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Outline

- Composition of volatile particles by thermal
desorption particle beam mass spectrometer

- Equivalent organic carbon number of nuclel mode
particles by volatility measurements

. Sulfuric acid content of nuclel mode particles by
hygroscopicity measurements

. Effective density of accumulation mode particles by
absol ute particle mass measurements



Overall setup
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TDPBM S measuresthe volatility and mass spectra of the
volatile fraction of all the particlesin selected size ranges
between 15 and 300 nm - Summary Results

- Engines

— Deere 4045T medium-duty
— Caerpillar C12 heavy-duty

— Cummins ISM
- Fuels

— Federa pump fuel, 360 ppm S
— Cadlifornia pump fuels, 50 and

96 ppm S

— Fischer-Tropsch, <1 ppm S

. Test conditions
— Light and medium load
— No aftertreatment

Composition of volatile fraction
— Organic component of total diesdl

particles and nanoparticles
appears to be mainly associated
with lubricating oil, e.g., > 80%
for CA fuels, >95% for FT fuel

Magjor organic compound classes
are akanes, cycloakanes, and
aromatics

Low-volatility oxidation products
and PAHs have been found in
previous GC-M S analyses, but
are only aminor component of
the organic mass

Nanoparticles formed with higher
S Federal pump fuel contain
small amounts of sulfuric acid
but those formed with the lower
S fuels show no evidence for
sulfuric acid



Physical characterization methods

- Volatility measurements

— Select single particle size with DMA

— Heat

— Observe diameter change and relate to volatility
- Hygroscopicity measurements

— Select single particle size with DMA

— Humidify

— Observe diameter change and relate to content of hygroscopic materid
- Density measurements

— Select single particle size with DMA

— Measure particle mass with APM
— Calculate effective density = mass/(DMA spherical particle volume)



Volatility of Diesel nanoparticles — 30 nm size selected

particles are heated size changes observed
Cummins ISM, pump fuel (350 ppm S), 1400 rpm , medium load
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*Two particle types of different volatilities present.
\Volatile particles more abundant
«Significant shrinkage occurred when temperature was in the range of 50- 110 °C
*Method very sensitive, 6 nm peak corresponds to 0.4 ng/mé, can go about 100 times lower
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Volatility of diesel nanoparticles— plot of peak diameter

shiftsduring heating. All but the smallest sizes consist of two
particletypes
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Evapor ative shrinkage of n-alkanes and Diesel nanoparticles,
Diesel nanoparticles behave like C28-C32 — lube oil?
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Hyqgroscopicity of diesel nanoparticles— | SM
engine pump fud (350 ppm S) medium load

DMA1 at 6.5 nm
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Aerosol Particle Mass Analyzer (APM)
(Eharaet al., 1996)
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Comparison of “fractal like’ dimension at the
different engine loads (10%, 75%)
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DMA / APM measurements of density of accumulation mode
particles— Deere engine EPA fuel, 1000 rpm various loads

Density comparisons at different engine loads
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Mass size distributions obtained from SMPS and nano-
MOUDI, Deere engine running at 1000 rpm and 50% load

Density measurements used to relate mobility and aerodynamic diameters
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L ow Effective Density M akesthe Aerodynamic
Diameter Smaller than Mobility Diameter

Aerodymamic eguivalent s2e (nm
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Conclusions— properties of Dieseal particles

- Nuclel mode particles (~ 3 to 30 nm)

— Primarily volatile and sometimes hygroscopic
» Volatile materials, mainly heavy hydrocarbons like lubricating oil, and some sulfuric acid

» Although volatile may be relatively insoluble, e.g., lube oil — this could influence their behavior
in biological systems

— Insome casesthereis atiny solid residue in the nuclei mode range that islikely to
consist of mainly of metallic ash
- Accumulation mode particles (~ 30 to 500 nm)
— Primarily non-volatile
— Contain most of the particle mass and elemental carbon

— Density decreases from about 1 to 0.3 g/cm? as diameter increases from 50 to 300 nm

» Dengity measurements reconcile SMPS and impactor measurements
» Aerodynamic diameter underestimates mobility and diffusion diameters

- Wide size range of overlap of nuclel and accumulation modes congsting of
an external mixture of two particle types

— “Lessvolatile” particles, comprised of a significant nonvolatile core (probably
elemental carbon) and an organic component

— “Morevolatile” particles, containing predominantly organics and sometimes small
amounts of sulfuric acid, with the volatile components contributing more than 99% of the
“more volatile” nanoparticle mass





