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Introduction:
Evolution of Thermoelectric Program at LLNL
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Introduction:
Evolution of Thermoelectric Program at LLNL

From a long-standing collaboration with Professor Millie Dresselhaus, LLNL 
recognized the need for a practical method of thermoelectric quantum well (TEQW) 
fabrication in the early 1990’s

Work was started with internal funding, and continued with support form DOE 
OBES and DARPA, and in collaboration with ONR

A NIST ATP Proposal was prepared and submitted in collaboration with Hi-Z 
Technology and Marlow Industries

A wide variety of epitaxial single-layer and multilayer thermoelectric films were 
produced with multi-magnitron sputtering, with precise control of substrate 
temperature and  bias, as well as sputter gas pressure

Films were characterized with X-ray diffraction and a variety of electronic 
measurements

The work advanced to the point where thin-film thermoelectric coolers were 
fabricated and evaluated

Numerous articles were published, with one receiving the award for Best Paper at 
the International Thermoelectrics Conference
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Introduction to thermoelectric concepts
Description of simple devices
Enhanced ZT through quantum confinement of carriers

Systems investigated
Bi2Te3/B4C
Si0.2Ge0.8/Si
Bi0.9Sb0.1/PbTe0.8Se0.2
Bi0.9Sb0.1/Bi2Te3
Bi/Bi0.86Sb0.14
(Bi0.25Sb0.75)2Te3/(Bi0.25Sb0.75)2(Te0.5Se0.5)3

Growth of epitaxial single-layer and multilayer films
Importance of substrate choice
Optimization of deposition conditions

Characterization
XRD, SEM, and TEM
Thermoelectric properties

Device fabrication and testing

Introduction:
Sputter Deposition of Thermoelectric Multilayers
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Thermoelectric Devices:  
Thermoelectric Generator (TEG) & Peltier Cooler

Heat causes
diffusion of the
charge carriers.

Current moves charge
carriers and heat away
from the junction.

Generator

heat source

n p

I

+–

voltage produced

Refrigerator

junction cooled

It may be possible to use
multilayer thermoelectric
material to improve
efficiency.
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Dimensionless Figure of Merit (ZT):
Coefficient of Performance (COP) & Efficiency (ηη)

Efficiency (ηη) of power generator:

Coefficient of performance (COP) of cooler:

Dimensionless figure of merit:  

High ZT required for acceptable COP or ηη:
COP of CFC refrigerator reached at ZT ~ 3
Carnot efficiency (ηη) reached at infinite ZT

ZT is determined by four properties:
Seebeck coefficient (αα)
Electrical conductivity (σσ)
Electronic thermal conductivity (κκel)
Lattice thermal conductivity (κκph)
Semiconductors have best combination
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Hicks-Dresselhaus theory:
Quantum well confinement

Two dimensional electron system
Enhanced electrical conductivity
Band structure

Experimental multilayer sputter deposition issues:
Diminished Thermal Conductivity

Enhanced phonon scattering from interfaces
Compatibility of the layers

Epitaxy - lattice matching
Interdiffusion - low melting point metals

Minimize scattering and trapping
Smooth interfaces 
Large grain sizes

Electronic issues
Quantum confinement - barrier height
Inadvertant doping - interdiffusion and contamination 

Multilayer Thermoelectric Films:
Enhanced Dimensionless Figure of Merit (ZT)
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Layer Thickness (Angstroms)
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Multilayer Thermoelectric Films:
Enhanced Dimensionless Figure of Merit (ZT)
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Rhombohedral

Important Crystal Structures:
Bi2Te3 and Solid Solutions with Sb and Se

Layered compound

Te
Bi

Te

Te

Te

Te

Te

Bi

Bi

Bi

Bi

Bi

Te

Te

Te

Sb replaces Bi
Se replaces Te



C
MS
chemistry &
materials
scienceC
MS
chemistry &
materials
science

UNCLASSIFIED

UNCLASSIFIED J.C. Farmer et al. LLNL

Important Crystal Structures:
Bi0.9Sb0.1 and PbTe0.80.8Se0.20.2

Cubic NaCl Structure Pb

Te and Sea

a

Bi and Sb

Rhombohedral Structure
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Important Crystal Structures:
Rhombohedral Bi and Sb

Very close to simple cubic,
but with a slight symmetry-breaking 
distortion along the cubic 111 direction.

