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• Introduction – Relevance to CFC-free Air-
conditioning in Automobiles, Energy 
Conservation and Emissions Reduction 

• Advantages of Technology and Thin-film 
Cooling Examples

• Thin-film Power Conversion Examples

• Major Outstanding  Issues for Research

• Emerging Thin-film TE Technology 
Applications



Why Thermoelectrics?
• Converts electrical and thermal energy using a solid state 

device with minimal moving parts
• Chip-scale functionality with thin-film materials using 

standard microelectronic processing
• Computer Chip, Photonic Chip, Lab-on-a-Chip

• Green Technology – CFC-free refrigeration to waste-heat  
recovery for fuel efficiency



Thermoelectric Effect

Ref  : Nature, 413,  577 (2001)

• Cooling or Power 
Conversion Efficiency 
critically dependent on 
the material Figure of 
Merit (ZT)
• ZT = (α2σ/K)T
• Minimize thermal 
conductivity and 
maximize electrical 
conductivity



ZT and COP of Refrigerator or Air-Conditioner

Figure-of-Merit (ZT)

Coefficient of 
Performance

of Refrigerator

THOT = 300 K
∆T ~ 30 K

0

1

2

3

4

0.0 1.0 2.0 3.0 4.0 5.0

Bulk Bi2Te3-alloy Thermoelectric Devices

Bi2Te3/Sb2Te3 Superlattice 
Thermoelectric Devices

Typical large-scale 
mechanical system

Typical small-
scale mechanical 
system

Higher ZT – Incentives for New Approaches to 
Implementing Higher COP Concepts



• High-density, light-weight

• Higher efficiency

• Replace Batteries

Implications for Power 
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THERMOELECTRIC TECHNOLOGIES in 1992 
Fort Belvoir Workshop Organized by Dr. Stuart Horn
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Technology

• ZT - figure of merit - has been stagnant at about 0.8 to 1 for the 
last 40 years - cooling and power conversion efficiencies low -
useful only in applications where you really need it

• ZT need to improve over 1.5 at 300K for a major impact in 
electronics and around 2 to 2.5 for a revolutionary impact in air-
conditioning, and power from waste-heat

T=300K



Cs Bi4Te6 (Michigan State University)
Bulk Materials with a ZT~ 0.8 at 225K but less than 0.8 at 

300K (Science 287, 1024-1027, 2000)
Filled  Skuterrudites (JPL)

Bulk materials with a ZT ~1.35 at 900K (Proc. Of 15th

International Conf. On Thermoelectrics, 1996)
PbTe/PbTeSe Quantum-dots (MIT Lincoln Labs.)

ZT~2 at 550K and ZT~0.8 at 300K based on estimated 
thermal conductivity values (J. Electronic Materials, 29, L1 , 
2000)

Bi2Te3/Sb2Te3 Superlattices (RTI)
ZT~2.4 at 300K in devices with all properties measured at the 

same place, same time, with current flowing and verified by two 
independent techniques (Nature, 597-602, 2001)

Some of the Bulk Material and Thin-film 
Developments



Multiple
Applications

Multiple
Applications

Thermoelectrics 
Research 

Thermoelectrics 
Research Breakthrough 

Nanotechnology
Breakthrough 

Nanotechnology



RTI’s 40-Year Breakthrough
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10Å/50Å Bi2Te3/Sb2Te3
Structure

Optimized for 
disrupting heat 
transport while 
enhancing electron 
transport perpendicular 
to the superlattice 
interfaces

RTI’s Nano-structured Superlattice Material

 Applied Physics Letters, 75, 1104 (1999)



MOCVD Growth of Superlattices

Low-temperature technology and scaleable for large areas

In-situ ellipsometry for nanometer-scale control of deposition 
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12 nanometer

RTI’s Superlattice Material
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The RTI breakthrough arises from reducing heat 
transmission without disrupting electron flow
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Correlation Between ZT and ∆TmaxCorrelation Between ZT and ∆Tmax

