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LLNL HCCI combustion simulation results for thermal autoignition of the fuel during compression.
Scientific American, June 2001

ODbjectives. Plans:
Develop a new combustion Find inexpensive, practical solutions
system that can provide the high for the problems of HCCI engines:
efficiency and durability of m control

multi-cylinder balancing
high HC and CO emissions
low power output
startability

diesel engineswith very low
NOx and particulate matter
emissions.



We are addressing the problems of HCCI combustion @
through a combination of analysis and experiments --

Control:
Detailed analysis of possible control strategies
Experimental testing
Additives
Multi-cylinder balancing:
Achieved balanced combustion in VW TDI engine
High HC and CO emissions:
Detailed analysisfor optimized engine geometry
L ow power output:
Optimization of engine performance map
Transition to SI/CI combustion
Startability:

Analysis of transition between SI/CI and HCCI combustion



We have analyzed potential methodologies for control
of HCCI combustion (SAE 2000-01-2869)

Example of thermal control system

_______ exhaust gases

| : preheater intercooler
. |
I ntake 1 2 3 4 intake  exhaust |
I O—D/\/\/\ > supercharger V2 WS S - ~
| LN AN A $ 1A AL AL i 1 I
, :— VoV <]“{ l - W N\ ZFi w [ LI : 5
: ‘ 1 I
I l exhaust | | ECGR l I
[ l l | . |
| 121 1| gl HCT Detailed o :
: V A | Chemical Kinetics V :
| |
: : { l 1 |
I 1 l
l } l I
: L : 9 7 i 6 5 oo
R N VI catalyic |, ] I
<k _<1}6 @Q converter [ 4& | ~F ,
: exhaust valve valve 0 I
|
| Burner I
' air and fuel I
: ——————— air andfuel and EGR j& 0 I
| - cooling water I
|
: |
|

———————————— SuperCode Optimization |- ==-=-=-=-------~-!




We have successfully operated the TDI enginewith an E
EGR-equivalence ratio control with no intake heating
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We arelooking at the use of additivesfor control of HCCI
engines
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Control of multi-cylinder HCCI enginesisa challenge
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We ar e exploring many means of cylinder-by- E
cylinder timing contr ol

Control systems are being implemented for two generic,
low cost control options:

Electrical ﬂ @
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M ulti-cylinder engine operation requires E
balancing of combustion timing between cylinders

Trim heaters using less than 1% of mechanical energy output
can effectively balance the cylinders in steady operation
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W e have successfully demonstrated two possible means
of individual cylinder combustion timing control
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Our multi-zone methodology can successfully predict
geometry effectson HC and CO emissions
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Our multi-zone model gener ates accur ate predictionsfor

HCC

| so-octane data from Cummins

| combustion
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We have applied the multi-zone methodology to four
engine designsto evaluate their effect on emissions
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We have analyzed thr ee engine geometries
experimentally tested at the Lund University
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Our analysis can explain the non-monotonic behavior in HC
emissions as a function of equivalenceratio
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Our analysis can explain the non-monotonic behavior in HC
emissions as a function of equivalenceratio
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W e have applied the system simulation and optimization tool
to evaluate transition between HCCI and Sl ignition

Thermally insulated EGR line

—

SAE 2001-01-3613
Decision variables:

1. equivalence ratio

2. EGR
\_/© 3. intake pressure

Engine




We ar e collabor ating with multipleindustrial and E
academic partners

« Cummins
— 2-year long CRADA, 2 joint papers
. — working on establishing a new CRADA
o Caterpillar

c "Truck _ _
Engines — donated experimental engine 3401
, « Sandia National Laboratories
Sandia : . .
National — detailed analysis of experimental data

-~ Laboratories, | ynd Institute of Technology
el — 2 joint papers, collaboration on analysis

« University of Wisconsin
UNIVERSITY — Jjoint work on KIVA analysis

— 3joint papers
n « UC Berkeley
— joint experimental and numerical work, 18 joint
papers
@ — four graduate students obtaining degrees on HCCI




HCCI roadmap @

FYO02 FYO3 FYO04 FYO05

Multi Multi-zone Multi-zone
Muiti-zone . —  engine
Iso-octane gasoline Y
optimization
: Control
Analysis strategies and
Single-zone Fuel transition to
Optimized __ | characterization | Fuel-engine Sl and CI
control and optimization
simulation optimization
TDI engine TDI engine\ : TDI engine
cylinder —» f-EGR DI engine -, implementation of
: : fuels testing )
balancing operation control strategies

Experimental

| l

CAT engine
CAT 3401 CAT 3401

.~ —» implementation of
performance fuels testing control strategies

CAT 3401
1800 rpm —»
visualization





