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Objectives

Low temperature performance of NOx adsorber systems seems to

be an issue.

The objectives of this study are:

• to identify the optimal reductant for adsorber regeneration

•  to understand the trade-off between efficiency  

improvement and fuel penalty at low temperatures



NOx Adsorber Concept

● Three-way catalyst is only good for gasoline exhaust in near
stoichiometric A/F, not functional for diesel exhaust in standard lean
A/F operation mode

● NOx Adsorber requires cyclic operation:
➝ Store NOx in lean operation
➝ Reduce the stored NOx during rich transient
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NOx Adsorber Functional Chemistry

● Oxidation of NO to NO2  
➝ over PM or metal oxides (Pt is the more active)

● NOx Storage
➝ as surface nitrates on Pt/BMO interface
➝ as nitrates and NO2 (ads) on BMO

● NOx Release
➝ thermodynamics, desorption, displacement
M(NO3)2            MO + 2 NO2  + 1/2 O2

NO2                   NO + 1/2 O2

NO2 (ads) + HC           NO  +  1/2 O2

● NOx Reduction to N2

➝ H2, CO, reductants over the PM and PM/BMO interface



LDV Engine Out Gas Temperature
 (FTP-75 Cycle)
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Adsorber Catalyst Performance as a
Function of Temperature

NOx Trapping of Adsorber Catalyst
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Hydrogen Appears To Be The Most
Reactive Reductant

NOx Trapping of Adsorber @ 350°C 
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NOx Trapping of Adsorber @ 225°C 
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Most of the Cracking Products from
Diesel Prove to be Less Active

NOx Trapping of Adsorber @ 350°C 
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NOx Trapping of Adsorber @ 275°C   
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NO Reduction Shows Selectivity Issues

NO Reduction With CO Over AdsorberNO Reduction With H2 Over Adsorber
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Fuel Reformation

Reformers have been primarily used for Fuel Cell applications

Fuel reformation may be useful for Aftertreatment application

➝ CO production is not an issue
➝ Space velocity should be high (> 100 K)
➝ Reformer temperature should be higher than 650 C
➝ Need O2/C < 0.5 to generate CO
➝ Operation is not continuous
➝ High instantaneous production requirement
➝ Coking may be an issue but could be burnt during lean period



Reformer Schematic

      Lean 50-50 flow 58 sec
      Rich 20-80 flow 1 sec
      Rich 80-20 flow 1 sec

Timing cycle

    AC

CPO

    AC

58 sec lean period



Assumptions for the Analysis Tool

Average Diata FTP-75 conditions

CPO requirements T > 650C
O2/C < 0.4
H2O/C > 2
SV > 100K/hr

Energy Requirements for CPO
A  Radiation + Convection loss from external surface
B  Convection loss from flow inside CPO

(during regeneration and slip flow to burn coke)
C  Theoretical input energy (sensible heat to combust reactants)
D  Fuel to electrical energy conversion efficiency, 0.3

Fuel required to keep CPO running   =   (A+B+C)/D

Flow through CPO and Adsorber during regeneration = 20%
Based on average Diata conditions O2 in exhaust = 10%



Assumptions for the Analysis Tool

H2O in exhaust = 6.5%
CPO size = 4.66" D  X  1" L

Based on this, CPO requirements achieved in system,
O2/C ~ 0.3
H2O/C ~ 0.2*
SV ~ 118 K/hr

*Since H2O/C ratio is not met coking is expected
Coking Factor = 0.8 (i.e., 25% more D2 required to generate desired H2)
Slip flow during lean period to burn coke = 2.0%
Heat released during combustion of coke balances convective loss
O2 + H2 combustion efficiency = 100%
NOx + H2 reaction efficiency = 50%  (from Engelhard presentations)

CPO H2 production efficiency is 35% based on heating value
CO production is not used in calculations (CO not as active + buffer)



Fuel Penalty Calculation for Reformer

a  H2 required to burn the oxygen in 20% of the exhaust flow
b  H2 required to reduce the loaded NOx

α  HC required to produce the necessary H2 for steps a and b
β  HC required to keep the reformer running (A+B+C)/D

Total Fuel Penalty =     (α * 2 + β)/(engine fuel flow)



Calculation Results

 DIATA rpm torque AFR FUEL
lb/hr

AIR
lb/min

NOx
ppm

NOx
g/hr

Cat_in T,
K

NOx
g/hp hr

1475 15 31.5 2.736 1.44 164.5 10.53 450 2.5
AC brick size L 2.5

Reformer flow rate
    excess air kg/hr 20.86

H2 req. for desired
AF ratio

0.122
kg/hr

in g/s 0.034

H2 req. during
regeneration

g 0.034 HC req. to produce
this H2

g 0.354

NOx loading during
Lean  period

g 0.085

Efficiency of NO and
H2  react.

% 50.00

H2 required for
 loaded NOx

g 0.015 heat rel. during
coke comb.   J/s

146.8328

HC req. to produce the H2 for
Loaded NOx

g 0.155

total HC required g/injection 0.509
# of injections 2.000
HC flow rate g/sec 0.01726 lb/hr 0.137

Supplementary inj.
penalty

% 5.01

Sacrificial HC for reformer g/sec 0.006021 lb/hr 0.048
Reformer HC penalty % 1.75
Total fuel penalty FEP % 6.75
Electrical Heating (50% duty cycle) = ~6%



Conclusions

Issue
● Light duty vehicles and cold start conditions may create low temperature

performance issues for adsorbers
Possible reasons for poor adsorber performance at low temperatures are
● Both the thermodynamic and desorption release of NOx is slow
● Diesel is not active @ T < 250°C
Possible solutions are
● Engine management to increase engine out temperature
● System configuration such external exhaust heating
● Fuel reformulation to improve regeneration efficiency at low temperatures

➝  H2 > H2+CO > CO > diesel > cracking components
● Analytical tool predicts < 7% fuel penalty with reformer




