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Abstract
A spectral as well as a time evolution PIC code are presently being developed to solve 
the linearized gyrokinetic equations for studying global microinstabilities in toroidal ge
ometry. In many ways these two methods are complementary and therefore allow for 
valuable cross-checking and validation of the different approximations made. This par
allel approach forms a firm basis for future studies of non-linear evolution or higher 
dimensional systems.

1 Introduction

As a candidate for explaining anomalous transport in fusion devices, microinstabilities 
have been a field of extensive experimental and theoretical investigations. Particular in
terest is given to ion-temperature-gradient-driven (ITG or 77,) modes as they seem to play 
an important role in ion confinement. Over the past, investigations of this type of insta
bilities have considered increasingly complex systems. Starting with linear studies and 
reduced dimensions such as local dispersion relations [l]-[2] and ballooning representation 
[3]-[7], the basic understanding of slab- and toroidal-ITG instabilities was established. At 
present computational power allows for non-linear gyroffuid and gyrokinetic simulations 
[8]-[ll] but which are still limited to flux tubes (radially local) or small configurations.

So even today linear studies are not outdated. For non-linear codes they allow valuable 
benchmarking of the linear stage of evolution and can provide information on possible 
channels of energy release and absorption. Furthermore, a linear calculation is the first 
systematic approach when considering additional physical effects such as non-adiabatic 
electrons, toroidal flow, reversed shear or shaping of equilibrium. Finally, linear codes 
are a useful tool for defining marginal stability.

Various studies have been performed on linear modes in toroidal systems for high 
toroidal wave numbers using ballooning representation (radially local). However the 
only published results on true global linear microinstabilities are based on one code by 
Marchand, Tang and Rewoldt [12]-[13] which is valid to second order in finite banana orbit 
width and contains no finite Larmor radius (FLR) effects. We have therefore undertaken



2

the development of two new global linear codes using respectively a spectral and a time 
evolution particle in cell (PIC) approach for solving gyrokinetic equations (GKE).

PIC and spectral methods are complementary in many ways. Pushing algorithms 
are basically straightforward and can therefore relatively easily be extended to more 
complicated problems such as realistic geometries and non-linear studies. But in linear 
runs, time evolution simulations provide only the highest growing mode and therefore 
can be considered as the practical approach to such a problem. Furthermore they can be 
limited with respect to short time scales. On the other hand, an eigenvalue calculation is 
naturally restricted to linear studies and needs more modeling to solve, so that simpler 
systems are usually considered. But spectral codes provide the full spectrum (at least 
the unstable modes) and can therefore be viewed as the analytical approach to a linear 
problem. Short time scales are no restriction in this case. This complementarity is useful 
for benchmarking: Asymptotically in time, the frequency, growth rate and field structure 
given by the time evolution PIC code must converge to the eigenfrequency and eigenmode 
relative to the highest growth rate of the spectrum. In this way, the limits of the different 
approximations can be defined. In addition, this complementarity allows one to cover a 
wider parameter space and give more information on a same problem.

The spectral approach is presented in Sec.II. The PIC method is briefly described 
in Sec.Ill and more extensively by Fivaz et.al. in these proceedings [14]. Results of 
comparisons and parameter scans are shown in Sec.IV.

2 Spectral Approach

Let us give a brief description of how the eigenvalue equation is derived keeping full FLR 
effects by using gyrokinetic theory.

2.1 Linearized, Electrostatic Gyrokinetic Equation
A collisionless plasma is considered. The linearized Vlasov equation for the fluctuating 
part / (r, u,t) of the particle distribution function reads:

D_
Dt /=

u.t.p. dt
_* d o i —d _j_ v .___ _|—f v x B) • — 

d r rn Q v
(1)

where <j> is the electrostatic (ES) potential of the perturbation, B the magnetic field of 
equilibrium and Fm the local Maxwellian distribution with temperature T and density 

stands for the total time derivative along the unperturbed trajectories of the
particles.

In typical fusion plasmas, the Larmor radius A& is small compared with the charac
teristic length o of equilibrium. When studying microinstabilities, Eq.(l) can then be 
transformed approximately using an expansion with respect to e = A^/o <C 1 to the
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linearized GKE [15]:

D_
Dt

?= (f+ ?. - A'
u.t.G.C. \ot d R/

9= -i^FM(<o -to*) < <j> >, (2)

where 5=/ is the non adiabatic part of /, < <j> > the gyro-averaged potential,
to* the diamagnetic drift frequency, and to the frequency of perturbation. Eq.(2) is writ
ten in gyrokinetic variables (R, E, fi, a, sign(v||)), with R—^r +—^ the guiding center 
(GC), E = |u2 the kinetic energy, fi — the magnetic moment, and a the gyroangle. 
Although one solves for the particle distribution function, the GKE has taken full advan
tage of guiding center theory as ^ stands for the total time derivative along the
unperturbed trajectories of the guiding centers. The effects of density and temperature 
gradients appear through the diamagnetic drift frequencies ton and toj respectively:

to* ~ <On + Cl>t-

To be able to perform explicitly the gyro-averaging of the unknown potential <f>, one uses 
the Fourier transformation:

#(?) = Jdk e‘*-7 3 (k),

so that

/
—► A » 1 /*2ir v x«i| f —► / k i V t \ .7* -* A —*

dk elkR 4> ik)— J da e~xk‘ n = J d k Jo fj etkR <f> ( fc), (3)

where the Bessel function contains the full FLR effects. For this reason, Fourier
representation is intrinsic to gyrokinetic theory.

Eq.(2) is solved by integrating along the unperturbed trajectories of the GC:

9 (R, E, fi, a; to) = ^ J dk Jo{kxv i/fije1*'* <j> {k){to* - to)FMiV(R, k, E, n,a\to),

R ~v9 (R I a) ~ u|| e|| + vd= V|| e|| + ^ ^ (V x ej|)_L,

R(t = 0) =R .
For a given system, solving the GKE thus consists essentially in calculating the propa
gator

* k -(R -R)-ut
V — I dre

J — OO

which in particular contains all resonances.

(4)

2.2 The Eigenvalue Equation
For low frequency ES microinstabilities, the system is closed invoking quasineutrality:

13 Pi (r>u;) = °- (5)
species
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The charge density pq is evaluated from 9 after transforming back to particle variables 
and integrating over velocity space:

N<t>{r) + Jdk 2 (&)(**-w) Jdv Jl{kLvJSl)FMiV{w)\ ,

(6)

where the gyroangle integration has already been performed, producing a second Bessel 
function Jo, so that dv= 2'KV±<bid)\\.

Eq.(5) defines an eigenvalue problem for the ES potential: One must find the fre
quencies in the complex tv-plane for which there exists a non trivial solution <j>.

Note that in (6) (f> appears in configuration space as well as in Fourier representation. 
By transforming back to space the eigenvalue problem reads:

Jdr /C(r,r;w)^(r') — 0, (7)

which is of integral type and therefore contains boundary and regularity conditions. It 
can be shown that the kernel K has an integrable singularity at r—r> that must be 
handled carefully. Eq.(7) was solved for a cylindrical system using finite elements. After 
appropriate transformations [16], the singularity is integrated analytically. This method 
however cannot be extended to toroidal systems.

This problem was avoided by writing the quasineutrality equation in Fourier repre
sentation:

53 £ (&, &',w) (f> (&') = 0.
b

As the system is finite, notice that Fourier series instead of a Fourier transform was 
—+ —►

employed so that (&,&') naturally take discrete values. The main advantage of this 
representation is that there is no singularity at &=&'.

Formally the spectral problem can always be written in vectorial form:

K M 4>= 0.

To find the spectrum of the system, one must solve the characteristic equation

det /C (tv) = 0.

This is not a standard eigenvalue problem as the frequency dependence of )C is not simply 
linear. In practice, first estimates were obtained by either performing a scan of det/C over 
the complex tv-plane or eigenvalues were localized within a closed curve invoking Niquist 
theorem, i.e. taking advantage of the analyticity of det/C- These results were then refined 
using a Newton algorithm.



5

2.3 Toroidal Model for ITG Instabilities
A large aspect ratio, circular cross-section torus with major radius R and minor radius 
a is considered. The magnetic field of equilibrium can then be written

B~ Bo* -JL ee

(p, 0, <p) being the toroidal variables, (r, tp, z) the cylindrical variables, and qa(p) the safety 
factor. In cylindrical variables the potential can be Fourier decomposed as follows:

(k,m)

where n is the fixed toroidal wave number, (k,m) the radial and poloidal wave numbers 
respectively. A local wave vector is then given by

m
k — « ep -)— eg +-

n _ ,2 7T
K~kA p’p R

with Ap being the radial width of the annulus over which the eigenmodes are solved for 
in the poloidal plane.

As ITG instabilities are essentially driven by passing particles, for simplicity, only 
circulating particles are considered and furthermore are approximated as highly passing, 
i.e. the modulation of parallel velocity along the trajectories due to the variation of the 
magnitude of B is neglected. This was validated by PIC results when trapped particle 
effects could be neglected i.e. for large aspect ratio systems or for frequencies above the 
average bounce frequency. Under these assumptions the derivation of the propagator 
(Eq.(4)) leads to

sp __ v^*a ^t(p-p')(fl+0-.) Jp{k\_Vdz / ^t^Jp'iklVdz /
- pvb-j k i(A||U|| -put-u)

where Vdz — ^ + ujj^ ^ are the vertical toroidal drifts and 0-+ — arg(fcg — itc). Note

the possible resonances with respect to the harmonics of the transit frequency tvt = 
Assuming adiabatic electrons and only one species of singly charged ions, the two- 

dimensional eigenvalue problem in Fourier space becomes:
A A

12 £(k,my,(k',m') M

K(k,m);(k',m>) M ~ Af) J* dpe ‘(* *

Tt

,-i{k-k')%-p

Ti
(tv — tv*)e

i(m—m')6

°=(i + |)C'+

;-L ffe
V^TT J- co " p t||Ut^|| — ptvt — W

I{p,kjL,v\\,p,p') = 11 vLdvJ_e 2VxJl{iL)Jp{(b)Jp>{ib),

+ rn')
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with ac the fraction of circulating particles. For each frequency the matrix must be re
computed, which implies for each matrix element )C(k,my,(k',m') a radial Fourier transform, 
a parallel velocity integral, and a sum over harmonics of the transit frequency. The per
pendicular velocity integrals I can be precalculated and contain all FLR effects through 

= fcj.^l, and finite banana width effects through — Jc±\j, = fc_i_+ ujjj 

The code is run on a Silicon Graphics Indigo2. Average input parameters are ap
proximately 80 radial mode numbers, 10 poloidal mode numbers, 10 harmonics of transit 
frequency, 60 integration points in each velocity direction. A frequency scan of the order 
of 1000 values of w presently takes ~ 15 hours.