• Current focus of program to translate ZT of material closer 
to system-level external cooling or efficiency

ZT of P-N Couple at 300K vs. ∆Tmax (K) 
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Advantages and Thin-film Cooling 
Examples



RTI’s Superlattice 
Technology

Commercial Bulk 
Technology
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1,500 microns

Advantages of RTI’s Superlattice 
Thermoelectric Technology

Enhanced cooling 

Super-fast cooling and heating

Enhanced power density

Anywhere, any time 
cooling/ heating 
technology

24.10 oC 27.93 oC



Thin Film 
Module

Today’s 
Commercial 
Bulk Module

Advantages of RTI’s Superlattice 
Thermoelectric Technology

Enhanced cooling 

Super-fast cooling and 
heating

Enhanced power density

Anywhere, any time 
cooling/ heating 
technology

1/40,000th the actual TE 
material requirement of bulk 
technology – low recycle 
costs

1mm x 3mm

50mm x 50mm



Thin-film Thermoelectric Module Fabrication

5 nm Bi2Te3-xSex 1 nm Bi2Te3

N-type materials

5 nm Bi2Te3-xSex 1 nm Bi2Te3

N-type materials

20 Watt 
module
Package

Mini-module

P-type 
Superlattice

N-type
Superlattice

P-N Couple

5 nm Sb2Te3 1 nm Bi2Te3

P-type materials

5 nm Sb2Te3 1 nm Bi2Te3

P-type materials



Thin-film Power Conversion Examples



Thermoelectric Power Conversion

• Power Conversion Efficiency 
critically dependent on the 
material Figure of Merit (ZT)

• Maximize ∆T
Thermal management 

(getting the heat out from 
the heat-sink) is important to 
generating the maximum ∆T

(Th-Tc)     {(1+ZT)1/2 -1}
ψ = 

Th {(1+ZT)1/2 -1}+ Tc/Th





Pmax  vs ∆Tinternal

Pmax = 0.004(∆T)2.0755

R2 = 0.9996
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• Note square-dependence of Pmax on ∆T across TE device

One of the next big focus areas - Reduce 
thermal interfaces to get more ∆T into the device



36–element, 0.025 cm2-active area – enough 
power for a small fan



Theat-sink = 300K Theat-source = 660K Theat-source = 750K

∆T ~ 120K ∆T ~ 150K 

per stage per stage

Very Optimistic Projection ZT ave Efficiency (%) Efficiency (%)

300K < T < 420K to 450K Stage 1 2.75 10.1% 12.0%

420K to 450K < T < 540K to 600K Stage 2 2.25 6.9% 7.9%
540K to 600K < T < 660K to 750K Stage 3 2.25 5.6% 6.1%

Total Efficiency for 3-stage Cascade 22.6% 26.0%
 Moderately Optimistic Projection ZT ave Efficiency (%) Efficiency (%)

300K < T < 420K to 450K Stage 1 2.5 9.6% 11.4%

420K to 450K < T < 540K to 600K Stage 2 2 6.5% 7.4%
540K to 600 K < T < 660K to 750K Stage 3 2 5.2% 5.8%

Total Efficiency for 3-stage Cascade 21.3% 24.6%
 Conservatively Optimistic Projection ZT ave Efficiency (%) Efficiency (%)

300K < T < 420K to 450K Stage 1 2.25 9.1% 10.8%

420K to 450K < T < 540K to 600K Stage 2 1.75 6.0% 6.8%

540K to 600K < T < 660K to 750K Stage 3 1.75 4.8% 5.4%

Total Efficiency for 3-stage Cascade 19.9% 23.0%

Long-term Potential Efficiencies for Heat Sources 
at 660K and 750K

Long-term Potential Efficiencies for Heat Sources 
at 660K and 750K



• High ZT Materials for higher temperatures

•Thermal Management at significant flux levels

• Low electrical resistivity metal-semiconductor 
Ohmic Contacts in the range of 300K to 750K

