health effects of different 

types of emissions.  Moreover, with the exception of bio-
directed fractionation schemes that have identified nitro-
aromatic compounds as major drivers of bacterial mutagenicity, 
there has been no data set suitable for the types of statistical 
analyses that can determine the chemical species driving the 
health hazards of complex emissions. 
 

As reported recently [1-3], the DOE Office of Heavy 
Vehicle Technologies supported the collection, chemical 
analysis, and toxicological evaluation of a set of seven samples 
of emissions from normal- and high-emitting gasoline and diesel 
vehicles.  Because the samples had a five-fold range of toxicity, 
and because their composition was determined in detail, an 
opportunity existed to explore the relationship between chemical 
composition and toxicity.  A statistical approach was selected 
[4] that had been successfully used to determine the key 
components of complex petroleum mixtures causing mutations 
in bacteria.   
 
 
METHODS 
 
Emission Samples  

Particle and vapor-phase semivolatile organic (SVOC) 
fractions were collected at the Southwest Research Institute 
using filters and polyurethane foam/XAD resin traps, 
respectively, from diluted, fresh emissions from vehicles 
operated on chassis dynamometers on the Unified Driving Cycle 
as described [2,5].  Five vehicles or groups of vehicles were 
sampled: a group of five normal-emitting gasoline vehicles (G); 
a group of three normal-emitting diesel vehicles (D); two single 
gasoline vehicles emitting white (WG) and black (BG) smoke; 
and a single high-emitting diesel vehicle (HD).  All vehicles 
were in-use light- or medium-duty passenger cars, pickup trucks, 
or vans, ranging from 1976 to 2000 models and were tested with 
fuel and crankcase oil as received.  The normal-emitting groups 
were sampled while operating both at room temperature and at 
30ºF (G30,  D30), and samples from the two groups of normal-
emitting vehicles were pooled, making a total of seven samples.   



Chemical and Toxicological Evaluations  
The chemical composition of the particle and SVOC 

fractions of each of the seven samples were analyzed separately 
in detail at the Desert Research Institute.  Analyses included 
temperature fractions of organic and elemental carbon, elements, 
ions, and full speciation of resolvable organic compounds.  A 
total of 176 composition variables was measured.  Parallel 
aliquots were provided to the Lovelace Respiratory Research 
Institute for toxicological evaluation. 

 
For toxicological evaluation, the particle and SVOC 

fractions were combined in their original collection ratios and 
mixed with lung cell culture media [3], Salmonella culture 
media (Ames bacterial reverse mutation assay) [2], or instilled 
into lungs of rats [2] over a range of doses of combined particle 
+ SVOC mass.  Because the ranking of toxicity among the seven 
samples by cultured lung cells differed from the ranking by 
lungs [3], composition-response relationships were only tested 
statistically using lung and bacterial mutagenicity responses. 

 
Responses in rat lungs were evaluated at 4 (the 

cytokine MIP-2) or 24 (all other responses) hours after dosing as 
described [2].  Lungs were removed and weighed, and then 
cells, protein, enzymes, and chemical mediators of inflammation 
were sampled by washing (bronchoalveolar lavage).  Lung 
tissue was then fixed and examined by light microscopy for 
histological evidence of inflammation and tissue damage.  In all, 
11 lung response variables were measured.  Dose-response 
slopes were calculated for each variable for each emission 
sample, and the slopes were used to rank the toxicity of the 
samples for each response variable. 

 
Bacterial mutagenicity was evaluated in Ames tester 

strains TA98 and TA100, both with and without metabolic 
activation by a liver microsome preparation (S9) [2].  
Mutagenicity was determined over a range of doses, response 
slopes were constructed for each of the four test cases (two 
strains, each ± S9), and the mutagenicity of the samples was 
ranked as done for the lung response variables. 

 
Statistical Analysis  

A combination of principal component analysis (PCA) 
and partial least squares regression, also known as projection to 
latent surfaces, (PLS) was used to assess relationships between 
composition and response variables with the aim of determining 
the composition variables most closely associated with 
differences in toxicity among the seven samples.  The PCA/PLS 
analysis was conducted using Simca 10.0 software (Umetrics, 
Umea, Sweden) using an iterative exploratory process described 
previously [4,6].  PCA/PLS analysis determines groupings 
among composition (predictor) variables and response 
(dependent) variables by projection to planes or hyperplanes in 
multiple dimensions, and tends to overcome difficulties caused 
by inter-correlations among variables and a larger number of 
variables than of samples (both types of difficulties were 
presented by this data set).  The PLS analysis also allows 
construction, testing, and optimizing equations for predicting 
health responses from groupings of composition variables. 

 
 

RESULTS 
 

Ranking of Sample Toxicity 
The seven samples had a five-fold range of relative 

toxicity in rat lungs, as illustrated by the ranking for lung 

inflammation shown in Figure 1.  The mean ranking by five 
different inflammation variables is shown in the figure, with the 
magnitude of response for the most toxic sample set at a value of 
1.0.  The most toxic sample (WG) caused approximately five 
times greater lung inflammation as the least toxic (G30).  
Confidence in the ranking is gained from the fact that, with few 
exceptions, the five inflammation variables yielded the same 
ranking.  The ranking for the tissue damage variables was 
identical to that for inflammation; thus, the 11 “lung toxicity” 
variables could be grouped together in the PCA/PLS analysis. 