Atom density in the pseudo-cubic 111 direction
is 1/a2√3,√3, while the faces are more dense
with density 1/a2.

c

90
43

±23

56
10

a

Substrate: cubic BaF2, (111) face 3.6% smaller than Bi.
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Multi-Magnetron Sputter Depositions System:
Practical Synthesis of Thermoelectric Multi-Layers

Ron Foreman during sputter deposition of multilayer thermoelectric films and devices
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Multi-Magnetron Sputter Deposition System:
Synthesis of First SiGe/Si Multilayer (100 Å Period)

Stimulated by collaboration with Hi-Z technology – high temperature waste heat recovery
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Multi-Magnetron Sputter Deposition System:
Synthesis of BiSb/PbTeSe Multilayer (250 Å Period)

Deposition on cooled substrates
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Multi-Magnetron Sputter Deposition System:
Synthesis of BiSb/PbTeSe Multilayer (250 Å Period)

Deposition on heated substrates

Possible scattering from occasional columnar 
grain boundaries
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Experimental Approach:
Thermoelectric (TE) Properties of Deposited Films

Scanning TE properties from LN temperature to several hundred degrees Centigrade
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Experimental Approach:
Measurement of Electrical Resistivity (ρρ)

Two-point probe technique:
Bipolar current pulse
Avoid temperature gradients
Lockin amplifier for small signals

Computerization:
Data logging
Display in real time

Vacuum for a large temperature range 

Accurate measurement of resistivity requires precise knowledge of film thickness

ρ =
Rwd

l
≈ Rd

1

R
=

V2

V1 R2
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Experimental Approach:
Measurement of Seebeck Coefficient (S or αα)

Use Type K thermocouples: 
Measure ∆∆V across chromel and alumel leads
Correct for ∆∆V induced in the thermocouple leads

Establish good electrical and thermal contacts:
Conductive silver paint

Computerization:
Data logging
Display in real time

Vacuum for a large temperature range

T1 T2

∆∆V

Stage 1 Stage 2

Substrate correction:

VF = Vm +
RF

RS

Vm − VS( )
0

Seebeck coefficient:

S
V
T

=
∆
∆



C
MS
chemistry &
materials
scienceC
MS
chemistry &
materials
science

UNCLASSIFIED

UNCLASSIFIED J.C. Farmer et al. LLNL

A1

C1 C2

A2

T1 T2

∆∆VC

∆∆VA

Six different ways to compute the Seebeck coefficient:

The voltages need to be corrected for the EMF generated
in the leads between the sample and room temperature.

Two ways to find ∆∆T:

∆∆VC - T2 - ∆∆VA + T1  = 0

∆∆VC - ∆∆VA = T 2 - T1  = ∆∆T
T2 - T1 = ∆∆T

( ) ( ) ( )V V S T dT S T dTA T T A AT

T

AT

T

1 2
0

1

0

2

, = − −



∫ ∫∆

V
C T1 ,T2( )

T2 − T1

V
C T1 , ∆T( )

∆T

V
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∆T

V
A T1 ,T2( )

T2 − T1

V
A T1 , ∆T( )

∆T

V
A T2 ,∆T( )

∆T
Alumel leads

Chromel leads

Computation of average and standard deviation.

S = VC(T1,T2)/∆∆T

S = VA(T1,T2)/∆∆T

etc.

Experimental Approach:
Measurement of Seebeck Coefficient (S or αα)
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Structure ρρ300300 (ΩΩ-cm) αα300300 (µV/°C)

Bi
0.9

Sb
0.1 5x10-4 -80

PbTe0.8Se0.2 ~ 0.15 -640

Bi0.9Sb0.1 /PbTe0.8Se0.2 ~ 1.1x10-3 -15

Bi 5x10-4 -80

Bi
2
Te

3 ~ 1.2x10-3 -65

Bi/Bi0.9Sb0.1 6x10-4 -85

Bi0.9Sb0.1/Bi
2
Te

3 ~ 6x10-4 -10

Summary of Results:
Early Single-Layer and Multilayer Films on Al2O3
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Bi0.9Sb0.1 Single-Layer Film:
Proposed QW Material on Al2O3

Thickness ~ 670 Å        ρρ300300 = 5x10-4 ΩΩ-m        αα300 300 = -80 µV/°C 
Resistivity: Higher than bulk – grain boundary scattering.
Seebeck coefficient: Equal to bulk.
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PbTe0.80.8Se0.20.2 Single-Layer Film:
Proposed QW Barrier Material on Al2O3

Thickness ~ 7,900 Å        ρρ300300 ~ 0.15 ΩΩ-cm         αα300300= -640 µV/°C
Resistivity: Much higher than Bi0.9Sb0.1 – appropriate as barrier material.
Seebeck coefficient: Indicates compatible n type material.
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Bi2Te3 Single-Layer Film:
Alternative QW Barrier Material on Al2O3

