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Outline of Presentation
• EAS Efficiency Requirements
• Technology Selection
• EAS Configuration Impact
• Fuel Sulfur Management
• Simulated FTP-75 Test Results
• Summary
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NOx Technology Selection
A.  Selective Catalytic Reduction-HC (SCR-HC)

B.  Plasma Assisted Catalytic Reduction (PACR)

 C.  NOx Adsorber Catalyst (AC), Full Flow

 D.  NOx Adsorber Catalyst (AC), By Pass
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HC-Selective Catalytic Reduction

• Catalyst+NO+Urea+O2 --> N2+CO2+H2O (Urea-SCR)
VS.

• Catalyst+NO+HC+O2 --> N2+CO2+H2O (HC-SCR)

ECU

CATALYST

HC addition Combination catalyst for
NOx reduction over a 
wider space velocity,
and temperature range



Technology Status - SCR-HC

Positives

• Can use diesel fuel as reductant, diesel fuel can be
   added to exhaust or in-cylinder

• A 40% NOx conversion efficiency was
   demonstrated with diesel as injection reductant

• Simple injection strategy with low complexity for
   implementation
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Technology Status - SCR-HC

Negatives
• High NOx conversion to N2O (about 50%-60%

of  the NOx reduced), N2O is a greenhouse gas

• High sulfate formation rates at high
temperature for high sulfur fuel. Not an issue
with future ultra low sulfur fuel

• Need combination of different catalyst to cover
the whole exhaust temperature range for FTP-
75 and US06 cycles
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Plasma Assisted Catalytic Reduction (PACR)

ECU

Addition
point for
diesel fuel

CATALYST

Electrical
power

PLASMA

GENERATOR

• Plasma converts NO to NO2

• HC added to exhaust or in cylinder enhances this process
• Activated HC reduces NO2 over catalyst

Addition
point for
diesel fuel



Technology Status - PACR
Positives

• Conversion of NO to NO2 at low temperatures,
   without SO2 to SO3 oxidation

• Can enhance NOx conversion at low
   temperatures on other NOx aftertreatment
   technologies

• Can use Diesel Fuel as reductant

• Simple reductant injection strategy,
   similar to SCR-HC
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Technology Status - PACR
Negatives

• Additional power required for Plasma generation

• Very low space velocity/very large catalyst
   volume required for high conversion efficiency, a
   40% NOx reduction was achieved with 90 L
   Gamma-Alumina catalyst

• Potential safety issues due to high voltage /
  possible EMI generation

• Benefit of non-thermal plasma decreases as the
   temperature is increased. No benefit was
   observed at temperatures greater than 3000 C

• Evidence of NOx adsorption as significant NOx
  consumption pathway
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Low cost 
disposable/
serviceable
SOx trap

SOx Trap

NOx Adsorber Catalyst
ECU CATALYST

time

NOx storage

Rich HC pulse

NO2 desorption and reduction

CATALYST

By-pass 
regeneration
for minimal

fuel economy 
penalty

Advanced
NOx adsorber 

catalyst



Technology Status - NOx Adsorber
Positives

• Potential for high NOx conversion
(>88%)

• Wide temperature range of peak
operation (330 deg C to 450 deg C)

• Can use diesel fuel as reductant - easier
enforcement/anti-tampering control

• No infrastructure issues (as with urea
distribution)
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Technology Status - NOx Adsorber
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Negatives
• Still requires formulation

improvement/active control of exhaust
temperature.