3 Time Evolution Approach

3.1 Initial System of Equations
To avoid the numerically noisy time derivative in the right hand side of Eq.(2), the
equation taken here for the particle dynamics is slightly different, following a derivation by

~ —+

Hahm [17]. In this case one solves for the distribution function of the GC fg (R, U||, uj_; t):

with

and

D
Dt u.t.G.C.

d -► d dv|| d dvx d
dt or dt dv|| dt dv± fg~ TrhS,

&R = v9
in = hiv- q, ^
iV-L = -5V|V||V- SJ,

(8)

Trhs =
< E > x B

W2
d , e ^—— _|---- < Em >

d R m
d "2

"5----h < E > ■dv\\

B xVlnB v±. d _d
2 dvx dv|

Em-

Velocity variables (u||, uj.) are adopted to avoid singularities in the Jacobian when per
forming integrals over velocity space using (e, (i). The system is again closed invoking 
quasineutrality:

jr<f>(r,t) J d~v dRfg (R,U||,‘ux;t)5(i + \L - r) - Vj.^^Vj_<f>{r,t), (9)

where the left hand side is the density of the adiabatic electrons and the right hand side 
the ion density. Note that the RHS contains a correction term valid to second order in 
FLR so as to correctly obtain the particle density from fg. Let us point out that the 
system of equations (8)-(9) is equivalent to this order to the starting equations (2) -(5) 
of the spectral approach.
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3.2 Solving using PIC Algorithm and FEM
Phase space is discretized into Np cells of volume (incompressible under
phase space flow) centered at (R„,v^, v±u). If the centers of these cells are pushed in 
time along the GC trajectories, the discretized distribution function can be approximated
by

fg (5, = 23 {f~~S (<)) 6 (UH - ulk(<)) 6(v± - ,

with the weights /„ being evolved as

Jtfv = TRHs\{-vnvtVxv.t)(v.

No approximations were made when integrating the GC trajectories, so that both trapped 
and circulating particles are fully taken into account.

The quasineutrality equation is solved for <j> at each time step. This second order 
differential equation is inverted using a finite element method (FEM) so that charge 
assignment is defined naturally. The finite elements (quadratic splines) are built on a 
realistic magnetic coordinate mesh provided by the MHD equilibrium code CHEASE 
[18]. Had one kept full FLR effects, the equation for <f> would have been a numerically 
time consuming integral equation.

The code is run on a massively parallel CRAY-T3D (32-64 processors). Typical runs 
take 106 particles and approximately 1 hour computing time.

4 Results of Comparisons

4.1 Benchmarking
To allow for exact benchmarking, one defines a case that is well within the common 
approximation limits of both approaches. A large aspect ratio torus must be considered 
to avoid trapped particle effects which are neglected by the spectral code. Furthermore, 
the device must be large and the fixed toroidal wave number low so that the second order 
expansion in kx^L of the PIC method is valid. The first results presented here are for a 
system with major radius R = 30.m, minor radius a — 2.m, average ion Larmor radius 
Al = 3.2mm, parabolic safety factor profile so that q, = 3.25 on axis and q3 — 6.25 on 
edge, flat density profiles, and temperature profiles having steepest gradients at s = 0.5 
where ^ = 0.05. Here s — p/a stands for the normalized radial variable and Lt for the 
characteristic length of equilibrium.

Fig.l shows the most unstable part of the spectrum as well as the first evaluation of 
frequency and growth rate of the PIC run. The average position taken by this last point 
with respect to the first most unstable eigenvalues led to a spectral time analysis of the 
PIC evolution for each magnetic surface (Fig.2a), which shows that the signal contains



more than one frequency, i.e. is still the superposition of many eigenmodes. Naturally, 
by pursuing the run even further in time, the highest growing mode would be isolated. 
Note however that the dominant component in Fig.2a agrees very well with the frequency, 
radial average position and width of the highest growing eigenmode (Fig.2b). Extracting 
this frequency from the PIC signal gives the field structure in Fig.3a, very similar to 
the eigenmode structure in Fig.3b. The next highest growing eigenmodes explain the 
residual components in Fig.2a.

-15
Real(w/<wT1>)

Fig.l. Spectrum of highest growing modes; < wT» >= 250s-1.

Fig.2a. Spectral time analysis of PIC sig
nal as a function of magnetic surface.

Fig.2b. Frequency, position and width 
of most unstable modes given by spectral 
results: ’—o—’:highest, -x- -’:next.
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Fig.3a. Poloidal field structure of time Fig.Sb. Poloidal mode structure of high- 
filtered PIC signal. est growing mode of spectrum.

4.2 Aspect Ratio Scan
The goal here is to study how the eigenmodes transform when going from cylinder to 
torus. In cylinder magnetic drifts are negligible and temperature gradients eventually 
give rise to the so-called slab-ITG instability driven by the particle dynamics parallel to 
the magnetic field line. With increasing toroidicity these modes progressively adopt the 
full character of the more unstable toroidal-ITG. This second type of instability is flute
like as &|| ~ 0 and therefore is driven by the perpendicular dynamics, i.e. by the magnetic 
drifts of the particles. These drifts are stabilizing where opposed to the diamagnetic drifts 
(called favorable curvature regions, usually limited to the inner side of the torus) and 
destabilizing where going in the same direction (unfavorable curvature regions, usually 
the outer side of torus). At even higher toroidicity, the driving mechanism is less efficient 
and the growth rate decreases [11]. The basic understanding of the slab- and toroidal- 
ITG mode is given by a local fluid dispersion relation [5]-[6], showing that these two 
modes are different limits of the same branch. In this sense it is strictly wrong to state 
that toroidicity induces a new mode.

Our reference case is a plasma with major radius R = 1.2m, minor radius a = 0.2m, 
average ion Larmor radius A& = 3.2mm, safety factor going from qt(s = 0) = 1.25 to 
9,(s = 1) = 4.25, flat density, steepest temperature gradients at s — 0.5 where ^ = 0.13, 
and perturbations with toroidal wave number n = 4. This configuration, which we will 
call full torus, is then unbent into a cylinder keeping Rqa, nq, and a constant as well 
as all the equilibrium profiles. In particular, two intermediate states are labeled half 
and quarter torus, having respectively half and quarter inverse aspect ratio of full torus.
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Frequency and growth rate of the highest growing eigenmode are plotted in Fig.4a and b 
respectively. In cylinder this eigenmode (#1) turns out to have poloidal mode number 
m — 7. Near quarter torus, a second eigenmode (# 2) takes over. PIC results in cylinder 
as well as in quarter, half and full torus are also indicated. The two methods agree 
perfectly on the real part of the frequency. For the growth rate they show the same 
qualitative behavior for varying aspect ratio but quantitative differences up to 20%.

In Fig.5a the average value of k±\i, evaluated from the spectral results is plotted as 
a function of the inverse aspect ratio. In cylinder where ~ 1.4 one is beyond the 
limits of the second order FLR expansion performed by the PIC method. In full torus 
where k±\i, ~ 0.4 one is well within. Therefore, differences between PIC and spectral 
results at lower aspect ratios are probably explained by trapped particle effects.

A diagnostic on the PIC signal evaluating the power transfer related to parallel and 
perpendicular dynamics is presented in Fig.5b. Note how the driving mechanism pro
gressively turns from parallel to perpendicular dynamics when going from cylinder to 
torus, this being the signature of a slab- to toroidal-ITG transition. In full torus parallel 
dynamics are actually stabilizing and lead to the saturation and decrease of the growth 
rate.

Plots on the left of Fig.7 give the radial dependence of the poloidal Fourier components 
with increasing toroidicity, plots on the right-hand side the corresponding structures 
in configuration space. In cylinder the field is very localized near the rational surface 
corresponding to the fixed poloidal mode number. In full torus, the ballooning and 
the appearance of large , slightly twisted coherent structures called ’fingers’ follow from 
the constraints on the mode to be simultaneously localized in the unfavorable curvature 
region and locally have k\\ ~ 0.

Fig.4a, b. Real frequency and growth rate of highest growing eigenmode going 
from cylinder to torus, ’o’: eigenmode # 1, ’x’: eigenmode # 2, ’+’: PIC results; 
< wTi >= 22.310as"1.



80

0.02 0.04 0.06 0.06 0.1 0.12 0.14 0.16 0.18
Inverse Aspect Ratio

Fig.5a. Average value of k±XL going from 
cylinder to torus, ’o’: eigenmode # 1, ’x’: 
eigenmode # 2.

e/R: Inverse aspect ratio

Fig.5b. Power transfer from parallel (’o’), 
and perpendicular (’%’) dynamics. The 
sum is proportional to the growth rate

4.3 Toroidal Wave Number Scan
A toroidal wave number scan was performed for the full torus equilibrium defined in the 
previous section. PIC and spectral results for frequency and growth rate are shown in 
Fig. 6a and b respectively. There is good agreement near n = 7 where the growth rate 
saturates due to FLR effects.

4 6 6
toroidal wave number n

10 12

Fig.6a, b. Real frequency and growth rate of highest growing eigenmode for varying 
toroidal wave number. PIC results, ’o’: Spectral.
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Cylinder. The highest growing 
mode has poloidal wave number 
m = 7 and is centered on the cor
responding rational surface.

Quarter Torus. The poloidal 
Fourier componants couple by pairs 
between the corresponding rational 
surfaces. In configuration space, 
this leads to a broader but struc
tured radial dependance of the 
eigenmode.

Half Torus. Higher order cou
pling between the poloidal Fourier 
components, leads to more coherent 
structures of the eigenmode called 
’fingers’. The mode balloons in the 
unfavorable curvature region. These 
are the signatures of a toroidal-ITG 
mode.

Full torus. The toroidal-ITG char
acters are confirmed.

6

n*q- 5 6 7 8 9 10 11

n*q- 5 8 7 8 9 10 11

' V

n'q. 5 6 7 8 9 10 11

Fig.7.



13

5 Conclusions

A time evolution PIC as well as a spectral code for solving global toroidal microinsta
bilities are being developed. The complementarity of the two approaches has been very 
useful for benchmarking the codes and in particular for validating and defining the limits 
of the different approximations made. For cases where trapped particle effects are not 
significant and for low values of k±Xjj comparisons have shown very good quantitative 
agreement. For other cases where these effects are present but not dominant, at least good 
qualitative agreement was obtained. Differences show the way for future improvement.

Running these codes in parallel allows to scan efficiently a wide parameter space 
and give more information on a same problem. The PIC approach considers realistic 
equilibria, and the effects of shaping (elongation, Shafranov shift, etc) can be studied. 
Having sampled out the fast poloidal dependence, perturbations with large toroidal mode 
numbers n (~ 100) can be handled [14]. The eigenvalue approach contains FLR effects 
to all orders and allows to follow continuously the full unstable spectrum from cylinder 
to torus.

Acknowledgment: This work was supported in part by the Swiss National Science 
Foundation.
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Introduction

We study here low frequency electrostatic microinstabilities driven by ion temper
ature gradients (ITG instabilities) relevant to anomalous ion heat transport in toka- 
maks. The plasma is modelled with gyrokinetic ions [1] and adiabatic electrons. An 
axisymmetric equilibrium magnetic structure is provided by the MHD equilibrium code 
CHEASE [2], The full plasma cross-section is considered in the simulations. We follow 
the time-evolution of electrostatic, quasineutral perturbations of a local Maxwellian 
equilibrium distribution function, using two different particle-in-cell (PIC) codes run
ning on a massively parallel CRAY-T3D.

The gyrokinetic model

In the following, x, Ujj, u_l and a denote particle positions, velocity components and 
gyroangles, R and p guiding center positions and the vectors pointing from them to 
the particles (Larmor radius), B and h the magnetic field and its direction, Te and n0 
the electron temperature and density, and Q, the ion cyclotron frequency, respectively.

In this notation, the trajectories of the guiding center motion in phase space and 
the evolution of the perturbed guiding center distribution function, f(R, i>y, uj_, f), are 
given by

d
Jt (1)

and
dj_
dt guiding center trajectory

(2)

where

(E)xBdf0 n 
B2 dR B

Trhs =



The electric potential, <£(x,Z), and the gyro-averaged electric field, {£?), are given
by

= / /(R^v^mR-x + pidRdv (4)

and
{E)(R, vL, t) = -j V<£(x, f)£(£ -£ + p)dxda. (5)

Since the equilibrium is axisymmetric, one can Fourier-expand the perturbed quan
tities (f) and / in the toroidal angle y, and keep one toroidal harmonic n only. This 
reduces the problem to two spatial dimensions. The resulting equations are solved with 
a finite element particle-in-cell method.