 
The seven samples also had a five-fold range of 

relative mutagenicity in the Ames test, although the ranking 
order differed from that for lung inflammation.  The mean 
ranking for strain TA100 with and without S9 activation is 
shown in Figure 2, with the magnitude of response for the most 
mutagenic sample set at a value of 1.0.  The most mutagenic 
sample (D30) was approximately five times more mutagenic than 
the least mutagenic sample (G).   

 
Relationship Between Composition and Toxicity 

The PCA/PLS analysis yielded a ranking of the 
relative association of each of the 176 composition variables to 
the response outcomes; that is, the extent to which the 
differences among samples in the amount of each composition 
variable tracked with the differences among samples in toxicity.  
Relationships were tested between each composition and 
response variable and between groupings of composition and 
response variables that were determined to co-vary (and thus 
could be lumped together).  An example is illustrated in Figure 
3, which shows the relative strength of association of each of the 
top 18 composition variables with total lung lavage 
inflammatory cells (total leukocytes, or white blood cells).  In 
this example, “O2TC”, a temperature fraction of organic carbon, 
bore the strongest relationship to differences in inflammation, 
followed by total nitrate and other individual compounds and 
phy sical-chemical classes.  Interestingly, the nine individual 
compounds bearing the strongest relationship to inflammation 
were all two- to four-ring polycyclic aromatic hydrocarbons 
(PAHs) ranging from Bibenzyl (MW 182) to stearane (MW 
372), and including both SVOC and particle-bound species.   

 
Mathematical models were then constructed, tested, 

and refined iteratively to determine the combination of 
composition variables giving the best prediction of the ranking 
of sample toxicity for each response variable.  Because the 11 
lung toxicity variables ranked the samples similarly, a single 
best model for predicting lung toxicity was derived.  A model 
that included 63 composition variables proved optimal, and the 
correlation between the resulting prediction and the actual 
sample ranking (“goodness of fit”) was calculated for each 
response variable.  The model yielded correlation coefficients 
(R2) ranging from 0.68 to 0.96 for the 11 responses, with the 
best fit for histological evidence of inflammation (Figure 4).  
Figure 4 illustrates that the model predicted the toxicity of 
samples from high-emitters (BG, HD, and WG) very well, but it 
did not discriminate very well among the toxicities of the 
samples from normal vehicles (G, G30, D, D30).  This reflected 
the fact that the toxicities of samples from normal vehicles were 
similar and illustrated the point that the strength of the PCA/PLS 
analysis in identifying composition-response relationships is 
related to the diversity of sample composition and toxicity.  

 

 



 
Figure 1.  The relative ranking of the seven samples for lung inflammation is shown.  The magnitude of the greatest response 

for each of five response variables, and also for the mean of the five responses, was set at a value of 1.0. 
 

 
Figure 2.  The relative ranking of the seven samples for mutagenicity in strain TA100 is shown.  The magnitude of the greatest 
response for mutagenicity with and without activation by S9 and also for the mean of the two test conditions was set at a value 

of 1.0. 
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Figure 3.  The relative strength of association between inter-sample differences in composition variables and differences in 
lung lavage inflammatory cells (total leukocytes) is shown for the top 18 physical-chemical composition variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  The fit of a model containing 63 composition variables to the ranking of samples for histological evidence of 
inflammation is shown.  

 
 

The same iterative approach was used to determine the 
physical-chemical components most closely associated with 
bacterial mutagenicity, and to develop predictive models.  The 
best model included 23 nitro- and oxy -PAHs.  Figure 5 shows 
the relative strength of association between the 23 compounds  

and mutagenicity in TA100, and Figure 6 illustrates the 
extremely good fit (R2 = 0.99) of the predicted to actual 
mutagenicity of the seven samples.  In contrast to lung toxicity, 
the model for mutagenicity discriminated very well among all 
the samples. 
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Figure 6.  The fit of a model containing 23 composition variables (oxy- and nitro-PAHs) to the ranking of samples for 

mutagenicity in strain TA100 is shown.  
 

CONCLUSIONS 
The results demonstrated the utility of the PCA/PLS 

analysis for examining composition-response relationships 
among a large and diverse range of both composition and 
response variables.  The approach had been used previously for 
bacterial mutagenicity, but it has now been shown to apply as 
well to other parameters of toxicity.  The high predictive power 
for mutagenicity, although not unexpected, was especially 
encouraging.  Decades of “bio-directed fractionation,” an 
iterative process of testing the mutagenicity of chemically 
isolated fractions of organic material from combustion particles, 
had shown that certain nitro- and oxy -PAHs were primarily 
responsible for the mutagenicity of combustion products [7].  
The fact that the PCA/PLS analysis of only seven samples 
yielded the same information lends confidence to the use of the 
analysis to identify emissions components responsible for other 
forms of toxicity and encourages the continuation of the effort. 

 
Two strategies are needed to follow up on the present 

findings.  First, more, and more diverse, samples need to be 
added to the analysis to determine whether or not the same 
composition-response relationships hold for other types of 
emissions (e.g., natural gas).  Second, the associations 
demonstrated by the analysis suggest, but do not prove, that the 
compounds most highly associated with differences in toxicity 
actually cause the effect.  One approach to determining causality 
would be to re-test the toxicity of low-toxicity samples “doped” 
with the suspect compounds and confirm not only an increase in 
toxicity but also that the model accurately predicts the increase.  
Work following up on both of these strategies is underway. 
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