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• Background to RTI’s Breakthrough 
Thermoelectric Technology

• RTI’s Progress in Cooling Module Development 
(Dr. Browning, Dr. Pazik, Dr. Wahl))

• Palm-Power Conversion Devices (Dr. Nowak)

• Projections for RTI’s Superlattice TE Technology 
and Emerging Applications

Outline



Thermoelectric Effect

Ref :Vining, Nature, 413,  577 (2001)

• Cooling or Power 
Conversion Efficiency 
critically dependent on 
the material Figure of 
Merit (ZT)

• ZT = (α2σ/K)T

• Minimize thermal 
conductivity and 
maximize electrical 
conductivity



Why Thermoelectrics?

n Converts electrical and thermal energy using a solid 
state device with minimal moving parts

n If efficient, opens up a wide array of potential uses

n Chip-scale functionality with thin-film devices using 
standard microelectronic processing

v Computer Chip, Photonic Chip, Lab-on-a-Chip



THERMOELECTRIC TECHNOLOGIES in 1992 
Fort Belvoir Workshop Organized by Dr. Stuart Horn
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u ZT - figure of merit - has been stagnant at about 0.8 to 1 for the last 40 years -
cooling and power conversion efficiencies low - useful only in applications where you 
really need it
lMore importantly, cooling power density (PD) in bulk devices are low to be of 
any interest for many electronics cooling applications 

u ZT need to improve over 1.5 at 300K for a major impact and around 3 for a 
revolutionary impact; larger PD would also open up new applications

T=300K



Since then what are some of the approaches 
for ZT Enhancement ?

u Bulk Materials

l Filled Skutterudites (Slack, JPL, Sales et al.) - Have Atoms that “Rattle” in 
the large unit cells to effectively scatter low-frequency, heat-conducting 
phonons

l New Versions of Bi2Te3 such as CsBi4Te6 (Kanatzidis et al.) - Appears to 
be band-gap modification leading to a more optimized ZT at lower 
temperatures

u Thin- Film Materials

l Quantum wells, Quantum Wires, Quantum Dots (Dresselhaus et al., 
Harman, Broido et al., Mahan et al.) 

l Superlattices for thermal conductivity reduction (Venkatasubramanian, 
Mahan, Chen)

l Superlattices for improved electronic/hole transport from reduction of alloy 
scattering of carriers (Venkatasubramanian)

l Thermionics in Heterostructures (Mahan, Shakouri)



Comparison of Superlattice and Quantum-Well 
Approaches

Hot

Superlattice (RTI) Quantum Well (MIT)

u Current and Heat 
Transport Perpendicular to 
the superlattice interfaces

u Easy Adaptability for 
Device Implemenation

Cold

u Current and Heat 
Transport Parallel to the 
Quantum-well interfaces

Utilize interfaces to 
impede phonons
that cause   
undesired reverse 
flow of heat but not 
impede forward-
flowing electrons

C
o
l
d

H
o
t

Utilize 
quantum 
confinement 
to get 
efficient heat
energy 
transport by 
electrons



Comparison of Implementation of Cross-Plane and 
In-Plane Approaches in Devices

Chip Chip

Cross-plane Low-
Dimensional (Superlattice) 

l Need Thick epi layers -expensive

l Need Bulk-like or MEMS-like Processing

l Need Much Thinner

Epi Layers

l Integrated Conventional 
Microelectronic Processing

In-plane Low-Dimensional 
(Quantum Well) 



u Cs Bi4Te6 (Kanatzidis, Michigan State University)

l Bulk Materials with a ZT~ 0.8 at 225K but less than 0.8 at 
300K (Science 287, 1024-1027, 2000)

u Filled  Skuterrudites (Fleurial et al., JPL)

l Bulk materials with a ZT ~1.35 at 900K (Proc. Of 15th

International Conf. On Thermoelectrics, 1996)

u PbTe/PbTeSe Quantum-dots (Harman, MIT Lincoln Labs.)