• Rapidly poisoned by sulfur in the fuel
and lube, a sulfur trap will be required

• Rich operation of injected hydrocarbon
leading to high fuel penalty, HC slip, and
SOF particulate

• Partial flow regeneration adds
complexity but offers lower fuel
economy penalty

• Complex reductant injection / control
system



3.2 g/kW-hr BSNOx Engine Out

5 = Best   1 = Worst

Program Emissions 
Target Capability Reliability Fuel 

Economy
Up Front 

Cost
Service Interval/ 
Service Hassle

Size/ 
Weight

Composite 
Score

Weighting Factor 10 9 9 7 5

PACR No 3 3 3 3 2 0

SCR-HC No 5 5 5 5 5 0

NOx Adsorber Yes 4 5 4 3 4 162



Impact of System Configuration Arrangement
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Impact of By-pass System on Fuel Economy Penalty
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Sulfur Management - NOx Adsorber Degradation

• SOx competes for active NOx adsorption and precious metal
   oxidation sites

• SOx combines with adsorber sites to form thermodynamically stable
compounds that require extremely high temperatures (>650 oC) and
reductant to regenerate the adsorber

• The stability of the noble metal component can be effected at >650 oC
due to the close proximity to the NOx storage component (typically
alkaline or alkaline-earth elements)

• NOx adsorber conversion efficiency decreases at a rate of
   approximately 0.1 % per hour with 11 ppm sulfur fuel without a
   sulfur trap

• In addition to fuel sulfur content, the sulfur in the lube oil also plays a
major role in adsorber sulfur loading and performance degradation



Contribution of Lube Oil to Exhaust S Concentration
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NOx Adsorber Sulfur Management Strategy
Disposable/Offline Regenerable

• High adsorption capacity for sulfur.

• High selectivity toward sulfur adsorption

• No release of secondary emissions from
trap

• Usable life of SOx trap is dependent on
Sulfur level in fuel and lube oil

• Good protection of adsorber catalyst from
sulfur poisoning during miss-fueling

• Potential  technology for light duty
applications-small size, low cost, and
limited useful life requirement

NOx Adsorber Desulfation Catalyst
• Integrated NOx trap and sulfur trap

function on one catalyst, does not require
separate SOx trap

• Requires on-board high temperature
exhaust management to release sulfur from
catalyst (>650 deg C)

• Additional fuel penalty will be incurred
during desulfation process

• Desulfation involves release of secondary
emissions hydrogen sulfide and/or sulfur
dioxides

• Catalyst material development required
compromise among NOx storage &
conversion, SOx storage & release, and
catalyst thermal durability, and etc



Sulfur Trap Replacement / Offline Regeneration Interval
(10 ppm Fuel Sulfur)
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NOx Conversion Efficiency vs Fuel Injection Penalty Development Status
(Simulated FTP-75, Breadboard ISB with NOx Adsorber / DPF System)

Pre-Conditioning        No                             No                     No              No                         Yes
Exh Temp Mgmt.         No                             Yes                     Yes              Yes                         Yes
DPF                              No                             No                     Yes                             Yes                         Yes
Configuration              Full Flow                  Full Flow                   Full Flow                    Bypass                    Bypass
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Summary

• The best NOx control approach for LDV and LDT applications is a NOx
adsorber catalyst system. A greater than 88% NOx reduction efficiency is
required to achieve 0.07 g/mile Tier II emissions standard. Active lean NOx
and PACR technologies are currently not capable.

• The NOx conversion verse temperature curves are identical between LDV
and LDT engines. This suggest that a fundamental and “displacement-size”
transparent understanding can be made on EAS technology development.

• Demonstrated a 40% to 50% reduction in fuel injection penalty with a by-pass
regeneration strategy as compared to a full flow regeneration strategy over a
simulated FTP-75 emission cycle. A by-pass regeneration system will be
needed to achieve the lowest fuel injection penalty.



Summary- Continued
• In addition to the fuel sulfur content, the sulfur in the oil also plays a major

role in adsorber sulfur loading and performance degradation. A low sulfur oil
is required to prolong the life of adsorber  from sulfur poisoning.

• 84% NOx and 95% PM conversion efficiencies have been achieved with a
breadboard low emission ISB engine and an adsorber/CSF exhaust
configuration on the simulated FTP-75 emission cycle.

• Much work remains for real world implementation.

• Durability of devices such as regeneration hardware/sulfur poisoning/
   thermal degradation/catalyst masking

• Transient control/OBD

• Cost and size of the system