Poloidal structure of ITG modes

B
ITG modes can be unstable only when the parallel wavenumber k\\ is small. Setting 

•V</>(s, Xi <p) — 0, we can therefore get a good estimate of the poloidal mode structure:

4>{s, X, <P) = <MS) exp[~i{n<p + nq(s)x)},
Bt,xis,Q) = [

Jo
'tor

Rq(s)Bpor^70
-d6.

(6)

(7)

Here, 6, %, s and q are the poloidal angle, the “straight-field-line” angle, the square root 
of the normalized poloidal magnetic flux function and the safety factor, respectively. In 
Figure 1, we show, on an example, how well the structure given by Eq. (6) can mimic 
that of a “real” unstable mode obtained from a PIC simulation. For this, <j>(s) has been 
chosen to be a Gaussian centered at s0, the position of the largest temperature gradient 
in the simulation, and with a width given by that of the real mode. As high-n modes 
have a fine poloidal structure, their numerical treatment demands a large number 
of poloidal grid points and, as a consequence, small timesteps At as well. Indeed, 
integration accuracy and stability require At to be smaller than the time it takes a 
particle to cross one poloidal wavelength. This translates into a maximum timestep 
which is inversely proportional to n and makes the simulation of high-n modes very 
difficult.

Eigenmode from simulation
Real part of potential

Structure given by Eq. (6)
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Extraction of fast &|| = 0 poloidal variation

The mentioned difficulty can be overcome by taking advantage of the approximate 
knowledge given by Eq. (6). In fact, the fast poloidal variation corresponding to k\\ = 0 
can be extracted from the gyrokinetic equations. Let us define transformed quantities, 
/ and 0, by writing

= (8)

and
f(s,0) = Z(S,#)eis<-',> (9)

where
S(s,6) = inq(s)x(s,9). (10)

The non-periodicity in 9 of <j> and / leads to technically cumbersome jump condi
tions. To avoid them, we consider a simpler choice for S,

S(6) = imox(so,0) (11)

where m0 is an integer close to nq(s0) and s0, again, the position of maximal temper
ature gradient.

The transformed quantities, / and <^, vary slowly in the poloidal direction, even 
for high toroidal mode numbers. The equations for the transformed quantities can be 
derived without approximation. Defining K = V5 and noting that ^ the
Eqs. (2, 4 and 5) become

* + <12>

t) - (iK1 +V±) (iAi + V±) *?,<) = (13)

= J f(R, t>||,ul, t)S(R -x + p)eiS^~isWdRdv

and
(E)(R,vut) = -j(iK + V) 4>{x,t)8(x-R + p)eiS^~iS^dxda. (14)

The time integration of the fast phase variation in equation (12) needs special care if 
large timesteps are to be taken. A good integration scheme for arbitrary values of 
is obtained by splitting the timestep and integrating the fast variation analytically:

(a) /* — /* + Trhs

(b) A. = A
(c) r+*t = f„+fRHSf.
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The described extraction method has been implemented in our linear gyrokinetic 
PIC code and works as expected, Figure 2. The number of poloidal grid points needed is 
reduced, which in turn reduces the numerical noise and the number of particles required. 
The simulation timestep can be greatly increased because the poloidal wavelength of the 
transformed quantities is large (Figure 2b) and independent of n. As a consequence, 
the extraction decreases the cost of large n simulations by two orders of magnitude 
without diminishing the precision of the results.

Real pert o< potential Real part ot potential

Fig 2a. Potential <f> in sim
ulation without extraction. 
w=627 kHz, 7=233 kHz, 128 
poloidal grid points.

Real part o» potential

Fig 2b. Simulation with extraction, mo = —37: potential 
<f> — <j>e,s (left) and transformed potential <£ (right). w=634 
kHz, 7=243 kHz, 32 poloidal grid points. The timestep is 24 
times larger and both, the noise and the number of poloidal grid 
points, are reduced.

Results for n-scan in a TFTR-like equilibrium

The transition from low to high toroidal mode numbers was studied in a TFTR- 
like circular equilibrium with the global parameters R = 2.58m, a = .92m, R/a = 2.8, 
a/pi = 660, B = 3.8T and 7) = Te = 1.3keV. Locally, at r/a = 1/3, we have 
Ln/R — .28, q— 1.4, shear s = .53 and 77,• = 4, where the undefined symbols have the 
usual meaning.

0 40 80 120 0 20 40 60 60 100 120
n n

Fig 3a: frequency (x) and Fig 3b: perp. (o), poloidal (x) Fig 3c: mixing-length esti-
growth rate (o) and radial (+) wavenumbers mate of ion heat transport

Figure 3 shows the frequency w and growth rate 7, the perpendicular wavenumbers 
and the mixing length estimate of the ion heat diffusion coefficient as functions of n. 
Figure 4 shows a few eigenmodes.

The typical bounce frequency is w&=40 kHz. At low n, w < and the modes have 
a strong trapped-ion character: the trapped-ion precession is strongly destabilizing. At
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very low n (n = 4), the mode covers one rational surface only, and the perpendicular 
wavenumber k± is given by its radial componant kr.

At very high n, the mode covers many rational surfaces and the usual ballooning 
structure is recovered. Here, w > and the trapped-ion precession has no effect; the 
mode can be classified as “toroidal ITG”. The perpendicular wavenumber is given by 
its poloidal componant kg.

Both, the radial extension of the modes (not shown) and the mixing length estimate 
of the ion heat transport (Fig. 3c), peak around n = 16. It could therefore be that 
these intermediate values of n would produce the largest transport. Modes in this 
range have a mixed toroidal-ITG and trapped-ion mode character.

Awl pen d Awl pert of poterda! Awl pert ol pwnael Awl pan el p«e«*!

n=16 7i=96

The effect of a magnetic well

A variety of JET-shaped MHD equilibria were produced using the equilibrium code 
CHEASE[2], keeping the shape of the boundary and the safety factor at s0 — 0.5 fixed. 
Their stability was studied using our PIC code [3], as well as a version of ORB [4], 
modified to take the magnetic structure of the MHD equilibrium into account. Both 
codes give essentially the same results. The main parameters are: R — .96 m, a = .35m, 
R/a = 2.8, elongation=1.6, triangularity=.3, a/pi = 76, B = IT, T, — Te — l.keV. At 
s = s0 = 0.5: Lt/R = .125, q = 2, rji = oo.

In the fluid limit, the drift frequency is defined by Wj — nqvfVx, where the mag
netic drift velocity, Vd = The local dispersion relation for ITG modes
predicts (local) stability for Wj < 0 (good curvature) and instability for Wj > 0 (bad 
curvature) [5] [6]. Figure 5 shows the contours of Wj (a) in the standard case of a con
figuration without a magnetic well, and (b) in a configuration with a strong magnetic 
well. In the latter, the drift velocity is reversed over a substantial region on the low 
field side of the torus; this has been predicted to stabilize microinstabilities [7].

The equilibrium shown in Fig. 5a is unstable for several toroidal mode numbers; the 
corresponding growth rates are shown on Fig. 6. On the other hand, the equilibrium 
shown in Fig 5b was indeed found to be fully stable to ITG modes, i.e., stable for 
all values of n. This is because the region of bad curvature is too small that a mode 
could simultaneously satisfy k|| « 0 and gather an overall positive contribution from
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Wj, despite the infinite value of 77; and the value of Lt/R = .125 which usually lead to 
high growth rates [8].

Omega drift for k paraRebO

1-80 r

Fig 5a: u>d for k\\ = 0

Omega drift for k paratlebO

1 1 11 1 1-40

' / ' '

>20 "

Fig 5b: u>d for = 0

8 10 12 14

Fig 6: Growth rate vs n Fig 7: Growth rate vs W

The magnetic well W [9] is a global (on a magnetic surface) measure of the inhomo
geneity of the magnetic field. The growth rate as function of W{s = s$ = 0.5) is shown 
in Fig.7 for all the configurations studied. It appears that the depth of the magnetic 
well is a good predictor of ITG stability as claimed by Rosenbluth and Sloan [7] for 
many microinstabilities.

Conclusions

The fast poloidal phase variation corresponding to k\\ = 0 has been extracted, with
out approximation, from the distribution function and the potential. This procedure 
has sped up the linear PIC code by two orders of magnitude when high-n modes are 
simulated because larger timesteps, lower poloidal resolution and fewer particles can 
be used.
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The transition from low to high toroidal mode numbers has been studied in a TFTR- 
like equilibrium. At low n, the mode has a trapped-ion character and is localized around 
one rational surface. At high n, it has a toroidal ITG character and extends over many 
rational surfaces. At intermediate values of n where it produces the largest mixing- 
length estimate of transport, it covers a few rational surfaces only and is of mixed 
character.

By studying a variety of magnetic structures at fixed boundary shape and a fixed 
value of the safety factor at half radius, we found that the MHD equilibrium structure 
affects the stability of ITG modes primarily through the magnetic well. A strong 
magnetic well, by reducing or even reversing the magnetic drifts, can fully stabilize 
the ITG modes. Other parameters such as the local shear, the Shafranov shift or the 
plasma (3 were found to have less or no correlation with the growth rate.

The presence of a substantial magnetic well is only possible in high /?p discharges. 
Recently, high (3V experiments have been reported from several tokamaks which showed 
very good transport properties. In the view of our results, it is tempting to explain 
these properties by the presence, in these discharges, of diamagnetic wells sufficiently 
deep to stabilize the ITG modes and hence improve confinement.
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1 Introduction

In this paper we resume a numerical study of the global stability of plasmas with helical 
boundary deformation and non null net toroidal current. The aim was to see whether 
external modes with n = 1,2 (n toroidal mode number) can be stabilized at values of /3 
inaccessible to the tokamak. L=2,3 configurations with several aspect ratios and different 
numbers of equilibrium field periods are considered. A large variety of toroidal current 
densities and different pressure profiles are taken into account. Merrier stability is also 
investigated.

2 Equilibrium and stability codes

The 3D equilibria with nested magnetic surfaces and single magnetic axis are generated 
with the VMEC code [1] [2]. Input parameters are : Nper the number of equilibrium 
field periods, e the inverse aspect ratio, J'(s) the toroidal current density profile, p(s) 
the pressure profile and $(s) the toroidal flux function. Here s represents the radial 
coordinate which is chosen proportional to $, i.e. d$/ds = cst. The plasma boundary is 
kept fixed and its shape is specified by choosing the Fourier amplitudes Rmhnb and Zmt>nh

R(s = \u,v) = 53 Rminh(s)cos(mhu - ribN^v)
mb,nb

Z(s — 1,U, v)= ) ^ ^mtnt(,s)sZTl(77l(llt UfciVperu)

where the subscript & stands for boundary and u and v are the poloidal and toroidal 
coordinates. The Fourier amplitudes of the inverse coordinates R (the distance from 
major axis) and Z (the distance from midplane) obtained from VMEC together with 
$'(s) and #'(a), which are the radial derivatives of the toroidal and poloidal magnetic 
flux functions, form the input to the stability code TERPSICHORE [4]. The variational 
formulation of the linear MHD stability of 3D plasmas on which TERPSICHORE is based 
is described in detail in [3]. The variational equation is written as:

6WP + SWV - o/W* = 0
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with
w, = i j j y rf1 x {<3“ + rp( v ■ f)1+J a f ■ o + (f ■ vP)(v ■ i)}

SWk = 2 / J j ^ zf' Pm ' f
where 5WP, $W„, and <va represent the potential energy in the plasma, the magnetic 
energy in the vacuum region, the kinetic energy and the eigenvalue of the system. The 
perturbations have been assumed to evolve as exp(iu)t) and the system is unstable to MHD 
modes when tv2 < 0. f is the displacement vector, Q stands for the perturbed magnetic 
field and A represents the perturbed vector potential. TERPSICHORE reconstructs the 
MHD equilibrium and maps it to the Boozer coordinate system (a, 0, <f>). The displacement 
vector expressed as [3]:

J(s)
$'(s)Ba §

with ((*,%, p) the (radial,binormal,parallel) components. By imposing the incompress

ibility constraint V ■ ( = 0 to get rid of the positive definite term Fp(V • £)2 from 6WP, the 
parallel component p. is eliminated as a variable from the problem and the two remaining 
components of the perturbation are expanded in truncated Fourier series,

C(s,0,(f>) = 53 &(3)3*n(mi6 - ni<f>) ij(s,0,<f>) = Y^Vi{3)cos(mi8 - ni<f>)
i i

where mi and nj are the poloidal and toroidal mode numbers, l being the index of an 
(m,n) pair.