lZT~2 at 550K and ZT~0.8 at 300K based on estimated 
thermal conductivity values (J. Electronic Materials, 29, L1 , 
2000)

uBi2Te3/Sb2Te3 Superlattices (Venkatasubramanian, RTI)

lZT~2.4 at 300K in devices with all properties measured at the 
same place, same time, with current flowing and verified by two 
independent techniques (Nature, 597-602, 2001)

Some of the Bulk Material and Thin-film 
Developments



RTI’s 40-Year Breakthrough

0.0

1.0

2.0

3.0

4.0

1930 1940 1950 1960 1970 1980 1990 2000

Efficiency of 
Thermoelectric 

Material 
(ZT)

Potential with
Thin-Film 

Technologies

Industry Progress –
Semiconductor Materials Technology

2010

RTI’s Thin-Film 
Superlattice
Technology

• ZT material > 2. 5 at 300K in p-type superlattices

• Device ZT  ~2.4 at 300K through the development of 
ultra-low resistivity contacts



• 10Å/50Å Bi2Te3/Sb2Te3
Structure

• Optimized for 
disrupting heat 
transport while 
enhancing electron 
transport perpendicular 
to the superlattice
interfaces

RTI’s Superlattice Material

 Applied Physics Letters, 75, 1104 (1999)



MOCVD Growth of Superlattices

n Low-temperature technology

n In-situ ellipsometry for nanometer-scale control of deposition 



Basis for the Superlattice Approach

§The improvement arises 
from impeding phonon flow 
without disrupting electron 
flow
§ Phonon-Blocking, 

Electron Transmission

dB ds

∆∆Ev

∆∆Ec EC

Ev

Bi2Te3 Sb2Te3

∆Ev+∆EC < 2kT
∆Ev ~ kT
ds + db = period
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Thermal Conductivity Reduction in 
Bi2Te3/Sb2Te3 Superlattices

 Physical Review B, 61, 3091 (2000)

• See Mahan et al., PRL, 84, 927, (2000)

v Predicts a minimum although at a much smaller period



Temperature dependence of Lattice Thermal 
Conductivity in Bi2Te3/Sb2Te3 Superlattices
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Lattice Thermal Conductivity in Bi2Te3/Sb2Te3 Superlattices
compared to Minimum Thermal Conductivity in Bi2Te3
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 Nature, 413, 597 (2001)



In-Plane Hole Transport in p -type Bi2Te3/Sb2Te3 Superlattices
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 Appl. Phys. Lett., 75, 1104 (1999)

§ Enhanced In-Plane Mobilities in Superlattices from avoiding 
alloy scattering of carriers at 300K
§ Indicates very little interface roughness from electronic (hole) 
scattering point-of-view
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§ ∆Ev – E = (m*dB
2 ∆Ev

2) / 2h2

§ 2∆ ~ exp. {-[(8m*hh/h2 )( ∆Ev -E)dS]1/2}

§ µcross-plane ~ [e ∆ d2/h2] τ

Cross-Plane Hole Mini-band Transport in p -type Bi2Te3/Sb2Te3
Superlattices

 Nature, 413, 597 (2001)

§ Ref: Capasso et al., IEEE J. of Quantum Electronics, (1986) 
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Cross-Plane Hole Transport in p -type 
Bi2Te3/Sb2Te3 Superlattices

§ Enhanced Cross-
Plane Mobilities as 
well in the 
superlattices

§Moderate to 
negligible electrical 
anisotropy

§ From 
negligible 
quantum-
confinement and 
weak mini-band 
conduction
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• ZTdevice = Vo/VT -Vo

= Vo/VR

= Peltier Voltage/Ohmic Voltage

• All properties that make up ZT are measured at the same place, 
same time with current flowing

• Difficult as it involves minimizing contact resistances

• ZTdevice ~ ZTintrinsic {1+2Rcontacts/Rdevice} 
-1

ZT Measurement Technique



V0 = 29.3e-0.07t

VT = VR+V0 = 60.3
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ZT in p -type bulk material thinned down to 5 
microns – same as that of our superlattice film

• ZTdevice

= 29.3/(60.3-29.3)

= 0.94

• From both current 
directions, ZT ~ 
0.97 ± 0.03

• No unusual 
effects because of 
the thin-film nature 
per se!



