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Homogeneous Charge Compression Ignition (HCCI) R&D

Objectives:
Develop a new combustion 
system that can provide the high 
efficiency and durability of 
diesel engines with very low 
NOx and particulate matter 
emissions.

Plans:
Find inexpensive, practical solutions 
for the problems of HCCI engines:
< control
< multi-cylinder balancing
< high HC and CO emissions
< low power output
< startability

LLNL HCCI combustion simulation results for thermal autoignition of the fuel during compression. 
Scientific American, June 2001



We are addressing the problems of HCCI combustion 
through a combination of analysis and experiments

Control:
Detailed analysis of possible control strategies
Experimental testing 
Additives

Multi-cylinder balancing:
Achieved balanced combustion in VW TDI engine

High HC and CO emissions:
Detailed analysis for optimized engine geometry

Low power output:
Optimization of engine performance map
Transition to SI/CI combustion

Startability:
Analysis of transition between SI/CI and HCCI combustion



i,w
o,w

3
supercharger

5

EGR
chamberwater

2
intercooler

4 exhaustintake

Burner

catalytic
converter

0

56

exhaust

5'

7

0
1

preheater
intake

9

valve
10

13

exhaust

8

valve

air and fuel
air and fuel and EGR

exhaust gases
cooling water

12
11

We have analyzed potential methodologies for control 
of HCCI combustion (SAE 2000-01-2869)

HCT Detailed 
Chemical Kinetics

SuperCode Optimization

Example of thermal control system



We have successfully operated the TDI engine with an 
EGR-equivalence ratio control with no intake heating
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We are looking at the use of additives for control of HCCI 
engines
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Control of multi-cylinder HCCI engines is a challenge
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We are exploring many means of cylinder-by-
cylinder timing control

Control systems are being implemented for two generic, 
low cost control options:

Electrical 
Trim Heaters

Individual cylinder 
EGR Control by 
Exhaust Throttling



Multi-cylinder engine operation requires 
balancing of combustion timing between cylinders

Trim heaters using less than 1% of mechanical energy output 
can effectively balance the cylinders in steady operation
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We have successfully demonstrated two possible means 
of individual cylinder combustion timing control
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Our multi-zone methodology can successfully predict 
geometry effects on HC and CO emissions
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Our multi-zone model generates accurate predictions for 
HCCI combustion

-40 -30 -20 -10 0 10 20 30 40

crank angle, degrees

0

20

40

60

80

100

120

pr
es

su
re

, b
ar

case 1 case 2

experimental
reduced
detailed

Iso-octane data from Cummins
Case 1: 1010 rpm, 2.41 bar intake, φ=0.346
Case 2: 2007 rpm, 3.11 bar intake, φ=0.348



We have applied the multi-zone methodology to four 
engine designs to evaluate their effect on emissions

Base case

Hot wall (600K)

No crevice

Low swirl
(0.43 vs. 4.3)

All — Low swirl, hot wall, no crevice



We have analyzed three engine geometries 
experimentally tested at the Lund University

Ring Carrier

hRC
Piston Ring

Cylinder Head

Cylinder Liner

w

h Piston Crown
removable

Crevice width w=0.26 mm, 1.6 mm and 2.1 mm
Constant compression ratio 17:1



Our analysis can explain the non-monotonic behavior in HC 
emissions as a function of equivalence ratio
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Our analysis can explain the non-monotonic behavior in HC 
emissions as a function of equivalence ratio
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We have applied the system simulation and optimization tool 
to evaluate transition between HCCI and SI ignition  

SAE 2001-01-3613

Decision variables:

1. equivalence ratio

2. EGR

3. intake pressure



We are collaborating with multiple industrial and 
academic partners

• Cummins
– 2-year long CRADA, 2 joint papers
– working on establishing a new CRADA

• Caterpillar
– donated experimental engine 3401

• Sandia National Laboratories
– detailed analysis of experimental data

• Lund Institute of Technology
– 2 joint papers, collaboration on analysis

• University of Wisconsin
– joint work on KIVA analysis
– 3 joint papers

• UC Berkeley
– joint experimental and numerical work, 18 joint 

papers
– four graduate students obtaining degrees on HCCI



HCCI roadmap
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