3 Studied configurations

Configurations of the type L — 2 and 3 have been studied i.e. the plasma boundary has 
been prescribed according to the following equations

^ _ 2 f B(s = l,u,v) = Ro + cosu + 6 (cos(u) + cos(u — 2Nperv))
( Z(s = l,u,v) = sinu — 8 (sin(u) -f sin(u — 2Nperv))

^ _ g f R(s = 1, u, v) = Ro + cosu + 8 (cos(2u — N^v) + cos(2u — ZN^v))
~ ( Z(s = l,uiv) = sinu — 6(ain(2u — N^v) + sin(2u — SNperv))

8 being a measure of the boundary deformation.
In a geometry with Nper field periods the configuration repeats itself JVper times when 
going in the toroidal direction. It follows that modes with toroidal number n are only 
coupled to modes with n, n ± N^, n ± 2jVper, etc. There are a total of JV/em = Nperf2 
families ( JV/om = (JVpe, — l)/2 families) of modes for configurations with an even (odd)
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number of field periods [5], [6]. If k labels one of these families the modes belonging to it 
will have a toroidal mode number given by

Tl —- tli^kj JVpgr) —- ifflper i fc t — ,.t 1)0,1,.. k 6 {1, .

The following remarks can be made: 1) JV/om increases with the number of field periods. 
If Npgr < 3 there is a single family (with all n’s), if JV^r = 4,5 there are two families and 
so on. 2) The coupling between modes with close values of n is restricted to configurations 
with small N^. 3) If is even the familiy k — Nfam = Nper/2 contains less modes 
than the other families. For practical reasons which result from the observations above, 
we have limited the computation to configurations with = 4,5 and 7 (JVpe, = 2,3,6 
and greater values were left aside).
Several values have been taken for the aspect ratio 1/e = 5,8,10,13,17. The toroidal 
current density was prescribed with

J\s) = 0l (1 - aa')a* +04(1- a°T

the six parameters ax . 6 offering a large choice of profiles; 04, as and dg were taken nonzero 
only for hollow J'(s) profiles. All the computations were made with pressure profiles given 
by p(s) = po[(l — s)2 + (1 — s2)2] (p#l) and p(s) = po(l — a2) (p#2) at /5 = 0.3, 1 and 2%

The following procedure was used ; for a given configuration with fixed L, Np^, e, a se
quence of equilibra Si (t = 0,1,.. ) was generated so that :
- all Si resulted from the same current density J'(a) profile .
- each Si was computed with an increasing boundary deformation parameter Si = Satart + 
i AS. In general Stiart = 0 such that So corresponds to the circular tokamak equilibrium.
- the shape of the pressure profile was the same (p#l or p#2 ) but po was adjusted to 
keep f3 constant.
This basic procedure was repeated for other J'(s) and p(s) profiles and all studied com
binations of L, Nper, e. For each equilibrium thus obtained TERPSICHORE was called 
to calculate the global stability and the Merrier criterion.

4 Results

As mentioned above that we tried to start sequences of equilibria with the circular toka
mak. The reason was that we wanted to see the effect of a helical boundary deformation 
on the n = 1,2 modes, in the cases in which these modes are unstable in the circular 
tokamak. However, combinations of input parameters were considered (in general low, 
peaked currents, high 1/e), for which the circular equilibrium did not exist (VMEC did 
not converge, Shafranov shift inacceptably large at S = 0,..). In those cases the sequence 
was started with a Sttart / 0 which ensured a proper equilibrium.
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The numerical study has shown that it is possible to stabilize the n = 1,2 global modes. 
In fact we are meaning the (m,n) = (2,1) and (3,2) modes but the (3,1), (4,1) ,(4,2), 
etc were also included in the calculations. The results can be summarized as follows (the 
given numerical values are related to the (2,1) mode) :
- when S is increased q is lowered; qedge is lowered much more rapidly than qaxia (for L — 3 
qaxi, is barely changed). Increasing 6 causes u/2 to rise and plasma becomes less unstable. 
If qedge < qre» — m/n the mode (m, n) is strongly destabilized. As 6 is further increased w2 
attains a minimum after which it starts increasing again. A stability window £ma*] 
may then appear (see Fig. 1,2). Stabilization is lost when the minimum of the security 
factor qmin is less than one somewhere in the plasma. This happens at 6 ~ Smax.
- if the equilibrium is such that qmin is already low at 6 = 0 then increasing 6 may not 
stabilize the plasma.
- increasing/decreasing J'(a) but keeping it's profile the same ( by changing only oi), 
new stability windows are obtained. The representation of these stability windows in a 
(qaxi», qedge) plane gives a stability area (see Fig.3,4). It’s left (small qaxi,) and lower 
(small qedge) margins are limited by the condition qmin >1.0, and the upper margin cor
responds to 8 ~ Smin• The right limit (large qaxit) is not well defined; this topic will be 
discussed below.
- in general the stability area is situated under the diagonal qedge = qaxit and in the region 
limited by qedge < 1.5 but for strong and peaked currents, stable plasmas are obtained 
with qaxu < qedge• Small currents require more deformation for stabilization (bigger 6m;„) 
than large currents. Peaked current profiles (a2 < 1.5) yield compact areas, situated 
mostly in the 1.0 < qaxi, <1.5 region and broader currents (o2 > 5) give areas elongated 
in the qaxit direction. Hollow currents (sign(a-i) / aign{a^) produce stable areas shifted 
towards large qaxit-
- Nper = 7 produces the least extended stable zones. Although beeing different in details, 
Nper = 4 and Nper = 5 give comparable stability zones [Nper = 4 is slightly better).
- configurations with L = 2 give better results than those with L = 3 but require much
larger values of the deformation parmeter: > 0.2 compared with ~ 0.1 - 0.15.
- with respect to the aspect ratio, the best results were obtained for 1/e — 8 and 10. The 
largest 1/e = 17 and the smallest 1/e = 5 gave reduced stability zones.
- a different pressure profile (p#2 instead of p#l) does not bring major changes to the 
size or position of the stability area. At /3 = 1% stable areas were obtained for a large 
variety of combinations of L, Nper, e and current profiles. At /? = 2% calculations were 
done only for 1/e = 10 and we found that it is still possible to find stable areas but they 
are strongly diminished and exist only for a reduced set of combinations of equilibrium 
parameters.
- Merrier stability at 8 — 0 depends on the equilibrium parameters. Configurations have 
been found for which the Merrier criterion can be satisfied for S between zero and a max-
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imun value 6m- For 6 > 6m more and more surfaces become Merrier unstable. The aim 
was to have 6m > $min which, in general, was not the case. The highest values for 6m 
were obtained with low, peaked currents and p#l profiles.
The Merrier criterion was satisfied only for configurations with L — 3, = 4,5 1/e > 8
and small currents. Unfortunately this corresponded to the points at the right limit of 
the stable zone in the (qaxit, qedge) plane i.e. at large A,* (more than 15%).

In the cases when stable areas are still open at their right side for values of qaxi, > 2, 
the continuation of calculations for higher qaxu (lower currents) may become difficult. 
The following remarks can be made with respect to this problem :
- the p#l profile produces equilibria with large Shafranov shifts A,/, ~ 10 — 18% and 
for low, peaked currents at high apect ratio the circular tokamak equilibrium does not 
even exist. However, increasing the helical deformation diminishes the Shafranov shift; 
for L — 2 configurations A*& is diminished by a factor of 2 and more when going from 
6 = 0 to 6 > 6min-
- working with currents which are lower and lower causes VMEC to produce equilibria 
with inacceptable A,& i.e. > 15 — 20%. When these values are encountered stability in
vestigation for smaller currents is stopped. For peaked currents at high 1/e such problems 
may appear for qaxit > 1.6 — 1.8, whereas for hollow currents it is possible to continue 
beyond qaxi, > 2.2 - 2.5.
- the p#2 parabolic pressure profile was introduced with the aim of reducing the Shafra
nov shift. It effectively brought down these large A,& to more acceptable values of 6 — 9% 
and pushed the above mentioned limits of qaxit- However, we still could not continue with 
lower currents, because the null pressure gradient at the flux surfaces near the axis caused 
increasing problems in computing the equilibrium.
- convergence studies have shown that the points of the (qaxi», qedge) plane which are sit
uated in the stable area with qaxit > 2 tend to be marginaly stable, independently of the 
pressure or current profile.

Stable areas associated to the (m, n) = (3,2) mode suffer from an important reduction 
in size comming from the fact that this mode is destabilized for values of qedge around and 
inferior to 1.5. This shrinks the stable area under qedge — 13 and does not look promissing 
if we try to imagine what will be the stble area produced by modes with higher n's ((4,3) 
for example).
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Fig.l Study of the (2,1) mode : J'(s) profile, q profile and the most unstable eigenvalue tv2 
as a function of 5 for a configuration characterized by L = 3, = 5,1/e — 10 at /9 = 1%,
pressure profile p#2 and toroidal current density given by = 0.440 * (1 — a2-5)2, q
decreases with 5; the three curves in the middle plot represent q at o = 0.01, 8 — 0.115 (last 
unstable tv2) and 6 = 0.145 (first unstable tv2 after the stability window). For this last value 
9m»n = Qedge < 1. tfaxis barely changes with 5.

J’(s)/J’norm q(s) x 1Q-3 omA2

toroidal current density given by J'(s)/J^orTO = 0.9 *(1 — a10)2 — 0.4 * (1 — a2,5)2, q is repre
sented for 8 = 0.010, 8 = 0.180 and 8 = 0.230; qaxi, decreasses with 8. For 5=0.010 and 0.040 
the (3,1) mode dominates, at 5=0.070 the (3,1) and (2,1) modes have comparable amplitudes, 
for 0.100 < 5 < 0.180 the (2,1) mode dominates and finaly for 5 > 0.230 (last two points) the 
(1,1) mode sets off.