Thickness ~ 550 Å        ρρ300300 ~ 1.2x10-3 ΩΩ-cm        αα300 300 = -65 µV/°C
Resistivity: Bulk value achieved.
Seebeck coefficient: Not as good as bulk.
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Bi0.90.9Sb0.10.1 /PbTe0.80.8Se0.20.2 Multilayer Film:
Proposed QW Structure on Al2O3

Thickness ~ 17,000 Å       ρρ300300 ~ 1.1x10-3 ΩΩ-cm        αα300 300 = -15 µV/°C
Resistivity: Same as Bi0.9Sb0.1 single layer film.
Seebeck coefficient: Worse than bulk and caused by ambipolar doping.
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Bi0.90.9Sb0.10.1/Bi2Te3 Multilayer Film:
Alternative QW Structure on Al2O3

Thickness ~ 3,300 Å       ρρ300300 ~ 6x10-4 ΩΩ-cm        αα300 300 = -10 µV/°C
Resistivity: Same as Bi0.9Sb0.1 single layer film.
Seebeck coefficient: Worse than bulk, possibly due to ambipolar doping.
Same as for PbTe0.8Se0.2/ Bi0.9Sb0.1 multilayer. Te causes problem in both.
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Bi Single-Layer Film:
Deposited on Ambient Temperature Al2O3 Substrate

Thickness ~ 5,400 Å        ρρ300300 = 5x10-4 ΩΩ-cm         αα300 300 = -80 µV/°C
Resistivity: Higher than bulk due to grain boundary scattering.
Seebeck Coefficient: Equal to bulk.
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Bi/Bi0.90.9Sb0.10.1 Multilayer Film:
Deposited on Ambient Temperature Al2O3 Substrate

Thickness ~ 11,000 Å        ρρ300300 = 6x10-4 ΩΩ-cm        αα300 300 = -85 µV/°C
Resistivity and Seebeck Coefficient:
Equal to single-layer film of same composition.
Improved by cyclic annealing.
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Bi/Bi0.90.9Sb0.10.1 Multilayer Film:
Deposited on Heated Al2O3 Substrate

Thickness ~ 11,000 Å    ρρ300300 = 6x10-4 ΩΩ-cm        αα300 300 = -85 µV/°C
Resistivity and Seebeck Coefficient: 
Same as deposited cold and temperature cycled.
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Seebeck Coefficient of Proposed QW Structure:
Bi0.9Sb0.1/PbTe0.8Se0.2 Multilayer Film on Al203

-60

-40

-20

0

-200 -150 -100 -50 0 50 100
Temperature (°C)

Se
eb

ec
k 

C
oe

ff
ic

ie
nt

 (
µ

V
/°

C
)

Absolute Seebeck
BiSb film
Multilayer

The Seebeck coefficient of the multilayer is probably reduced by interdiffusion
and doping of the Bi0.86Sb0.14 layer by Pb, Te and Se
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Scanning Electron Microscopy (SEM):
Sputtered Bi Single-Layer Films with 1 µµm Thickness

Polished BaF2  100°C Cleaved BaF2  100°C
Epitaxial growth

Cleaved BaF2  200°C
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X-Ray Diffraction:
Bi Single-Layer Film on Glass and BaF2
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Effect of substrate on epitaxy evident.
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Electronic Resistivity:
Bi Single-Layer Film on Cleaved BaF2

Function of deposition temperature and annealing.
Deposition on higher temperature substrate and cyclic annealing
improves crystal structure and electrical conductivity (resistivity decreases).
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Electronic Resistivity:
Bi Single-Layer Film on Cleaved BaF2

Function of gas pressure and substrate bias. Electrical conductivity improved by 
(1) increased gas pressure, (2) increased substrate bias, and (3) cyclic annealing. 
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X-Ray Diffraction:
Bi/Bi0.86Sb0.14 Multilayer Film on BaF2
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Well-defined satellite peaks evident of epitaxial growth.
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X-Ray Diffraction:
Bi/Bi0.86Sb0.14 Multilayer Film on BaF2
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Satellite peaks vary with mulilayer period as expected.
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Electronic Resistivity:
Bi/Bi0.86Sb0.14 Multilayer Film (91Å) on Cleaved BaF2
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Films deposited at 100°C. Increased resistance in multilayer probably due 
to scattering and trapping of charge carriers at interfaces.
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Seebeck Coefficient:
Bi/Bi0.86Sb0.14 Multilayer Film (91Å) on Cleaved BaF2
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Films deposited at 100°C.  Bi/Bi0.86Sb0.14 multilayer has the same 
Seebeck coefficient as Bi single-layer.
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Loss of Structure During Annealing:
Bi/Bi0.86Sb0.14 Multilayer Film (54Å)
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X-Ray Diffraction:
(Bi0.25Sb0.75)2Te3/(Bi0.25Sb0.75)2(Te0.5Se0.5)3 Multilayer
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Deposited on (111) BaF2 substrate at 350°C
Bilayer repeat length 50Å with (0,0,15) peak and satellites
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Deposited on (111) BaF2 substrate at 250°C
Bilayer repeat length 92Å

