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Introduction

Strategies for Reducing PM

Aftertreatment Systems
Catalytic Diesel Particulate Traps

Particulate oxidation rate depends on its composition and
history

Fuel Composition
Ultra Low Sulfur Diesel Fuel
Synthetic Diesel Fuel (i.e. Fischer-Tropsch Fuel)
Impact on EC, OC, trace metals, sulfates
Lubrication Oil Composition and Variables
Viscosity, Volatility, and Sulfur Content
Engine Design
Electronic Engine Control )
Fuel Injection System
Intake Air System (Turbo-charging, etc.)
Combustion Chamber Modification )
Lubrication Oil Consumption Reduction are underway

\This study

Studies on the impact of
— engine operating conditions
on particulate characteristics




Introduction

O1l Consumption Mechanisms

1. Blowby Return — PCV
(Effect not studied)

2. Migration of oil past
valve stem seals

3. Migration of oil past
piston rings

4. Turbocharger leakage
(Effect not studied)




Experimental Setup

Test Engine

Engine Bench Setup
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Engine Specification

Engine Type Qunins N14 Single Gylinder Diesd
Gyde 4-stroke
Corrbustion Charrber Quiescent
Piston Charrber Shallow Dish
Nurrber of Intake Valves 2
Nurrber of Extaust Valves 2
Conpression Ratio 13.1:1
Swirl Ratio 14
Displacerment 2336
Bore 139.7 mMm
Stroke 1524 mm
Combustion Charrber Diameter 97.8 ™M
Connedtion Rod Length 304.8mMm
Piston Pin Offset None
Injedion System Unit Injector, Direct Injection (DI)
Nozzle Dimension 8x®0.2mMm

Length/Diameter of holes (1/d) 4.1
Spray Angle 152°




Experimental Design

Experimental Operating Conditions

Peak Torque

260

240 | Mode
. 200 [ (100% load)
CARB 8-Mode Test Points o f ot
— ode
. c o
Steady-State Operation 2 eof (75% oad)
3 160 |- (100% load)
= 140 [
o - Mode 7@ Mode 2@
g 120} (50% load) (75% load)
g 100 [
r Mode 3@
o 80 | 0,
Fuel was a 2006 EPA low £ [ (50% oac)
wm i (25% Ioz:)\
sulfur fuel, 14 PPM w0} |Modes
20
0 [ L | L | L | L | L | L | L |
600 800 1000 1200 1400 1600 1800 2000
Engine Speed [rpm] Rated Speed
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8
Speed [rpm] 1800 1800 1800 1200 1200 1200 1200 700
Load [%] 100 75 50 25 100 75 50 10 (idle)
Rated Peak
Remark
speed torque
Intake T [°C] 46.48 46.48 46.48 46.11 45.93 45.74 46.30 45.74
Intake P [kPa] 148.05 148.97 143.00 160.46 152.87 157.01 162.07 164.37
Exhaust P [kPa] 181.91 195.54 160.23 162.41 152.94 202.67 182.18 151.52
SOL CA aTDC -5.0 -5.0 -5.0 -2.0 -11.0 -2.0 -2.0 -2.0
[degrees]




Experimental Results

L.OC Rate Measurement Method

Calcium: a viable
LOC tracer

(SAE 980523 and SAE 2003-01-0076)

Calcium compounds
are common additives

Other metals 1n o1l
(Fe, Al, Cu, etc.) can
also be attributed to
engine wear.

Ca and Zn show good
agreement.

LOC Rate Calculated by Zinc [g/hr]

2.0 4

1.5

1.0 1

0.5 1

e

T
0.0

I T I T I
0.5 1.0 1.5
LOC Rate Calculated by Calcium [g/hr]

1
20



Experimental Results

Lube O11 Consumption
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Experimental Results

Lube O11 Consumption

* Measured LOC rates: 0.3 — 1.5 g/hr
(Mode 4 LOC < 0.1 g/hr)

* Typical LOC (High Speed Diesels):
0.1-0.5% of full load fuel which would
correspond to 7 — 40 g/hr

» Test points are steady state conditions



# of particles
(Ca+, Fe+, Mn+, P-, EC)

Experimental Results

Transient Lube O1l Consumption

e “Transient” calcium spikes on order of 10x
steady state operation from raw ATOFMS data

Timeline 31502m325TR

Timeline 31502m415TR

BP-ARCO fuel
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Experimental Results

Lube O11 Consumption

* Measured LOC rates: 0.3 — 1.5 g/hr

» Typical LOC (High Speed Diesels):
0.1 —0.5% of full load fuel which would
correspond to 7 — 40 g/hr

» Test points are steady state conditions

 Transient operation critical to understanding
overall LOC, but...

* What can be learned from less complex,
fundamental steady state operation?



Experimental Results

Engine Out PM

Engine Out Particulate Matter Variation from Base Condition
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Experimental Results

Reconstructed Mass vs.
PM?2.5 Mass

Very Good Agreement

Recon > Measured for
low loading

This may be due to
sorption of semi-
volatile gas-phase
organic compounds to
the filter.

Reconstructed Mass [mg/m3]

oo

] Reconstructed Mass = EC+1.2*OC+sulfates

— T+ T 1 T T+ T T T ' 1
o 1 2 3 4 5 6 7

Filter PM2.5 Mass [mg/m3]



Experimental Results

Particulate Matter Composition

Mode 4 25% Load 1200 rpm

S04 Ash

EC 0.33% 0.01%
16% ° e OM

* Varying composition
with engine mode

 Fairly consistent (+5%)

composition among
variations in LOC for
cach engine mode

Mode 5 100% Load 1200 rpm

S04 Ash
0.13% 0.13% OM

Mode 1 100% Load 1800 rpm

S04 Ash oM
0.7% 0.2% 14%
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Organic Carbon, OC [g/hr]

Experimental Results

OC vs. LOC for Mode 5 and Mode 1
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No obvious relationship between Organic Carbon and
Lube O1l Consumption for Modes 5 and 1



Experimental Results

Lube O1l Contribution to OC

Potential Lube Oil Contribution to Organic Carbon

(assuming no lube oil combustion)
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Experimental Results

Mode

Mode 1

Filter and SMPS Correlations
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Experimental Results

Mode 5

Filter and SMPS Correlations
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Mode 1

Experimental Results

Filter and SMPS Correlations
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Experimental Results

Mode 1

Filter and SMPS Correlations
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Experimental Results

Particulate Matter Effective Density

Some effective density
data available from
various instruments

Assume empirical
density function of the
similar functional form

Spherical particles
PM = Conc * Vol * p

Effective Density [g/cm3]
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Experimental Results

Particulate Matter Effective Density
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dN/dlogDp [#/cm3]
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Conclusions (Stead State Operation)

Lube o1l consumption for steady state operation has
insignificant effect on diesel particulate matter

Engine operating conditions have significant effects on the
detailed particulate matter composition

Lube o1l has a small contribution to overall organic carbon
for some operating conditions

Effective density calculations provide additional insight in
understanding the details of diesel PM.

No apparent changes 1n particle size distributions with
changes 1n o1l consumption
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