
Delphi  Energy & Chassis Systems                                

Non-Thermal Plasma Approach To
Simultaneous Removal of NOx

& Particulate Matter

Diesel Engine Emission Reduction 2000 Workshop
SanDiego, California
August 20 - 24, 2000

Joachim Kupe, Dave Goulette, Mark Hemingway, Tom Silvis: Delphi E&C
Galen Fisher, Craig DiMaggio: Delphi Research Labs

Darrell Herling, Del Lessor, Suresh Baskaran, John Frye, Monty Smith : Pacific Northwest 
National Laboratory



Delphi  Energy & Chassis Systems                                

Agenda

u Delphi System Approach
u Project Structure

u Modeling
u Reactor Design
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Reactor Modeling 
Purpose

u Develop predictive performance and plasma chemistry 
tools for an NTP reactor

– Insights for reactor optimization and energy efficiency

– Qualitative screening of reactor design concepts

u Develop working model to guide reactor design
– Power requirements and operating parameters

– Geometry and properties

» Gap width and thickness, barrier material and thickness, etc

» Voltage requirements, frequency, space velocity

u Insights on or resolution of operational issues

u Diagnosis and interpretation of experiments
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Reactor Modeling
Discharge Model

Discharge
Plasma
Model

• Ionization Coefficients
• Attachment coefficients
• Electron mobilities
•Weighted X-sections

Electrical
Performance Model (I)

Electrical
Model (II)

Chemical
Kinetics

Code

Chemical evolution in discharge

• Nitrogen oxides and acids

• Hydrocarbons

• Oxidation products

Reaction rate constants

NTP Reactor data - Geometry and materials

• Electron impact rates
• Reactant production

(O, H, OH, etc)

•Cross section data for
electron impact

• Gas composition
•E/n values

• Electric filed in gap
• Current in gap
• Power in plasma
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Reactor Modeling
Model Architecture

u Discharge plasma model – ELENDIF
– Calculates electron energy distribution and rate parameters for electron impact 

production of ions and reactants

– Determines electron transport parameters: ionization, attachment, drift velocity or 
mobility

u Electrical performance models
– Relates time-dependent electric currents, electron and ion fluxes, electric field, and 

power deposited in plasma to geometry, materials, and time-dependent driving voltage

– Calculates power and reactant production rates over space and cycle

– Versions for detailed time-dependence model and “ultimate performance” model for hard 
electrical driving

u Chemical kinetics code – CHEMKIN
– Calculation of subsequent NOx chemistry from radical formation
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Reactor Design

u Reactor Can
–Weight:    3.3kg
–Length: 121mm
–Width:   120mm
–Height:  110mm

u Reactor Brick
–Length:  165mm
–Width:    137mm
–Height:     83mm
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Power Supply 
Fuel Consumption

Fuel  Use as a  funct ion of  Addi t ional  Electr ical  Load

( f rom Luxembourg  data  on  Opel  Vect ra  2 .0  Dt i )

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 100 200 300 400 500 600 700 800 900

Constant  Addi t ional  Load (W)

In
c

re
a

s
e

 i
n

 F
u

e
l 

C
o

n
s

u
m

p
ti

o
n

 (
%

)

run1
run2
run3
run4
Average

300 W



Delphi  Energy & Chassis Systems                                

Power Supply 
Fuel Consumption

u Power used vs. fuel economy penalty
– Target 

» 2-3% fuel economy penalty

u How much energy can we use??
– Calculated (based on emission data)
– European driving cycle testing (Opel vectra w/ constant electrical loads)
– Customer input (1kW=0.8l/100km on cycle)

» 300 W acceptable on cycle

ïTarget power consumption
− 300 W average on driving cycle
− 1000 W peak
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Power Supply 
Current Configuration

12V
Loads

12V
Battery

High Power
Inverter

Step-up
Transformer

NTP
Reactor

3kW
42V

Alternator

1kW 42V/14V  DC/DC
Converter

System Controller



Delphi  Energy & Chassis Systems                                

Vehicle Integration
Future Direction

u Reduce power consumption
– Additional Hydrocarbons 

» Balance between electrical and fuel use for total fuel penalty

» EMS Solution (EO emissions)

