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An integrated CIDI (diesel) engine-aftertreatment-vehicle system is extremely 

complex with numerous interacting variables and an unlimited number of control 

options.  An experimental approach to develop an optimized viable system is 

tedious, if at all possible.  Sophisticated component, subsystem and integrated 

simulation tools offer an excellent option of a virtua l lab approach to the 

development of such a complex system.  A viable and robust CIDI aftertreatment 

system can thus be developed within optimum time and resources when this 

virtual simulation is “Wired” with selected hardware-based testing. 

 

Detroit Diesel is developing an effective virtual lab, multi-level, integrated engine-

aftertreatment-vehicle system package.  A common platform embodies 0-, 1- and 

multi-dimensional models of selected components and subsystems.  Different 

models can be coupled or integrated, and simulated tests can be carried out in 

order to define optimum control parameters or to predict system response.  This 

paper will present the general approach, selected model features and some 

preliminary results. 
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DDC’s Aftertreatment (AT) Virtual Lab
Objective

• DDC has embarked on the development of a 
comprehensive AT simulation tool set.

• When validated and integrated with other 
engine simulation tools, virtual testing of 
various AT technologies and integrated 
systems will be carried out.

• This will result in optimized designs, in 
record cycle time and maximized return on 
the R&D investment.
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DDC’s Aftertreatment (AT) Virtual Lab
Strategy

• DDC’s strategy is to cover a wide range of 
resolution to selectively meet requirements 
for low computational time as well as for high 
spatial resolution.

• DDC has shared this strategy with suppliers 
and partners of the simulation tools.  DDC 
then  teamed up with few for the development 
of various building blocks of our tool set.

• Initial validation efforts are promising.
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DDC’s Aftertreatment (AT) Virtual Lab
The “Three-Layer” Strategy

3D3D-- CFD BaseCFD Base

1D1D-- CFD BaseCFD Base

0D0D-- Mean Value BaseMean Value Base

Detailed physics and high spatial 
resolution. High computational time 
required.

Engine system integration focus with 
simplified geometry and limited 
control strategy application.

Engine/vehicle/AT control strategy 
focus.  Pursue real time analysis 
goal.
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Focus on 1D “Middle Layer” Description
Diesel Cycle Simulation Domain
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Diesel Cycle Simulation Tool Interactions
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Cycle Simulation With AT Models

Plug & Play Example
In Cooperation with Gamma Technologies
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Cycle Simulation With AT Models

DPF

DPF

LNT

LNT

Plug & Play Example
In Cooperation with Gamma Technologies
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Lean NOx Trap (LNT) Simulation
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Overall NOx Conversion Efficiency = 91%
Regeneration Cycle is 35/3 seconds lean/rich
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DDC’s Virtual Lab Methodology
1D Aftertreatment Model Principles

• Models Are Based on the First Principal of Physics.
– Control Volume Approach Applied to Each Sub-volume

δz

!

"

# $

%

1 - Gas enters monolith segment 2 - Adsorption onto monolith

3 - Chemical reaction 4 - Desorption off monolith

5 - Gas exits monolith segment 6 - Energy Conservation to 
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DDC’s Virtual Lab Methodology
Aftertreatment Models - Flow Sub-Model

• Governing Equations Are Solved by Mass Transfer 
Coupled with Energy and Chemical Species 
Conservation.

• Thermal Equations Includes Conduction, Convection 
and Chemical Reactions

• 19 Gaseous Species Used in Models
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Schematic of Computational Domain
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In Cooperation with Michigan Technological University

The Pressure Drop of a Diesel Particulate Trap Consists of Four Components
Built into Filtration Theory
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In Cooperation with Michigan Technological University and Engelhard Corp.
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SCR Model Validation
Steady State Results - Temperature Sensitivity
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SCR Model Validation
Vehicle Transient Emission Results
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Pt + Rh Exhaust Oxidation 
Reactions (56 Steps)
(University of Heidelberg)

Chemical Kinetics Options
Micro Kinetics: Chemkin Integrated with Star-CD

Exhaust Oxidation on a Pt-Rh Catalyst
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Lumped Reaction MechanismLumped Reaction Mechanism
Account for rate limiting chemical

reactions & species

In Cooperation with adapco

University of Michigan - Dearborn



217th DEER Workshop, 2001

Micro Versus Macro Kinetic Approach

• Micro Kinetic

– Difficult to Generate
– Appropriate Task for National Labs/Academia
– Database Can Generate Lumped Reaction 

Mechanism
– Modified AT Formulation May Require Minimal 

Tweaks
– Potentially Applicable to Component Durability 

Analysis
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Micro Versus Macro Kinetic Approach

• Macro Kinetic

– Lumped Kinetic Approach
» Simplifies Each Mechanism Into Representative Reaction
» Lumps these into Reaction Mechanism

– More Economical
» Reduced Computational Time and Species

– New AT Formulations Require New Reaction Descriptions
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Summary

• Aftertreatment Models Being Developed

– Flexible Resolution, Plug & Play
– Good Application to Transients
– Integrated System Control Applications
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Summary

• Industry Develops and Applies Tools

• Leverage National Lab/Academia Expertise to 
Support Fundamental Database Generation

– Micro-Kinetics
– Detailed Diagnostic Data for Model Validation
– Aging Factors Assessment