Power factor 6x10-4 W/m-K2
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Thermoelectric Properties:
(Bi0.25Sb0.75)2Te3/(Bi0.25Sb0.75)2(Te0.5Se0.5)3 Multilayer



C
MS
chemistry &
materials
scienceC
MS
chemistry &
materials
science

UNCLASSIFIED

UNCLASSIFIED J.C. Farmer et al. LLNL

PbTe0.80.8Se0.20.2/Bi0.9Sb0.1 and Bi22Te33/Bi0.9Sb0.1 multilayers
Interdiffusion causes excessive doping of individual layer
Seebeck coefficients suffer

Sputter deposition of epitaxial multilayer films is possible
Bi/Bi0.86Sb0.14
(Bi0.25Sb0.75)2Te3/(Bi0.25Sb0.75)2(Te0.5Se0.5)3

Epitaxial Bi/Bi0.86Sb0.14 multilayer 
Resistance not improved
May be due to scattering and band structure

Epitaxial (Bi0.25Sb0.75)2Te3/(Bi0.25Sb0.75)2(Te0.5Se0.5)3 multilayer
Band gap controlled by stoichiometry of layer
Tolerant of small degree of interdiffusion
May still offer potential for enhanced ZT

Important Conclusions:
Materials Synthesis via Sputter Deposition
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Miniature Peltier Cooler Based on Sputtered Films:
p-Type (Bi0.25Sb0.75)2Te3 and n-Type Bi0.9Sb0.1

(Bi0.25Sb0.75)2Te3 Bi0.9Sb0.1

p n



C
MS
chemistry &
materials
scienceC
MS
chemistry &
materials
science

UNCLASSIFIED

UNCLASSIFIED J.C. Farmer et al. LLNL

l1

ds

l2

d1

d2

w2

w1

Z =
α1 −α 2( )2

κ 1d1 +κ sd s( )w1

l1
+

κ 1d1 + κ s ds( )w1

l1

 

 
 

 

 
 

ρ1l1

d1w1

+
ρ2 l2

d2 w2

 

 
 

 

 
 

Miniature Peltier Cooler Based on Sputtered Films:
Performance Calculations and Maximum ∆∆T

∆Tmax = TH +
1

Z
1 − 1 + 2 ZTH( )

Figure of merit:

Maximum cooling: αα Seebeck coefficient
κκ thermal conductivity
ρρ resistivity
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Miniature Peltier Cooler Based on Sputtered Films:
Demonstration & Experimental Measurements

Film 1:  (Bi0.25Sb0.75)2Te3

ρρ = 1x10-3 ΩΩ-cm
αα = 110 µV/K
l = 1.8 mm
κ κ ~  0.014 W/cmK
w = 2.2 mm
d = 6.0 µm

Film 2:  Bi0.9Sb0.1

ρρ = 5.4x10-4 ΩΩ-cm
αα = -100 µV/K
κκ~ 0.08 W/cmK
l= 2.5 mm
w= 2.0 mm
d= 9.5 µm

Substrate: mica
κκ~ 0.02 W/cmK
d= 25 µm
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optimum size

(Bi,Sb)2(Te,Se)3 p and n

bulk material

Miniature Peltier Cooler Based on Sputtered Films:
Predicted Performance Based on Measurements
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Fabrication of miniature single-stage cooler based on thermoelectric films
p-type (Bi0.25Sb0.75)2Te3
n-type Bi0.9Sb0.1

Successful demonstration of device with 8 µµm films
Measured ∆∆T of 5°C with 25 µµm mica substrate
Projected ∆∆T of 10°C with 5 µµm mica substrate
Enhanced performance also possible with thicker films

Use of (Bi,Sb)2(Te,Se)3 films in both legs will improve device
∆∆T of 7°C with 8 µµm films on 25 µµm mica substrate
∆∆T of 18°C with 8 µµm films on 5 µµm mica substrate

Films with bulk properties would significantly enhance device
∆∆T of 22°C with 8 µµm films on 25 µµm mica substrate

Applications:
Photothermal Energy Conversion
Miniature Peltier Coolers
Infrared Sensors
PCR Technique

Important Conclusions:
Device Fabrication and Performance




