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BackgroundBackground

In the case of biodiesel fueling (e.g., “B20”, a blend of 20vol.% 
methyl soyate in diesel fuel), there is a well documented 
increase of 2-4% in NOx emissions [Graboski, M.S. and R.L. 
McCormick, “Combustion of fat and vegetable oil derived fuels 
in diesel engines.” Progress in Energy and Combustion 
Science, 1998, 24(2): p. 125-164.]
As shown by Van Gerpen and co-workers, the NOx increase 
with biodiesel fueling is attributable to an inadvertent advance
of fuel injection timing due to the higher bulk modulus of 
compressibility, or speed of sound, in the fuel blend, which 
leads to a more rapid transferal of the pressure wave from the 
fuel pump to the injector needle and an earlier needle lift
[Monyem, A., J.H. Van Gerpen, and M. Canakci, “The effect of 
timing and oxidation on emissions from biodiesel- fueled 
engines”. Transactions of the ASAE, 2001, 44(1): p. 35-42.]
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ObjectivesObjectives

Determine the Interaction between Formulation of 
Conventional, Renewable and Synthetic Diesel Fuels and their 
Injection Characteristics
Measure Physical Properties of Fuels that Can Provide Support 
for Understanding Injection, Combustion and Emissions 
Performance of Diesel Fuels
Use Injection Studies, Physical Properties, Emissions 
Measurements and In-Cylinder Visualization to Determine 
Optimal Fuel Formulations
Link Feedstock and Fuel Production Process to Physical 
Properties and, Thereby, Injection, Combustion and Emissions 
Performance
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•Fuel Properties

•Injection 
Characteristics

•Combustion

•Pollutant 
Formation

•Particulate Filtration

•DPF Regeneration

•NOx Reduction

•Feedstock

•Fuel Production

•Fuel Properties

Feedback of Behavior and Performance Information

Spray Visualization 
Chamber
Bulk Modulus of 
Compressibility

AVL 513D Engine 
Videoscope
Particulate and 
Gaseous Emissions 

Various 
Aftertreatment 
Strategies

Research StrategyResearch Strategy
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ExperimentalExperimental

 

High Pressure 
Fuel Line From 
Engine 

Fuel Line 
Pressure 
Sensor 

High Speed Data Acquisition System
0.1 CA Degrees Resolution 
Signal From Phototransistor 
Signal From Pressure Sensor 

Fuel Injector Phototransistor

Laser 

Spray 
Chamber 

Digital Camera 

AVL Videoscope Image Acquisition 
0.1 CA Degrees Resolution 

Spray Visualization System

• SAE 2003-01-1039

• ACS Nat’l Mtg. New Orleans, 2003 
Fuel Chemistry Div.

High Pressure Housing for 
Pycnometer
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Glass Windows
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Test Engine

Camera

Endoscope

Strobe Light

Videoscope Instrumentation

Cummins ISB 5.9L 6-Cylinder Test EngineCummins ISB 5.9L 6-Cylinder Test Engine
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Engine horizontal  axis

Engine vertical axis
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BP 15 BP 15 + 40 % Biodiesel B100

Spray and Combustion 
10% Load and 1800 RPM in Cummins 5.9L ISB

Spray and Combustion 
10% Load and 1800 RPM in Cummins 5.9L ISB
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Injection and Rate of Heat Release Analyses
Diesel and B20 Test Fuels in the Cummins 5.9L ISB

Injection and Rate of Heat Release Analyses
Diesel and B20 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Injection Timing Study with COP FT Diesel
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Injection Timing Study with COP FT Diesel
Bulk Modulus of Test Fuels
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1000

1200

1400

1600

1800

2000

2200

0 5 10 15 20 25 30

Soy Oil
B100
B20

BP15 
Fischer Tropsch
Norpar

B
ul

k 
M

od
ul

us
 (M

Pa
)

Pressure (MPa)



The Energy Institute

Injection Timing Study with COP FT Diesel
Yanmar L70EE 7 hp Air-Cooled Single-Cylinder DI Diesel Engine

Injection Timing Study with COP FT Diesel
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ConclusionsConclusions

Biodiesel and Soybean Oil Fuels
The higher bulk modulus of compressibility of vegetable oils and
their methyl esters leads to advanced injection timing
The advanced injection timing results in the increased NOx 
emissions associated with Biodiesel, the “NOx effect”

Paraffinic and Fischer-Tropsch Fuels
The lower bulk modulus of compressibility of paraffinic fuels lead to 
a retarding of injection timing 
The retarded timing supports the observation that paraffinic fuels 
such as Fischer-Tropsch diesel fuels yield lower NOx emissions
The high cetane number of the COP FT diesel permits retarded 
injection timing without degraded combustion

Aggregate Effects on Emissions Control
Higher engine-out NOx and higher PM-SOF can enhance DPF 
regeneration and lower the Break Even Temperature (BET)
NOx/PM ratio and PM composition/reactivity are key issues in DPF 
regeneration
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Future WorkFuture Work

Ultra Clean Fuels Program
Examine COP Fischer-Tropsch Diesel Products Neat and in Blends, 
Including Blended with Biodiesel, in the Cummins ISB 5.9L
Turbodiesel Engine
Includes Property Evaluation, Combustion & Emissions Tests, 
Exhaust Aftertreatment and In-Cylinder Visualization
Examine Optimization of Engine Control Parameters to Maximize the 
Benefits from the Unique Properties of the COP F-T Diesel
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