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Objectives

Low temperature performance of NOx adsorber systems seems to

be an issue.

The objectives of this study are:
 to identify the optimal reductant for adsorber regeneration

e to understand the trade-off between efficiency

Improvement and fuel penalty at low temperatures
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NOx Adsorber Concept

« Three-way catalyst is only good for gasoline exhaust in near
stoichiometric A/F, not functional for diesel exhaust in standard lean

A/F operation mode
« NOx Adsorber requires cyclic operation:
0 Store NOX in lean operation
11 Reduce the stored NOx during rich transient P

NO+O, NO3 HC, CO, H, NOX

3
\k //v_i\ 02 1O, &K 4 Ads. NOx

Pt Base metal : l Pt Base metal
Catalyst Support Catalyst Support
Lean Operation Rich Transient
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NOx Adsorber Functional Chemistry

o Oxidation of NO to NO,
[] over PM or metal oxides (Pt is the more active)

e NO, Storage
0 as surface nitrates on Pt/BMO interface
0 as nitrates and NO,, (ads) on BMO

o NO, Release

0 thermodynamics, desorption, displacement
M(NO3), — MO +2NO, +1/2 0,

NO, ., NO+1/20,

NO, (ads) + HC __, NO + 1/2 0,

o NO, Reduction to N,
0 H2, CO, reductants over the PM and PM/BMO interface

e ENGELHARD



LDV Engine Out Gas Temperature
(FTP-75 Cycle)
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Adsorber Catalyst Performance as a
Function of Temperature
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NOx Trapping of Adsorber Catalyst
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NOx Trapped (normalized)
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Hydrogen Appears To Be The Most

NOx Trapping of Adsorber @ 350°C
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Reactive Reductant

NOx Trapping of Adsorber @ 225°C
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Most of the Cracking Products from
Diesel Prove to be Less Active

NOx Trapping of Adsorber @ 350°C
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NO Reduction Shows Selectivity Issues

NO Reduction With H2 Over Adsorber
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NO Reduction With CO Over Adsorber
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Fuel Reformation

Reformers have been primarily used for Fuel Cell applications

Fuel reformation may be useful for Aftertreatment application

[1 CO production is not an issue

[1 Space velocity should be high (> 100 K)

[] Reformer temperature should be higher than 650 C

[] Need O2/C < 0.5 to generate CO

[] Operation is not continuous

[] High instantaneous production requirement

[1 Coking may be an issue but could be burnt during lean period
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Reformer Schematic

AC

> CPO —»
AC
Lean 50-50 flow 58 sec
Rich 20-80 flow 1 sec
Rich 80-20 flow 1 sec
Timing cycle

'

58 sec lean period
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Assumptions for the Analysis Tool

Average Diata FTP-75 conditions

CPO requirements T >650C
0,/C<0.4
H,O/C > 2
SV > 100K/hr

Energy Requirements for CPO
A Radiation + Convection loss from external surface
B Convection loss from flow inside CPO
(during regeneration and slip flow to burn coke)
C Theoretical input energy (sensible heat to combust reactants)
D Fuel to electrical energy conversion efficiency, 0.3
Fuel required to keep CPO running = (A+B+C)/D

Flow through CPO and Adsorber during regeneration = 20%
Based on average Diata conditions O, in exhaust = 10%
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Assumptions for the Analysis Tool

H-,0O in exhaust = 6.5%
CPOsize=466"D X 1"L

Based on this, CPO requirements achieved in system,
0,/C ~0.3
H,O/C ~ 0.2*
SV ~ 118 K/hr

*Since H,O/C ratio is not met coking is expected

Coking Factor = 0.8 (i.e., 25% more D2 required to generate desired H,)
Slip flow during lean period to burn coke = 2.0%

Heat released during combustion of coke balances convective loss

O, + H, combustion efficiency = 100%

NOXx + H, reaction efficiency = 50% (from Engelhard presentations)

CPO H, production efficiency is 35% based on heating value
CO production is not used in calculations (CO not as active + buffer)
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Fuel Penalty Calculation for Reformer

a H, required to burn the oxygen in 20% of the exhaust flow
b H, required to reduce the loaded NOXx

a HC required to produce the necessary H, for steps a and b
B HC required to keep the reformer running (A+B+C)/D

Total Fuel Penalty = (a * 2 + 3)/(engine fuel flow)
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Calculation Results

DIATA | rpm | torque | AFR | FUEL AIR NOx NOx |Cat_inT,| NOx
Ib/hr Ib/min ppm g/hr K g/hp hr
1475 15 31.5| 2.736 1.44 164.5 | 10.53 450 2.5

AC brick size L 2.5

|Reformer flow rate |

excess air | |kg/hr]  20.86] |

H2 req. for desired| 0.122 |ing/s| 0.034
AF ratio| kg/hr

H2 req. during| ¢ 0.034 HC req. to produce g 0.354
regeneration this H2
NOx loading during| g 0.085
Lean period
Efficiency of NO and| % | 50.00
H2 react.
H2 required for| g 0.015 heat rel. during 146.8328
loaded NOx coke comb. J/s
HC req. to produce the H2 for g 0.155
Loaded NOx
total HC required |g/injection| 0.509
# of injections 2.000
HC flow rate g/sec |0.01726 |Ib/hr| 0.137
Supplementary inj. % 5.01
penalty
Sacrificial HC for reformer g/sec |0.006021| Ib/hr| 0.048
Reformer HC penalty % 1.75
Total fuel penalty FEP % 6.75 ENGELHARD

Electrical Heating (50% duty cycle) = ~6%



Conclusions

Issue

o Light duty vehicles and cold start conditions may create low temperature
performance issues for adsorbers

Possible reasons for poor adsorber performance at low temperatures are
o Both the thermodynamic and desorption release of NOXx is slow

e Diesel is not active @ T < 250°C

Possible solutions are

» Engine management to increase engine out temperature

o System configuration such external exhaust heating

o Fuel reformulation to improve regeneration efficiency at low temperatures

[ H2 > H2+CO > CO > diesel > cracking components
o Analytical tool predicts < 7% fuel penalty with reformer
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