• Low resistivity metal-metal current injection and 
thermal transfer contacts in the range of 300K to 
750K 

• Low resistivity metal-dielectric thermal transfer 
contacts in the range of of 300K to 750K

Major Issues in Application to Waste-Heat 
Recovery from Heat Sources Operating at 

Various Temperatures



> 700 W/cm2

~ 120oC

< 1 W/cm2

~ 60oC 

Cooling Power Density

Potential Maximum Cooling 
per stage

Long-term (three to 
five years) projected 
cost < $ 0.5 per Watt

$ 0.5 to 1 per Watt as 
of today after 40 years 
of maturity

Cost of heat pumping

< 3 grams~ 22 gramsWight of TE module for 
pumping 50 Watts (without 
thermal management 
components)

2 to 2.51COP (Heat 
Pumped/Electrical Power 
in) for a ∆T of 25oC

Thin-film Technology
(ZT ~ 2.5)

Bulk Technology
(ZT ~ 1)

Performance Parameter

Bulk versus Thin-film TE Cooling/Heating



> 50 Amp/cm2 possible

48 Volts achievable 
with microelectronically
interconnected circuits
> 20 W/cm2

< 200 mA/cm2

5 to 10 Volts

< 1 W/cm2

Current Density

Voltage levels from each
module

Power Density

Long-term (three to 
five years) projected 
cost < $1 per Watt

$5 per Watt as of 
today after 40 years of 
maturity

Cost

570 Watts/gram of TE 
module weight

1 Watt/gram of TE 
module weight

Specific Power  excluding 
thermal management 
components

10 to 11%3 to 4%Efficiency for a ∆T of 150oC

Thin-film Technology
(ZT ~ 2.5)

Bulk Technology
(ZT ~ 1)

Performance Parameter

Bulk versus Thin-film TE Power



Low-cost, Efficient Fabrication of Large-Power Modules 
Using Standard Microelectronic Tools



Other Emerging Applications



Application in Genomics and Proteomics

High-speed PCR for rapid DNA 
analysis

Self-assembly of DNA and Protein 
molecules

Today’s analytical tools are 
inadequate 
to study proteins
(2-D gel electrophoresis, liquid 
chromatography, and mass spectrometry) 

Wafer-scale thermoelectrics can 
enable “fingerprinting” of proteins 
and their interactions



High-speed PCR
Typical PCR- starts with double-strand DNA being split at 
95oC, temperature lowered to where single strands can 
bind together with new strands

Two-step heating cycle is repeated n times, produces 2n

copies of target sequence

From a single starting molecule, 20 cycles yield over 
1M, 30 cycles 1B, and 40 cycles 1T copies

Typically each cycle is 1 minute

Reducing cycling time, efficient devices, and small-scale 
battery-operated systems can lead to field applications for 
DNA testing for pharmacology and bio-weapon detection  



Self-Assembly of DNA Microarrays



Self-Assembly of DNA Microarrays

DNA1 arrives at 
heated spots



Self-Assembly of DNA Microarrays

Use heat to break 
double-stranded 

DNA1



Self-Assembly of DNA Microarrays

A single-stranded 
DNA1 is created



Self-Assembly of DNA Microarrays

Use charge and 
cooling to trap 

single-stranded 
DNA1

- -- - --



Self-Assembly of DNA Microarrays

DNA2 arrives at 
heated spots

- -- - --



Self-Assembly of DNA Microarrays

Use heat to break 
double-stranded 

DNA2

- -- - --



Self-Assembly of DNA Microarrays

A single-stranded 
DNA2 is created

- -- - --



Self-Assembly of DNA Microarrays

Use charge and 
cooling to trap 

single-stranded 
DNA2

- -- - --- -- - --



Self-Assembly of DNA Microarrays

Self-assembled DNA-array ready 
for experiments
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40-Year Breakthrough — A Multitude of Opportunities