» Post injection methods

» Supplemental HC injection 

– Optimize Power Delivery System

– Optimize Reactor Design with respect to power efficiency

u Reduce cost
– Lower power design (300 W average, 1000 W peak)

u Reduce size
– Integrate components

u Meet emission and electrical targets
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Effect Of HC Injection - Idle

Effect of HC(propene) Injection @ Idle  on NO->NO2 Conversion
2.0L Opel diesel exhaust, Slip Stream - 1 cell reactor, 1mm gap, 1.2M/hr S.V., crown 5000 w/ sinusiod input, 11L/min flow, 

5000Hz, reactor inlet temp 150C,  160ppm NO, 180ppm NOx feedstream
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Vehicle Integration 
Future Partitioning
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Catalyst and Mechanisms 
Targets

u System NOx conversion has increased through time
u Similar results with exhaust from two vehicles with low HC levels
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u Regeneration: The Challenge
– Particulate mass captured in the DPF is removed by “regenerating” the filter.  

Regeneration is accomplished by combusting the carbon and HC mass captured 
in the filter.

– Natural soot ignition temperature: 550oC - 600oC.  This temperature range 
greatly exceeds the typical diesel exhaust temperature under most driving 
conditions.

– Combustion of the trapped carbon and HC can create a large exotherm which 
can melt or damage the trap; particularly at low engine flow.

é Consistent, reliable regeneration of the trap is the biggest technical challenge to 
the DPF system.

u Regeneration System Types
– Active Regeneration Systems

» Heat the exhaust gases or filter above the particulate ignition temperature

» Examples:  burners, electrical heat, microwave

– Passive Regeneration Systems
» Lower the particulate ignition temperature either by adding a catalyst to the trap or fuel, 

or by forming a stronger oxidizing agent in the exhaust gases (NO2).
» Competing technologies:

u Fuel additives

u Catalyzed traps

u NO2 from oxidation catalyst

u NO2 from Non-Thermal Plasma

Particulate Control -
DPF Regeneration 
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Why a NTP Reactor 
Instead of CRT?

u Generates NO2 below 250o C.; in addition, NTP 
generates other species which may also 
contribute to the oxidation of soot at low 
temperatures.

u NTP performance not affected by sulfur in fuel.

u Generates appropriate NO2 levels needed for a 
reliable filter regeneration.

u NO to NO2 conversion efficiency higher than 70%
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Proprietary Catalyst
Mechanistic Studies
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u At 150°C (dry feed), N2 and CO2 grow in together , showing HC 
selective catalytic reduction of NO2 to N2.

u NOx adsorption saturates much more slowly (> 8 hours).   
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u With water present, NOx adsorption saturates rapidly. 
u Catalysis forming N2 and CO2 still proceeds as when dry.

u NOx adsorption and reaction to form N2 are decoupled.

Proprietary Catalyst
Mechanistic Studies
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MAIN CATALYST FINDINGS
u Similar time dependence of N2 and CO2 formation clearly 

demonstrate hydrocarbon selective catalytic reduction (HC-
SCR) of NO2 to form N2 at 150°C.

u The same quantitative relationship between N2 and CO2 is 
observed between 150°C and 200°C. 

u Very different time dependence of NO2 adsorption and 
catalytic reaction shows they are decoupled and may occur at 
different sites.

u Dominant product of NO2 adsorption is NO.

u At 200°C for a space velocity of 12,600 h-1 the conversion of 
NO2 to N2 is 50%.

u Optimization of the catalyst should lead to higher activities. 

Proprietary Catalyst
Mechanistic Studies
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Summary

u Key NTP Benefits
– Low temperature operation

– Not affected by sulfur

– Flexible options:

» NOx reduction

» Particulate matter reduction

» Both

– Applicable to the full range of diesel vehicles and direct injection gasoline 
vehicles.

– Potential of combining de-pollution and noise reduction.

é The NTP exhaust aftertreatment system has the potential to make a 
difference; therefore the team is aggressively pursuing this technology 
in order to turn it into a commerciable product and be first in the market.

u Timing
– Target Production 2004 CY (2005 MY)

– Samples available end of 2000 - beginning 2001