O .. ©

° • « *

* X

Fig.3,4 Left plot: stability area for the (2,1) mode for equilibria with L = 2, =
5,1/e = 10, ~ 1%, pressure profile p#2 and toroidal current densities having the form
J\s)j J'norn = oi * (1 — a20)8. Each oblique line corresponds to a fixed a% value and represent 
(qaxis, Wedge) pairs at different 5’s. Unstable points are represented with the labels x, stable 
points byo and * correspond to the circular tokamak 5 = 0. The stable zone gets narrower and 
probably will close for a smaller current. The marker represent a positive eigenvalue close 
to marginal stability. Right plot: all equilibrium parameters are the same with the exception 
of the toroidal current densities which have the form J'(s)/J^orTO = oi * (1 — s1,2)2 .
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It has been found that ideal ballooning modes can impose very restrictive volume 

average (3 limits in torsatrons1-4 much below the typical values close to 5% that are 

required to be economically realisable as reactor systems and it has been shown that ex

ternally applied toroidal currents that are peaked can destabilise the Mercier criterion 

in this type of configuration.5 We will show here that if the applied currents are hollow, 

they can stabilise the ballooning modes without triggering Mercier instabilities and as a 

result raise the limiting/?* from 2% to 5%. We employ the fixed boundary version of the 

3D VMEC equilibrium code6 to generate 3D equilibria for a 10 field period torsatron 

configuration that has been previously examined with a large number of MHD stabil

ity codes.7 We prescribe the pressure profile as p(s) = p(0)(l — s)2, where 0 < s < 1 

represents the radial variable that labels the flux surfaces. The toroidal plasma current 

enclosed within each flux surface is prescribed as 2nJ(s) = 2ttJ(1)(5s4 — 4s5) to obtain 

equilibria with peaked pressures and hollow toroidal currents. The p(s) and the 2nJ'(s) 

profiles are displayed in Fig. la. In VMEC, the toroidal flux function is $(s) = 0.5. 

With this normalisation, we generate a hollow toroidal current sequence by choosing 

2ttJ(1) = 0,—0.25,—0.5,—0.625 and —0.75, and modify p(0) to fix j3* — 5%. We use 

(3* = 0.5(< p2 > V)1/2/ < B2 > as the figure of merit, where < ... > represents a 

volume average and V is the plasma volume. The rotational transform profiles for the 

sequence are shown in Fig. lb.

We map the equilibria to Boozer magnetic coordinates8,9 to carry out the 3D ball- 

looning and Mercier stability investigations. The ideal ballooning eigenvalue profiles 

are shown in Fig. 2a. In the absence of toroidal currents, the ballooning modes are 

strongly unstable in the outer region of the plasma 0.5 < s < 0.85. With finite hollow
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plasma current, the instability region shrinks and marginal stability is obtained when 

2tt J(l) = —0.625. The convergence of the ballooning eigenstructures tends to deterio

rate for s < 0.35 and there are indications of destabilisation for 2tt«/(1) < —0.625. The 

Mercier criterion profiles are displayed in Fig. 2b for 2tt./(1) = 0, —0.625 and —0.75. 

With zero current, the Mercier criterion is unstable near s ~ 0.6. The toroidal plasma 

current stabilises these modes near this location, but destabilises them around s < 0.3 

for 2tt J(l) = —0.75. The spiky nature of the Mercier criterion profiles results from the 

localized destabilization caused by the parallel current density singularities near mode 

rational surfaces.

We examine the normal curvature, the local magnetic shear and the parallel current 

density of the zero current configuration and the marginally stable configuration ob

tained with 2?rJ(l) = —0.625. The 4 dominant Fourier components of the normal 

curvature show a similar structure for the two cases (Fig. 3a). The toroidal current, 

however, does cause the (m = 3, n = 1) and (m = 2,n = 1) components that desta

bilise the outer edge of the prolate up-down symmetric cross section within a period 

of the torsatron to increase (decrease) in magnitude in the outer(inner) radial part of 

the plasma. This effect should make outer region of the plasma more unstable which 

we observe not to be the case. The local magnetic shear amplitudes in Fig. 3b are also 

similar in character. The toroidal current appears to radially compress the structure 

reducing the shear in the edge region. This does not seem to have adverse consequences 

with respect to stability. The Fourier amplitudes of the parallel current density display 

the most consequent difference between the two cases. The (m = 1,2,3; n = 0) com

ponents are similar except for a slight radial compression. However, the finite toroidal 

current constitutes a significant (m = 0, n = 0) component in the outer part of the 

plasma. This term exercises a strong stabilising influence in the energy principle.10 

In conclusion, we have demonstrated that a hollow toroidal plasma current that in- 

creses the edge rotational transform from 1.2 to 1.5 can strongly stabilise ballooning 

modes in a 10 period torsatron configuration. The limiting /?* — 2% for zero toroidal 

current can be increased to j3* = 5%.
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LU 1.4

0- 1.2

CC 1

O 0.8

Fig. la. The pressure profile given by p(s) — p(0)(l — s)2 and (dashed line) the 
toroidal plasma current profile —2ttJ'(s) (solid line) that results from prescribing 2ttJ(s) = 
2ttJ(1)(5s4 — 4s5). This case corresponds to 2ttJ(1) = —0.75.

10 period torsatron with hollow current 

beta*=5%

Fig. lb. The rotational transform profiles in a 10 field period torsatron sequence with 
hollow toroidal plasma current profiles for /?* = 5%. The cases examined have toroidal 
currents 2ttJ(1) of 0(o), —0.25(*), —0.5(+), —0.625(z) and —0.75(.).
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10 period torsatron with hollow current

unstable

stable

-0.1 ■

Q
-0.2 -

Fig. 2a. The ballooning eigenvalues as a function of the radial variable s on a field line 
that crosses the outer edge of the prolate up-down symmetric cross section in a 10 field 
period torsatron sequence with hollow toroidal plasma current profiles. The cases examined 
have toroidal currents 2ttJ(1) of 0(o), —0.25(*), -0.5(+), —0.625(x) and —0.75(.).

. o

unstable
stable

O:-,'v 0 :

10 period torsatfon with follow current ,

S

Fig. 2b. The Merrier criterion as a function of the radial variable s in a 10 field period 
torsatron sequence with hollow toroidal plasma current profiles. The cases examined have 
toroidal currents 2ttJ(1) of 0(o), —0.625(x) and -0.75(.).
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10 period torealron

Fig. 3a. The profiles of the 4 dominant Fourier amplitudes of the normal magnetic field 
line curvature in a 10 field period torsatron with zero net toroidal current (left) and with a 
hollow toroidal current profile with 2ttJ(1) = —0.625 (right).

10 period torsatron

■ -' \

10 period current-free torsatron

Fig. 3b. The profiles of the 4 dominant Fourier amplitudes of sx the local magnetic 
shear in a 10 field period torsatron with zero net toroidal current (left) and with a hollow 
toroidal current profile with 2ttJ(1) = —0.625 (right).

10 period torsatron wMh ho#ow current

10 period current-free toreatron

Fig. 3c. The profiles of the 4 dominant Fourier amplitudes of the parallel current density 
in a 10 field period torsatron with zero net toroidal current (left) and with a hollow toroidal 
current profile with 2%-</(!) = —0.625 (right).
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I. INTRODUCTION

Tearing modes have recently attracted attention following theoretical successes in pre

dicting the presence of magnetic islands [1] with moderate poloidal m = 3,4 and toroidal 

n = 2, 3 mode numbers during TFTR (Tokamak Fusion Test Reactor) supershots.

Classical linear resistive mode theory [2] predicts instability when the asymptotic match

ing index A' defined as the jump of logarithmic derivative of the radial magnetic perturbation 

across the rational surface is positive. Recently, it was suggested [3,4] that tearing modes 

could also persist when A' < 0 provided bootstrap current effects are taken into account. 

In all the above theories, the crucial parameter which determines the stability from both 

the geometry and equilibrium profiles is A1. It is shown in the present study that the A1 of 

the (m = 2,n = 1) mode computed with the PEST-3 code [5,6] is virtually always positive. 

Saturation can nevertheless be achieved provided the symmetry breaking term of a current 

gradient is included in the resistive layer.

II. A' IN THE REDUCED MED LIMIT

The outer, ideal region, radial magnetic field perturbations are governed in the large 

aspect, low f3 and circular cross-section limit by the equation

1 d d*
——r-

A(r) m
$ = 0 (1)

r dr dr r(r — r,)

where A(z) = Rqaj'(x)(x — 1 )/(Bx[qa/q(x) — 1]) is proportional to the current gradient /(r), 

x = r/r, is the radial coordinate normalized to the rational surface position r,, Bz is the 

constant equilibrium magnetic field, R is the major radius and q(r) the safety factor profile. 

Exact solutions of (1) exist for A = const,
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= xmF(a-,a+, 1 + 2m\x) (x < 1)

^>± = x±mF(a^, —.o±, 1 qp 2mv\ljx) (x > 1)

in terms of hypergeometric functions F(a, b, c|x), where a± — m (1 ± u) and v = yjl 4- A/m2. 

The two solutions \t>± are combined to give $ = 0 at the conducting wall position x = a/ra. 

In the vicinity of x = 1, the solution expansion

'$' = ! + A(x — l)log |x — 1| + 0(x — 1) + 0((x — l)2 log |x — 1|). (2)

involves logarithmic terms in addition to a power series. The matching data on either side 

of x = 1 are

d^f/dx
r,A± liras—»1± $

with A' = A+ — A_. (3)

Note that A± —» ±oo but the difference A' is well defined. For a conducting wall at infinity,
A F(1 + o, 1 + 2 -|- 2m|l—)

r. A_

r.Aj

m —

-mu

1 + 2m F(o_,o+, 1 + 2m|l)
A 1 — a, 2 2mv\l—) f4)

l + 2u F(a+, —a-, 1 + 2mv\l) 
from which it is readily seen that r,A' —* —2m as A/m. —» 0. Expressions (4) agree with 

the zero-/? analytic formula r,A' = —w\ctg(irX/2m) of Ref.7 as A/m —> 0 but give a larger 

threshold than 2m for ideal instability: A# —> oo as A —» 2m + 1.

For the sake of comparing (4) with the toroidal PEST-3 results, we also solve numerically 
(1) after prescribing the q = q0 (1 + ax2p)1/,p profile by adjusting the three parameters q0, qa 

and p, a = (qa/qo — l)p — 1, which determine j'(x) = —2aBzx2p-1(2p -f 1 — ax2p)/[Rq0( 1 + 

ax2p)2+1/p] and therefore A(x). The value p = 5 was found to give a flat q profile from the 

axis to r/a « 0.7 and then monotonically increasing. This profile reproduces the PEST-3 

profile obtained from a zeros-(3 numerical equilibrium with inverse aspect ratio e = 0.01 to 

within ±1%. The following five cases are considered with qs = 2:

case go g„ rja A.

I 1.24 2.20 0.953 0.0994

II 1.35 2.40 0.909 0.707

III 1.47 2.60 0.867 1.55

IV 1.64 2.90 0.802 3.39

V 1.92 3.40 0.651 8.73

(5)
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The A profile is bell-shaped with its maximum value, at r/o ~ 0.7, increasing from 5 to 9 

for cases I to V, respectively. The large increase in A, = A(r,) noticeable from case I to V 

is thus mainly due to the rational surface moving inwards.

Figure 1 shows the comparison between analytic (a) and numerical (b-c) calculations 

of r,A' for the poloidal modes m = 2, 4, 6 , 8, 10, 14 and 20. The destabilizing effect of 

increasing A can be observed, as well as rsA' tending asymptotically to —2m when m —> oo 

except for case (b,I) which suffers from numerical inaccuracies due to the proximity of the 

wall from ra (PEST-3 is less sensitive in that respect because it uses the flux coordinate as 

independent variable). The differences between cases (b) and (c) are otherwise due to small 

differences in the equilibrium profiles, which tend to be more pronounced when looking at 

the current profile. The stabilizing effect of the wall is apparent for profile I: ra A' is negative 

and lies well below the —2m asymptote even for m ~ 20.