ZT in p -type Bi2Te3/Sb2Te3 Superlattices

Nature, 413, 597 (2001)

 

V0 = 68.7e-0.066t

VT = VR +V0 = 100.0
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V0 = 1.23E-03*I.l /a + 2.24E-06

VR= 5.26E-04*I.l /a + 3.37E-06
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 Nature, 413, 597 (2001)

ZT intrinsic ~ 2.34

ZTi = [∂V0/∂ (I.l/a)]/[ ∂VR/∂ (I.l/a)]
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Temperature dependence of ZT in p -type Bi2Te3/Sb2Te3

Superlattices (213-300K)
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ZT vs T
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• Ref: DARPA Palm-Power Program, Dr. Robert Nowak



ZT in n -type Bi2Te3/Bi2Te3-xSex Superlattices by 
Variable-Thickness Method
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Bi2Te3/Sb2Te3
superlattices

•Even so, ZT along c-
axis three times 
better than in bulk



Comparison of p-type Bi2Te3/Sb2Te3 superlattices and  
n-type Bi2Te3/Bi2Te3-xSex Superlattices
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Potential for non - ideal n -type Bi2Te3/Bi2Te3-xSex

Superlattices

BiTe SeSb



Comparison of p-type Bi2Te3/Sb2Te3 superlattices and n -
type Bi2Te3/Bi2Te3-xSex Superlattices

• p-type Bi2Te3/Sb2Te3 superlattices

• “ideal “ components – hand-shake of phonons from 
one layer to other difficult

• Lattice thermal conductivitv falls to 2.5 mW/cm-
K

• n -type Bi2Te3/Bi2Te3-xSex Superlattices

• “non-ideal “ components with perhaps some inter-
layer mixing – hand-shake of phonons from one layer 
to other relatively easy

• Lattice thermal conductivitv does not fall; in fact 
closer to that of alloy along c-axis (5.8 mW/cm-K)



RTI’s Superlattice Device Improves 
Refrigeration Efficiency

Figure-of-Merit (ZT)

Coefficient of 

Performance

of Refrigerator

THOT = 300 K
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Bi2Te3/Sb2Te3 Superlattice 
Thermoelectric Devices

Typical large-scale 
mechanical system

Typical small-
scale mechanical 
system

Higher ZT – Incentives for New Approaches to Implement 
Higher COP Concepts



RTI’s Superlattice 
Technology

Commercial Bulk 
Technology

Other thin-film technologies have one-tenth the cooling 
of the RTI superlattice devices
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1,500 microns

Advantages of RTI’s Superlattice 
Thermoelectric Technology
n Enhanced cooling 

n Super-fast cooling and heating

n Enhanced power density

n Anywhere, any time 
cooling/ heating 
technology

24.10 oC 27.93 oC



Thin Film 
Module

Today’s 
Commercial 
Bulk Module

Advantages of RTI’s Superlattice 
Thermoelectric Technology
n Enhanced cooling 

n Super-fast cooling and heating

n Enhanced power density

n Anywhere, any time 
cooling/ heating 
technology

n Significantly 
more compact

1mm x 3mm

50mm x 50mm



RTI’s Progress in Cooling Module

Development











IR Images From a 630-element TE Module; 630 
elements arranged in a 9x7 array of mini-modules; 

each mini-module has 5 p-n couples

IR Images From a 630-element TE Module; 630 
elements arranged in a 9x7 array of mini-modules; 

each mini-module has 5 p-n couples

35 mm

Cooling Heating

• Note only ~ 90 mA through each element

• Number of elements typical for a bulk module ~ 256



High-Active Flux, Low Input-Output Flux (HAF-
LIOF) Concept for Large-Scale Cooling Modules

