Boron Carbides:
Unconventional High-Temperature Thermoelectrics

Terry Aselage David Emin

Long-Life Power Sources Dept. Dept. of Physics and Astronomy
Sandia National Laboratories University of New Mexico
Albuquerque, NM Albuquerque, NM

DOE High Efficiency Thermoelectrics Review
March 24-27, 2002

Threetopics:

 Sandia uses thermoel ectric power sources. RTG's
* Novel contributions to boron carbides thermoelectric properties
 Implications for boron carbide quantum wells



Boron Carbides Distinctive Structures
Based on twelve-atom icosahedral units

Borane molecule (B ,H,,)# illustrates
unconventional internal bonding

* Each boron has 6 nearest neighbors Bonds between boron carbides icosahedra

S within icosahedron are strong, covalent bonds
1 external (H)
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o “Electron-deficient” internal bonding Very high melting temperatures (> 2400 K)

26 electronsto fill bonding orbitals » Extreme hardness, high stiffness
Bonding electrons are delocalized
Charge densities peak at triangle centers

* Strong bi-electron affinity — (B,,)*
D. Emin, Physics Today, January 1987



Boron Carbides Nonstoichiometry: High Carrier Densities

* Ideal, “stoichiometric” boron carbide, B,,C,,
would be an insulator

(B,C) icosahedra, (CBC)* chains

 Real boron carbides have a wide single-phase region
B, .C;,,0.07<x<1.7

Charge carriers result when B replaces C
x is large, so carrier densities are large
(».1to 1 carrier per unit cell, or » 10%t/cm?)



Boron Carbides As Thermoel ectrics

» Covalently bonded, light elements — high stiffness, high sound velocity
Expect high thermal conductivity

 High carrier density, » 10%t/cm3, from nonstoichiometry

Expect very low Seebeck coefficient
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Boron carbides’ Seebeck coefficients are large

Boron carbides’ thermal conductivities are low

Boron carbides have long been known as good high-temperature thermoelectrics

1980’ s— studied by JPL for high-temperature thermoel ectric generation

Sandia/JPL collaboration, then Sandia program:
aimed at understanding the “anomalies’



Boron Carbides Hopping-Type Electronic Transport
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* DC conductivities:
Non-Arrhenius at low T, Arrhenius at high T

High carrier densities suggest low mobilities €
» Hall mobilities are low, thermally activated %;
g | .
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| N . SV Phys. Rev. B 64, 054302 (2001)
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Carriers localize on icosahedra, move by thermally assisted hopping
Carriers are confined to icosahedra units, 1.7 A radius

» Spin densities from low-T e.s.r and susceptibility << carrier densities

L3 o 3 “ L3 ’,
Carriers form singlet pairs, “bipolarons 1

 One consequence of pairing:
carrier density ¢ varies non-monotonically with composition ¢ 95 \

0
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Boron Carbides’ High-Temperature Conductivities

Systematic study of many well-characterized hot-pressed samples
with compositions that span the single-phase region
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» High-temperature, adiabatic hopping
of small (bi)polarons:
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Aselage, Emin, McCready,
Phys. Rev. B 64, 054302 (2001)

* E, » 0.16 eV for all carbon concentrations

» Conductivity pre-exponential factor:
- Peaks near x =1
- Has non-monotonic carbon-concentration dependence
- Magnitudes consistent with carrier densities



Boron Carbides High-Temperature Seebeck Coefficients

Standard high-temperature
treatment for small polarons
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“Expected” Results
* Series of parallel, T-independent curves

* Magnitude shifts with carrier density
(carbon concentration)
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D. Emin, “Seebeck Effect”,

Wiley Encyclopedia of Electrical and Electronics Engineering, in press.
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“Anomalous” Results

* Large (»175 mV//K) contribution beyond Sep.

 Contribution isindependent of carrier density



Seebeck Coefficients Unusual Temperature Dependence

T-dependence and carrier-density-insensitivity
consistent with enhancement from carrier-induced softening
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300 | ca s 006 o, * Carrier-induced softening:

ol ’ ™ Carriers confined to multi-atom sites (not point ions)
150 [ @ x=054 Carriers “slosh” around as sites' atoms vibrate

100 |- Sloshing lowers local vibrational frequencies

Emin, PRL 72, 1052 (1994); Emin, Phys. Rev. B 61, 6069 (2000)

300 - » Two Seebeck coefficient contributions:

o0 S.:, - (increase in vibrational entropy)/q

iﬁﬁ : S - (net vibrational energy transported)/qT

50

a1
o O

transport

Seebeck Coefficient ( mV/K)

S. +S

vib

transport

300 |
250 |
200 |
150 |
100 [
50 §

0

0 200 400 600 800 1000 _
T (K) Emin, Phys. Rev. B 59,

6205 (1999)

Aselage, Emin, McCready, Duncan, PRL, 81, 2316 (1998)
Aselage, Emin, McCready, Phys. Rev. B 64, 054302 (2001)




Boron Carbides Surprisingly Low Thermal Diffusivities
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» Glass-like thermal diffusivities can result from incoherent energy transfer
between localized vibrational modes



Summary

 Boron carbides are surprisingly good high-temperature thermoelectrics
(ZT » 0.3 at 1000°C, Z continues to increase with increasing T)

* Novel contributions enhance the thermoel ectric properties
- High densities of localized charge carriers
- Thermally activated mobilities increase with temperature
- Large, carrier-induced softening enhancement of Seebeck coefficients
- Slow, incoherent vibrational energy transfer — vibrational disorder