(a) (b) (c)

-10 —10 -io -

-20 - -20 -20 -

—30 - -30 —30 -

—40 -

-50 —50 —50

FIG. 1. Normalized r, A' vs m obtained using the analytic model with A = A, (a), the numerical

model with the prescribed q profile (b) and PEST-3 (c) for the five cases I-V. The asymptote —2m 

is shown in dashed line.

III. FINITE ASPECT RATIO AND SHAPING

The effect of varying the inverse aspect ratio e on A' for the (m = 2,n = 1) mode in 

a plasma of elongation E = 1.7 and triangularity T — 0.3, is studied while imposing the
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safety factor q — 1.05 constant on axis. The current profile is fiat from the axis to the 

30% flux surface, and then decreases monotonically to zero. A triangular pressure profile 

(in poloidal flux coordinate) is adopted with volume averaged j3 = 3.5% at e = 0.3 (Troyon 

factor g — 2.6).

FIG. 2. Left: Normalized r,A' vs e for the E = 1.7 and T = 0.3 equilibrium. A conducting

wall is applied at distance b = a, b = 1.2a and b = 1.5a. Right: The PEST-3 matching data 

2fifA' (see appendix) vs triangularity T and elongation E.

It is seen in Fig. 2 (left) that a compact torus is more A1 unstable (i.e. more positive 

A') than a large aspect ratio tokamak when allowing /? oc e2 (g ~ e). Due to its exterior 

location, the (2,1) mode is sensitive to the wall position b. In Fig. 2 (right), elongation E 

and triangularity T are varied at fixed e = 0.3 and b = 1.2a. Here we have approximately 

oc E (g ~ constant) and A' —* oo when the ideal stability limit is reached.

IV. NONLINEAR SATURATION MODEL

The stability of small resonant perturbations '$r(X, t)cos md of the helical flux tph s 

/ drfl'Vfl (6 is the helical angle 8 — m(/n whereas 8 and £ are respectively the poloidal 

and toroidal angles) is governed in toroidal geometry by the Kotschenreuther et al. (KHM)
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equation [8]

cosmd = —(cosm^ + Gfip,(V»/l)(X- < X >)

-£?,£?'(*) J| (mmi) + <3, (Xp'(A) + £p') + | (X- < X >) (6)

to which a current gradient term k (X— < X >)/C has been added. Here, X = x ~ 

Xi is the distance from the rational surface in poloidal flux coordinate, C — qi/ql, 

rj is the resistivity, p(-0/,) is the total of equilibrium and perturbed pressure, {•) = 

§^h dd (dxV’h)”1 •/ dd (dxV'/i)"1 is the weighted average along iso-iph lines, p-£2Gi « 

E + F and p|£2Ga % H are related to the Glasser et al. [9] coefficients of the inner 

layer. Primes denote derivation with respect to % and subscripts i indicate evaluation at the 

rational surface x»- Equation (6) incorporates the minimal number of ingredients to get a 

singular equation

d2 / 1 \ $ ip
= ° (7)

in the large X limit, with Di = E + F + H — \ the ideal Merrier index. Solutions of (7) 

~ can be matched to those computed by PEST-3 (p = y/—Di). [Compare (7) to (1)

in the vicinity of r = r, after taking Dj = and substituting n by Xdr/dx]- 

Allowing for symmetry breaking perturbations, we write [10]

* = ^0 + («' = for X > 0, resp. for X < 0) (8)

and take (1/$07t) dX dd cos md of (6) to obtain (after some manipulations) an evolu

tion equation for the island width W = 4|£$o|% in terms of the matching data ('$r'+±'$r,_)/’i,o. 

The critical step is to recognize that the exponent p of the first order term in the Frobenius 

expansion of the large solution 1—(l — + • • • j has almost the same power as the

zeroth order of the small solution Al|X|1/2+'1 -f |X|1/,2+#*sgn(X) when p approaches | (see 

appendix for the definition of the normalization 2p/ in PEST-3). These two terms produce 

the familiar logarithmic terms of (2) in the zero-/) limit, |X|x/2-M « |J5f|-1/,2+/i-f (1—2p) In |X|. 

Matching to nonlinear solutions at X = ±W/2 then gives

$0
A' + 0(1 — 2p) and

K
P'+—In

m/
w

2 Xa
+ 0(1 — 2p) (9)
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where f' = T' — re/[2/z/(/i — |)] ~ 0(1) is the renormalized matching index of ballooning 

parity that is well behaved as /? —> 0. The logarithmic term in (9) has previously been 

obtained [11] in the large aspect ratio, —» 0 limit. An equation determining the equilibrium 

island width from the “dispersion relation”

A'
w

2x„
k\KW

r
(10)

can then be derived, with k\ ~ 0.82, ~ 6 and Xa the flux coordinate at the edge.

= A(W) for given A' (horizontal line). TheFIG. 3. Left: Schematic representation of A'

lower curve corresponds to /3 = 0. The upper curves represent the effect of an increasingly negative 

resistive Merrier function. Stable and unstable fixed points are labelled by “s”, respectively “u”. 

Right: The saturation criterion expressing the non-monotonicity of A(W) vs E and T for e = 0.3 

is violated in the positive domain (f' was assumed to be negligible).

Figure 3 (left) shows a succession of fixed points for the /3 = 0 case: stable at W\ > 0 

and unstable at W2 > W\ (stability corresponds to dA/dW > 0). A stable fixed point arises 

at W = 0 and an unstable one 0 < W < W\ for D < 0. For D and f small,

____
k2 Vexp(l + fiff'/K)

A(W) is a decreasing function of W with a local minimum A and maximum A [neglecting 

0(D2) terms]. The widths for which A(VF) has a local minimum A(VF) = A, respectively 

a maximum A(Wr) = A, can be estimated to be

W Xa
exp(l + fj.fr1 jn)

1 + 1 +
k2D fexp(l + fiff'/K)' 
h V «Xa
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w ~ (expC1 + /i/ry«)\
~ 2 hi V y

so that the condition for a stable saturated island simply reads A<A'<A. This window is 

however generally quite small unless P is negative. At present, PEST-3 does not provide 

an accurate estimate of P so that (11) could only be determined assuming this term to be 

recessive in (10). Figure 3 (right) shows that (11) is satisfied for elongations larger than 1.6 

regardless of the triangularity.

V. DISCUSSION

The matching index at q — 2 computed by PEST-3 has been compared with an analytic 

model in the reduced MHD limit. The A' obtained with PEST-3 were found to be more 

unstable (positive) than their analytical counterparts, except for one case with large current 

gradient. Positive A' values have been found up to (m = 6,n = 3).

The finite /? A' is destabilized by increasing the inverse aspect ratio while keeping q on 

axis constant. Triangularity is always stabilizing. Small elongations of 1 — 1.2 are stabilizing 

but larger values tend to be destabilizing. A positive, minimum value of A' has been located 

at elongation 1.6 and triangularity 0.3.

The Kotschenreuther et al. (KHM) nonlinear tearing mode model has been extended to 

include current gradient effects. These are important because the matching to outer region 

solutions would otherwise be incorrect (no singularity). It also changes the bifurcation 

picture: the island width of the unstable KHM equilibrium is reduced and new (stable and 

unstable) fixed points appear provided (11) is satisfied and A' > 0.

The code PEST-3 has been extensively used in order to identify regimes in the current, 

pressure, elongation and triangulation parameter space, where saturation is achievable. The 

work by Carrera et al. [3] suggests that the bootstrap current effect competes with the 

Glasser stabilization, thereby facilitating the achievement for saturation. This effect has not 

been taken into account in this work.

This work was partly supported by the Swiss National Science Foundation.
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APPENDIX: NORMALIZATION OF A' IN PEST-3

The matching data are computed in PEST-3 from the expression

= W(U) + \(lLi) (Al)

where W(£,£) is the symmetric ideal energy functional, ( , ) denotes integration over the 

plasma volume and L( = .7" Vx*(F*£)|/Vx|2 is the MHD force operator applying on the 

normal displacement field £ = £*V%. The functions ( and £ approximately capture

£
x -a-M.sgn(x)

2fif
£ ~ ^A'|x|-*+^sgn(x) + ^r'|x|-K" (A2)

the large and small solutions behaviour about the rational surface Xi, x = X ~ Xi, with 

L(£ + £) = 0. The coefficient / = —^ where V, is the surface gradient lying

on a magnetic surface, is a convenient normalization factor used in PEST-3 to ensure that 

the A' form a Hermitian matrix in the multi-rational surface case.

Considering transformation on the dependent variable dx —> 1dp, we observe that 

since / ~ J~l is inversely proportional to the Jacobian, / -> Xp1/, £ —> Xp£> £ Xp£ 

and A' —> %2A'. The normalized A' representing the ratio of small to large solution being 

Xi ,̂ we then find the normalized A' expressed in radial coordinate to be

(A3)dr 4tt2 q?

in the large aspect ratio, zero (3 and circular cross-section limit.
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I. Introduction
Numerical calculations [1,2] have shown that it is possible to stabilize pressure-driven 

kink modes, where the value for /3 (the ratio of the plasma particle pressure to the magnetic

field pressure) is above the Troyon limit, in a tokamak plasma surrounded by a resistive wall 
given sufficient toroidal rotation. Experimental results [3,4] have confirmed this stabilizing 
effect.

There are, in fact, two modes which must be stabilized simultaneously [1,2]: (1) the 
ideal “plasma mode”, and (2) the “resistive wall mode”. The plasma mode is stable when the 
wall separation is less than the marginal position for stability with an ideally conducting wall. 
The resistive wall mode is stable for a given (sufficient) rotation when the wall separation is 
larger than some marginal value. This results in a region of stability, in terms of wall position, 
for a given rotation speed. Increasing the rotation speed moves the marginal position for 
stability to the resistive wall mode closer to the plasma, thus widening the stability region. 
Conversely, by moving the resistive wall farther from the plasma (but remaining always within 
the marginal ideal wall threshold), the resistive wall mode can be stabilized at a lower rotation 
speed.

Introducing gaps in the wall has much the same effect as moving the wall farther away, 
in that it is easier to stabilize the resistive wall mode (i.e., the resistive wall mode can be 
stabilized at a lower rotation speed). For pressure-driven external kink modes, the instability 
couples most strongly to the wall at the outboard midplane. Therefore, toroidally continuous 
gaps near the outboard midplane can have a very strong effect. This effect moves the region of 
stability, in terms of wall position, closer to the plasma and reduces it in extent, but allows 
stabilization to be reached at a lower rotation speed. This effectively makes wall stabilization 
more accessible.

Toroidal coupling between different poloidal harmonics and between the Alfven and 
sound waves complicates the effect of rotation on pressure-driven modes. Rotation modifies 
the eigenfunction at resonances near the rational surfaces, and calculations indicate [2,4] that 
additional rational surfaces, particularly those in regions of relatively high pressure, make the 
stabilization more effective. The effect of lower aspect ratio, which increases toroidal coupling 
and the number of rational surfaces residing in the plasma, on resistive wall stabilization will be 
examined in Section IH
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II. Partial Wall Configurations
Because of the importance of wall stabilization for advanced tokamak equilibria [5] (that 

is, equilibria with reverse-shear, high-/?, high bootstrap fraction) we will focus on such

equilibria in this section. The equilibrium considered here is a reverse-shear equilibrium used in 
calculations presented in Ref. [2]. This particular equilibrium is identical to that in Fig. 9 of

Ref. [2] at p* = 5.2% (P* is the rms value of p, i.e., P* = 2/Zy(p2)l/2/(B2)). This equilibrium 

is very similar to the equilibria described in Ref. [5]. It has qg = 2.5, qmin ~ 2.2, qs = 4.1,

high P*, and a bootstrap fraction of nearly unity with the bootstrap current well aligned with the

total plasma current. It is stable everywhere to ballooning modes and has good stability 
properties with respect to various microinstabilities [5], but is unstable to the low-zi pressure

driven, external kink. In the absence of a conducting wall, the limit in P* is 2.49%.