A 2 x 14
element
or 
14-couple
wafer

A 2 x 3
element
or 
3-couple
module
with a 
High-λλ
header

Cooling
of whole 
header due 
to thermal 
spreading
effect

Heating
of whole 
header due 
to thermal 
spreading 
effect



Thermal Modeling Studies

• Windows based general purpose thermal modeling 
software

• Finite Element Approach – linking algebraic 
equations together

• Built in steady-state and transient finite difference 
solvers

• All modes of heat transfer included
vConduction
vConvection
v Fluid Flow
vRadiation

• All properties can be defined as time and/or 
temperature dependent

• Size of model/speed of solution is hardware limited



Thermal Modeling of High-Active Flux, Low Input-
Output Flux (HAF-LIOF) Concept

• Enormous Implications for TE Material 
Requirements for Increased Applications, with 
Higher Efficiencies that can be Achieved Now



Progress in Heat-Rejection System 
Development for Large-Areas

• High Active Flux, Low Input-Output Flux (HAF-LIOF) Devices 
should reduce heat-rejection concerns

• Low packing fraction of active thermoelectric devices 
and high-thermal conductivity heat-spreaders so that 
excessive heat fluxes are not required at source and 
therefore not dissipated at sink

• Minimizes amount of thermoelectric materials required 
and larger efficiency from higher active-∆T in power 
generation

• Working with commercially available sources of high-
efficiency, light-weight, heat rejection system design and 
prototyping

• In-house modeling and fabrication capability



Modeling Heat Pumping to Heat Rejection



Program Plans in the Cooling Program Area

lMaterials Development
l Improved N-type Materials  to achieve an average  ZT of 

~2.5 for the p-n combination
lDevelop films with larger effective thickness to minimize 

thermal management problems
lDevice and Module Development
l Identify Approaches to reduce internal thermal and 

electrical resistances in devices and modules to recover 
COP consistent with higher ZT 

l Heat Rejection System Development
lDemonstrate design feasibility to remove ~100 Watts of 

heat over 4 to 6 cm2

l Preliminary validation of integration with applications 
in spot cooling, chip cooling, optoelectronics cooling 



RTI’s Progress in Power Devices

(Ref: DARPA Palm-Power Program; 
Dr. Robert Nowak)



n Need high ZT in both p and n-
type materials

n In addition to high ZT, need 
higher ∆∆T  or Th-Tc for higher 
efficiencies

n Thermal management (getting 
the heat out from the heat-sink) 
is important to generating the 
maximum ∆∆T

PN

Heat Source

Load_ +

Heat Sink

(Th-Tc)     {(1+ZT)1/2 -1}
ψψ = 

Th {(1+ZT)1/2 -1}+ Tc/Th

ZT, ∆T and Power Conversion Efficiency



• High-density  (area, volume, weight) power

• Higher efficiency at low ∆T

Implications for Power 
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28 element mini-module: all elements electrically in 
series and thermally in parallel

• Larger Number of Element Based Mini-module for 
larger voltages



VOC Progress

V0 = 2.43E-04 ∆∆T - 3.44E-04
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Palm-Power Program Start As of Now

•1-element

•Voc ~ 17 mV
• 28-element mini-module

• Voc ~ 220 mV

•Target milestone of 200 mV achieved

Vo = 2.05E-03 ∆∆T + 4.83E-03
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Typical load line data from a thin-film mini-module as of 
today - early devices

• 12-element mini-module

• Voc ~ 76 mV

• Potential Isc if no internal 
resistance ~ 140 mA

• At peak power of 3.16 mW

• ∆Tdevice ~ 25K

• Vload ~ 42. 2 mV

• Iload ~ 74.9 mA

•Typical power output 
from non-superlattice
commercial thin-film 
device for same ∆T ~ 25 
µW

TFC-38, 6x300 Mini-module
Load line Data
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• Jsc of this mini-module ~ 3.3 A/cm2

•Typical bulk module for this ∆T, Jsc

~16 mA/cm2





Emerging Applications



Application in Genomics and Proteomics

n High-speed PCR for rapid DNA 
analysis

n Self-assembly of DNA molecules

n Today’s analytical tools are 
inadequate 
to study proteins
(2-D gel electrophoresis, liquid 
chromatography, and mass spectrometry) 

n Wafer-scale thermoelectrics can 
enable “fingerprinting” of proteins 
and their interactions