Figure 1

9 = 0

A

Figure 1 shows the results with a wall separation of d/a = 1.04 and with gaps in the 

wall centered at the outboard midplane with half-widths of 8g = 0.2k, 9g = 0.27n, and a

slightly larger gap of 6g = 0.3%, as well as for 8g = 0 (full wall). For Qg = 0.2%, the threshold

rotation frequency above which the resistive wall mode is stabilized is cOf/o)^ ~ 0.103 — a 

reduction of 13% from the case with a full wall. For a somewhat larger outboard gap of half-
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width 0g = 0.27k, the threshold rotation frequency is C0r/a}j{ = 0.092__a 22% reduction from

the case with a full wall.

Figure 1 shows that the threshold value of stability of CDy for the case with an outboard

gap of 8g = 0.371 is (Oy/G)/^ ~ 0.069. This is a reduction of 41% of the necessary rotation

frequency to stabilize compared to the case with a full wall. The necessary wall separation 
needed to stabilize the ideal plasma mode is d/a = 1.06 for the case with an outboard gap of

6g = 0.3te, compared to d/a = 1.36 for the full wall. This results in the need to have the wall

somewhat closer in order to stabilize the ideal plasma mode when there is such a gap, but there 
is a significant reduction in the necessary rotation to stabilize the resistive wall mode.

II.A. Wall Stabilization with Discrete Conducting Plates
In the Tokamak Physics Experiment (TPX) design [6] passive stabilization against the 

axisymmetric, vertical instability and against the ideal external kink is provided by conducting 
plates on the inboard and outboard sides. In fact, the passive structure is not quite axisymmetric 
and actually takes the form of a three-dimensional “cage”. But it can be approximated as two 
pairs of axisymmetric plates. A resistive wall on the inboard side has very little effect on the

pressure-driven kink mode in high-/? equilibria, therefore the inboard plates will be ignored in 

the following calculations. The calculations use a pair of conformal wall sections on the 

outboard side with the same poloidal angular extent as the outboard TPX plates (from 101 =

0.18k to 101 = 0.487t).

The results are shown in Fig. 2. The growth rates are normalized to the same wall time 
(calculated for a complete resistive wall) as in Fig. 1. There we see that the growth rates are 
considerably higher than for the cases in Fig. 1, particularly in the peak just short of the critical 
rotation frequency for stabilization. But we see that stabilization occurs at a much lower rotation 
frequency. In fact, the necessary critical frequency for stabilization is reduced by a factor of 
aprroximately 3.6 compared to the case with a complete wall with the same plasma-wall

separation (with a full wall at d/a = 1.04 there is stabilization at (Oy/di/^ ~ 0.12).

Therefore we see that a large outboard gap, or even limiting the nearby conducting 
structure to a pair of discrete plates, can have a beneficial effect on the stabilization of the 
resistive wall mode by lowering the necessary rotation speed by a significant factor. There is, 
of course, a trade-off in that in order to also stabilize the ideal plasma mode (and both modes 
must be stabilized at the same time), the maximum plasma wall separation is reduced. 
However, this it is well understood that any configuration must be stable with an ideal wall. 
These results show that for a configuration with close fitting plates, or a wall with a large
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outboard gap, the necessary rotation speed for stabilization of the resistive wall mode is greatly 
reduced compared to that which would be necessary with a continuous, completely surrounding 
resistive wall.

Figure 2

III. Resistive Wall Stabilization of Low-Aspect-Ratio Tokamaks
The stabilization of resistive wall modes by toroidal rotation requires resonant surfaces 

inside the plasma [1,2], and toroidicity plays an important role in this stabilizing effect. 
Previous results [2] have shown that a larger number of rational surfaces in the plasma chances 
this stabilizing effect. It seems likely, therefore, that resistive wall stabilization may be more 
effective for low aspect ratio, in which toroidal effects are enhanced, and in which a large 
number of rational surfaces naturally reside in the plasma.

Table 1 shows the results of resistive wall calculations at various aspect ratios. The table

lists characteristics of the equilibria such as inverse aspect ratio e, values of fi and /?*, the

normalized values of beta (g and g*), the ratio of the normalized beta for the equilibrium to that 
for the equilibrium which is marginally stable to the free-boundary kink mode (g/gum), q at the

surface, the growth rate (without rotation) normalized to the wall time (for a wall at d/a = 1.05), 

the ideal wall position for marginal stability, and finally the value of rotation that stabilizes the 

resistive wall mode (for a wall at d/a = 1.05). A scan was made of the aspect ratios e = 0.3,0.6,

and 0.7, the definition for the profiles was kept the same, and the magnitude of the pressure 

varied to make equilibria that are unstable to the pressure-driven kink. The values for the 
marginally stable (g/gum = 1.00) equilibria are also shown for those three aspect ratios.
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We see that the magnitude of (without rotation) and the value of d/a(ideal) are

both good measures of the strength the instability, and are inversely correlated. As the 
instability becomes stronger (higher growth rate) it takes a larger rotation speed to stabilize it.

Therefore it is quite striking that at the higher values of e (0.6 and 0.7) the equilibria listed here 

are very unstable (by a factor of over thirty, in one case, over the e = 0.3 unstable equilibrium),

and yet the necessary rotation speed is quite comparable to that required to stabilize the e = 0.3

case. Note that the equilibria in the aspect-ratio scan are not optimized, and thus the equilbria at 
low aspect ratio are considerably more unstable than for the higher aspect ratio cases.

Table 1: Aspect-ratio scan

£=1/A jS V* 8 *• g/glim 9, r*w d/a(ideal) (Ds/coa

0.3 5.153 5.848 2.67 3.03 1.00 4.12 0.00 OO 0.00

0.3 6.026 6.841 3.165 3.593 1.185 4.279 1.33 1.44 0.0236

0.6 14.05 15.98 4.17 4.74 1.00 9.05 0.00 OO 0.00

0.6 15.28 17.35 4.638 5.267 1.112 9.493 2.78 1.275 0.0182
0.6 17.26 19.61 5.49 6.237 1.316 10.41 12.44 1.112 0.035

0.7 18.13 20.60 5.285 6.003 1.00 15.99 0.00 0.00

0.7 18.72 21.27 5.557 6.314 1.052 16.67 42.75 1.07 0.0312
0.7 19.78 22.48 6.083 6.915 1.151 18.18 24.17 1.092 0.0144

0.714 40.59 43.59 6.313 6.780 N/A 14.83 2.735 1.26 0.0047

The final equilibrium listed in Table 1 (e = 0.714) is a highly optimized (to give high beta 

and near unity bootstrap fraction) low-aspect-ratio equilibrium developed by R. L. Miller, et al.

[7], In this case very high values of beta are achieved (/J* = 55%, where /?% = 2^o(p)/Bq2 —

here, Bq is the magnetic field at the axis, following the convention commonly used for defining

beta at low aspect ratio), and yet the passive growth rate is only = 2.735, and the

equilbrium is completely stabilized (with a wall separation of d/a = 1.05) at a normalized 

rotation speed of less than 0.005. Figure 3 shows the normalized growth rate for this case with

respect to normalized rotation speed. Therefore, we see that this highly optimized, high-/? 

equilibrium is stabilized at quite modest values of rotation speed.
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Figure 3

0.000 0.004 0.005

Summary
Results have been presented which demonstrate that with a pair of close-fitting 

conducting plates, which leave a large gap at the outboard midplane, a high-/? equilibrium at

conventional aspect ratio can be stabilized at a rotation speed reduced by a factor of over 3.5 

compared to a fully surrounding, continuous and complete wall at the same separation. Results 
were also presented which show that low-aspect-ratio equilibria can be stabilized at significantly 
lower rotation speeds than at conventional aspect ratio. These two effects can perhaps be 
combined to enhance even further the effect of resistive wall stabilization at low aspect ratio.
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ABSTRACT
The CAS3D stability code may now be used to analyze the ideal magnetohydrodynamic energy prin
ciple for three-dimensional plasmas surrounded by a vacuum region, i.e. for perturbations which 
may deform the plasma-vacuum interface because of a non-vanishing normal component on this 
surface. A Green’s function technique is used here to determine the vacuum energy contribution 
from a surface integral with the plasma-vacuum interface as domain of integration. Assets of this 
procedure are that it does not require to continue either the coordinate system nor the perturba
tion functions into the vacuum region. The application of the cas3d free-boundary stability code 
to a set of finite-/? W7-AS plasma configurations, computationally generated from the W7-AS coil 
data, shows that unstable, radially extended free-boundary modes exist in equilibria of this set, for 
which the local Merrier stability criterion detects stability. This is in contrast to the behaviour of 
the fixed-boundary modes, for which the point of marginal stability approximately coincides with 
the one given by the local stability analysis. Corresponding results from the TERPSICHORE and 
cas3d codes are in good agreement.

I. INTRODUCTION
Since the CAS3D stability code [1] proved to be a valuable tool for the inves
tigation of the ideal magnetohydrodynamic (MHD) stability properties of three- 
dimensional (3D) toroidal plasmas [2], it was desirable to remove its limitation to 
the fixed-boundary approach. The extension to the free-boundary stability prob
lem, i.e. for perturbations which may deform the plasma-vaccum interface of a

plasma surrounded by a vacuum region, 
should of course follow the guidelines 
which were adopted in the construction 
of the CAS3D code, which means that 
also the treatment of the vacuum part 
should take care of the truly 3D geom
etry of stellarator configurations. This 
may be accomplished with the help of a 
Green’s function technique [3, 4], which 
has already proved useful in the compu
tation of 3D free-boundary MHD equi
libria with the NEMEC equilibrium code 
[5]. Figure 1 shows the boundary of a 
W7-AS [6] type plasma region demon
strating its 3D nature.

Fig. 1. Plasma region for a truly 3D stability 
problem: Outer magnetic surface for a W7-AS 
equilibrium, as spanned by a held line with i = 
8/23 « 1/3. For this case the ratio of the vertical 
magnetic field to the main field is « 0.015
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This paper is arranged as follows. Section II gives a brief review of the ideal MHD 
energy principle. Section III describes the treatment of the vacuum part with the 
Green’s function technique. In Sec. IV applications to a set of equilibria, which 
were computed with the NEMEC code from the W7-AS modular coils, are discussed. 
Section V gives the conclusions.