High-speed PCR

• Typical PCR- starts with double-strand DNA being split at 
95oC, temperature lowered to where single strands can 
bind together with new strands

• Two-step heating cycle is repeated n times, produces 2n

copies of target sequence

• From a single starting molecule, 20 cycles yield over 
1M, 30 cycles 1B, and 40 cycles 1T copies

• Typically each cycle is 1 minute

• Reducing cycling time, efficient devices, and small-scale 
battery-operated systems can lead to field applications for 
DNA testing for pharmacology and bio-weapon detection  



Self-Assembly of DNA Microarrays



Self-Assembly of DNA Microarrays

DNA1 arrives at 
heated spots



Self-Assembly of DNA Microarrays

Use heat to break 
double-stranded 

DNA1



Self-Assembly of DNA Microarrays

A single-stranded 
DNA1 is created



Self-Assembly of DNA Microarrays

Use charge and 
cooling to trap 

single-stranded 
DNA1

- -- - --



Self-Assembly of DNA Microarrays

DNA2 arrives at 
heated spots

- -- - --



Self-Assembly of DNA Microarrays

Use heat to break 
double-stranded 

DNA2

- -- - --



Self-Assembly of DNA Microarrays

A single-stranded 
DNA2 is created

- -- - --



Self-Assembly of DNA Microarrays

Use charge and 
cooling to trap 

single-stranded 
DNA2

- -- - --- -- - --



Self-Assembly of DNA Microarrays

Self-assembled DNA-array ready 
for experiments

RTI-Patent Pending
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Chip Cooling for Complex Computation

“If nothing changes, these chips will produce as much heat, 
for their proportional size, as a nuclear reactor. We have a 

huge problem to cool these devices.”
— Pat Gelsinger, Intel CTO

February 5, 2001

2005



TE/VCSEL Technology Platform

Metro Fiber

Access Fiber

Photonic Applications

Dynamic laser 
wavelength switching 
capability for payload 
transparency in large 
bandwidth transmission

Long Haul Fiber



> 50 Amp/cm2 possible

48 Volts achievable 
with microelectronically
interconnected circuits
> 20 W/cm2

< 200 mA/cm2

5 to 10 Volts

< 1 W/cm2

Current Density

Voltage levels from each
module

Power Density

Long-term (three to 
five years) projected 
cost < $1 per Watt

$5 per Watt as of 
today after 40 years of 
maturity

Cost

570 Watts/gram of TE 
module weight

1 Watt/gram of TE 
module weight

Specific Power  excluding 
thermal management 
components

10 to 11%3 to 4%Efficiency for a ∆∆T of 150oC

Thin-film Technology

(ZT ~ 2.5)

Bulk Technology

(ZT ~ 1)

Performance Parameter

Bulk versus Thin-film TE Power



> 700 W/cm2

~ 120oC

< 1 W/cm2

~ 60oC 

Cooling Power Density

Potential Maximum Cooling 
per stage

Long-term (three to 
five years) projected 
cost < $ 0.5 per Watt

$ 0.5 to 1 per Watt as 
of today after 40 years 
of maturity

Cost of heat pumping

< 3 grams~ 22 gramsWight of TE module for 
pumping 50 Watts (without 
thermal management 
components)

2 to 2.51COP (Heat 
Pumped/Electrical Power 
in) for a ∆∆T of 25oC

Thin-film Technology

(ZT ~ 2.5)

Bulk Technology

(ZT ~ 1)

Performance Parameter

Bulk versus Thin-film TE Cooling/Heating







n p-type Bi2Te3 /Sb2Te3 Superlattices : ZT of device ~2.4 and 
intrinsic ZT in the range of 2.92 at 400K

n n-type Bi2Te3 /Bi2Te3-xSex Superlattices : ZT of device ~1.2 and 
intrinsic ZT in the range of 1.4 at 300K

n Thin-film devices can lead to high power density, fast response, 
wafer-scale integration for both cooling and power conversion

 

Summary