II. IDEAL MHD ENERGY PRINCIPLE

The task of the CAS3d stability code is to computationally solve the ideal MHD 
energy principle in its variational form [7, 8]

AWirin(£) - Hpot(f) —> minimum! (1)

for general 3D toroidal plasmas. The plasma region will be denoted by P, the sur
rounding, infinite vacuum region by V. The plasma boundary, identical with the 
plasma-vacuum interface, is S; the outer unit normal of a magnetic surface s — const
...on S this is s=l — is n = |Vs|-1 Vs. In the following all the symbols have their
usual meaning, compare Ref. 1. If necessary, plasma quantities are given the sub
script P, and vacuum quantities are denoted by V. In the linearized stability theory, 
which is employed here, a subscript 1 indicates a first order perturbed quantity.
In Eq. (1) Wfon is the kinetic energy and Wp0t the potential energy connected to 
the displacement vector £, and A is the corresponding eigenvalue. A negative Am;n. 
in its magnitude depending on the normalization given by indicates an MHD 
unstable equilibrium.
Following Ref. 7, the potential energy is the sum of three terms, Hp0t= + +
The contribution of the plasma region is Wp,

C2+7p(V.£)2-A(£.Vs)2 (2)

The task of the fixed-boundary CAS3D code [1] is the numerical minimization of 
Wp formulated in magnetic coordinates (s,6,<f>) [9, 10, 11] within a set of suitably 
normalized displacements, which have a vanishing normal component on the plasma 
boundary, £ • Vs = 0. For the free-boundary version this boundary condition is 
not present; therefore the vacuum energy and the plasma-vacuum interface energy 
terms, Wy and Wg, which vanish for fixed-boundary modes, may give non-zero 
contributions. The vacuum energy term is

WV = i///d3r|Bvi12 (3)
V

with Byi the first order perturbed magnetic field in the vacuum region. In the so- 
called pseudo-plasma-vacuum technique [12,13] Wy is used as given by Eq. (3), the 
vacuum is treated as a shear- and pressureless pseudo-plasma, and the perturbation 
functions and the coordinate system are continued to the vacuum region. As a 
consequence the algebraic eigenvalue, which results from Eq. (1), increases in size, 
which is already C?(104) for a medium-sized problem in the fixed-boundary case.
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With the Green’s function technique (see Sec. Ill) this is avoided, the computation 
area of the stability investigation is limited to the plasma region and its boundary. 
The contribution of the plasma-vacuum interface is

df • V
1
2

P+^Bl |Vs|-2((.Va)2 (4)

For equilibria, which have been computed with the 3D MHD equilibrium code 
NEMEC [5], of Eq. (4) vanishes, since this code determines free-boundary equilib
ria with a continuous total pressure on the plasma-vacuum interface. Furthermore, 
also otherwise Wg may be omitted from the stability investigation, since any equi
librium magnetic field can be analytically continued into the vacuum region, so that 
the condition

P + -Bp — -By = 0 on S (5)

is fulfilled. Because of Eq. (3) the equilibrium vacuum magnetic field, By, does not 
contribute to the vacuum energy.

III. VACUUM ENERGY CONTRIBUTION

A Green’s function technique is used here to determine the energy contribution of 
Eq. (3) for an infinite vacuum region surrounding the toroidal plasma. The first 
order perturbed vacuum magnetic field Byi, which enters the vacuum energy in 
Eq. (3), satisfies

V • Byi = 0 and V X Byi = 0 (6)

With the outer unit normal being n, the boundary condition on the plasma-vacuum 
interface is

n • Byi = n • Bpi = n • V x (£ X Bp) = |Vs|-1Bp • V(£ • Vs) , (7)

which may be obtained by utilizing the representation of the equilibrium magnetic 
field in magnetic coordinates with Bp • Vs = 0 and y/pBp • V0 and ^/pBp • V0 
depending only on the flux label s. Because of Eq. (6) a scalar potential $ exists 
for Byi with

B\’i = V4> , A $ = 0 and V X V4> = 0 (8)

On the plasma-vacuum interface the boundary condition for $ is

n • V$ = dn$ = IVsI^Bp - V« - Vs) , (9)

according to Eq. (7). With the help of Green’s theorem the vacuum energy contri
bution of Eq. (3) can be converted to a surface integral with the plasma-vacuum 
interface as domain of integration and as given by Eq. (9),

RV = j

5

if • (*V») (10)
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On the plasma-vacuum interface the values of the harmonic function $ are given by 
the integral equation

27r$(r) + Jj df' • ($(r')V'G(r,r')) = JJ df - (G(r,r')V'$(r')) , (11)

S’ 5

which is obtained by transcribing A $ = 0 with the help of Green’s theorem. Here, 
G(r, r') = |r —r,|-1 is the Green’s function of Laplace’s equation and r and r' denote 
position vectors for points on the plasma-vacuum interface S. Primed operations 
act on primed quantities. The right-hand-side of Eq. (11) may be considered as a 
source term, since it depends on the perturbation f by virtue of Eq. (9).
For a numerical treatment of the vacuum energy contribution the potential 0 — 
which is an even function, 5>(0,4>) = $(—0, for even parity perturbations be
cause of Eq. (9) — is approximated by a truncated double Fourier series,

mo no
X/ cos27r(m0 + n<j>) (12)

m=0 n=—no

with mo and no being the finite Fourier expansion parameters and <f> increasing by 
unity in one toroidal transit of the plasma region. This is equivalent to the ansatz 
used for the scalar components of the perturbation vector £. Insertion of this ap
proximation into Eq. (11) and Fourier transformation with respect to the magnetic 
coordinates 6 and cj> lead to a set of linear equations for the Fourier coefficients of the 
potential, $m„. When solving these equations, care must be taken of the singulari
ties of the Green’s function and its normal derivative. The regularization procedure 
[3, 4], which is applied here, follows Refs. 3 and 4 and has already succesfully been 
used in the computation of 3D free-boundary equilibria [5]: Subtraction of analyti
cal functions with the same singular behaviour, but analytically calculable Fourier 
transforms with respect to 0 and <f>, yields terms, which may be Fourier analyzed by 
standard numerical methods. The analytically obtained Fourier transforms of the 
regularization functions are added again in order to retain the original equations.
From Eqs. (7) and (9) it follows that the vacuum energy of Eq. (10) may be given 
in terms of ( • Vs on the plasma-vacuum interface S, i.e.

Vkv = 4 My eg , (13)

where the real coefficient vector eg comprises the values of the £ • Vs Fourier har
monics on S. My, the matrix for the vacuum energy, is real, symmetric, and non
negative. The extended algebraic eigenvalue problem

Mpot c = AM]un c with (14)

thus includes the vacuum energy contribution; it is analyzed in the free-boundary 
CAS3d stability code. In Eq. (14) the ’0’ entries denote matrix sub-blocks with 
vanishing elements in a suitable block-partitioning. Mpot, Mkjn, and Mp are the 
matrix equivalents of the potential, kinetic and plasma energies connected to the 
perturbation £. The real coefficient vector c consists of the the values of the Fourier
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Fig. 2. cas3d results for the case B^/Bq = 
0.015, in which the local Mercier stability cri
terion is fulfilled. Top left: £ • Vs Fourier 
coefficients versus flux label s for the unstable 
N = 1 free-boundary mode. The eigenvalue is 
A = —5. x 10~6. Labels 1, 2, 3, 8, and 16 refer 
to m = 3, 4, 2, 5, and 6. Computation parame
ters: radial discretization N3 = 192, L = 61 per
turbation harmonics, matrix size 23485 x 23485. 
Right: The dux-surface averaged contributions 
to the plasma region energy: Curve 1 for the 
field line bending term, ~ Vs • C, curve 2 for 
the influence of local shear and parallel current 
density, ~ Vs x Bp • C, curve 3 for the field 
compression, ~ Bp • C, curve 4 is connected 
to the parallel current density, norma] curva
ture and local shear, the A term, and curve 5 
is the sum Wf> of Eq. (2). Bottom left: The per
turbed pressure contours on the y> = 180° plane; 
Pl = —£ " Vs for incompressible modes.

coefficients of £ • Vs and $ • Vs X Bp inside the plasma and, for £ • Vs only, 
on its boundary. From Eq. (14) it is clear that the sizes of the algebraic eigenvalue 
problems are identical in both the free- and fixed-boundary cases and that, since My 
is symmetric, the nature of the eigenvalue problem in Eq. (14) remains unchanged.

IV. APPLICATIONS

For a plasma configuration, which proves to be unstable against fixed-boundary 
global perturbations localized close to the plasma boundary, the free-boundary sta
bility analysis is mandatory. In contrast to the purely internal global mode struc
ture in configurations of a wider W7-X configurational neighbourhood [2, 12, 14, 
15], perturbations in W7-AS type configurations tend to be boundary-localized [16]. 
Therefore, the stability properties of a set of W7-AS type equilibria will be discussed 
here. The NEMEC 3D MHD equilibrium code [5] — the VMEC equilibrium code in its 
free-boundary version — is used to create the input data for the stability calculation 
from the W7-AS coil data.
The relative magnitude of a vertical magnetic field, Bz, which when superposed 
yields an inward shift of the plasma column, is used to construct a one-parametric 
series of equilibria. The sequence parameter Bz/Bo varies between 0.011 and 0.022. 
The value of the rotational transform on the plasma boundary is adjusted to tg =
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,2> -5

number of Fourier harmonics L

Fig. 3. Eigenvalues (top frame) and rela
tive error [(Aqo - Amjn(L))/Aoo, bottom frame] 
versus the number of Fourier harmonics, L, 
for an (M,N) = (3,-1) perturbation with a 
mixed type boundary condition in the case with 
BZ/B0 = 0.02. The number of perturbation 
Fourier harmonics is 2L + 1.

\m
n\ 0 1 2 3 4 5 6 7 8 9 10 11 12

-5 |57 61
-4 135 34 45 51
-5 SO 39 40 37 44 43
-2 4 33 # 27 32
-1 #, 4 m n T m 55 21 36
0 3 \i 4 46 MO 54 #
1 % laa n 58 56 59 26
2 52 48 38 41 53 60
3 47 42
4 49
5 1

Fig. 4. Set of L — 60 equilibrium Fourier in
dex pairs (m, n) belonging to the convergence 
study shown in Fig. 3. The (m,n) cell num
bering indicates the ordering which results from 
the iterative construction of this set; together 
with its l — 1 preceding (m, n) harmonics the 
component numbered l contributes to the corre
sponding eigenvalue in the top left frame. Cells 
shaded in grey indicate the set of L = 30 Fourier 
indices, which, via coupling to (3, -1), produce 
the 61 perturbation Fourier harmonics used for 
the computations shown in Fig. 2.

1/3; within the sequence of equilibria this is achieved by superposition of an auxiliary 
toroidal magnetic field available in W7-AS.
The remaining equilibrium properties vary only slightly: On the magnetic axis the 
rotational transform is i « 0.4, i.e. the shear is small and negative. The average (5 
varies from (/3) = 0.0148 to 0.0112, The local Mercier stability criterion is violated 
in the cases with Bz/Bq > 0.0165, as seen with the JMC code [10].
Figure 2 shows CAS3D results of the stability investigation of this set of equilibria. 
The low-node-number free-boundary modes exhibit some important fixed-boundary
mode properties [1]: The structure of Wp demands that the modes are resonant, so 
that because of i >, 1/3 the m = 3 harmonic and its poloidal side bands are dominant 
in the N ~ 1 perturbation, as may be seen in the top left frame of Fig. 2. The 
investigation of the various energy contributions to Wpot shows, that also for the free
boundary modes the field compression term Sp2Bp • C [compare Eq. (2)] vanishes 
to a very good approximation (see curve 3 in the right frame of Fig. 2). In this case, 
as in all unstable cases of this series, the perturbation is radially extended with the 
maximum magnitudes near the plasma boundary. These properties are also visible in 
the perturbed pressure contours on meridional cuts, pi = —£• Vs for incompressible 
modes; see Fig. 2 (bottom left frame) for the plot of the <p = 180° plane for the 
Bz/Bq = 0.015 case. Since the shear is small, only few (~ 5 out of a total of 61, 
compare Fig. 4) Fourier harmonics dominate the perturbation spectrum. However, a 
detailed convergence study on the eigenvalue behaviour under an increasing number 
of perturbation Fourier harmonics shows that, at least ss 25 harmonics of £ • Vs 
must be used in order to obtain a negative eigenvalue. As may be seen in Fig. 3, 
approximately converged eigenvalues require >,60 harmonics.
The calculation for the Bz/Bq — 0.015 case also shows that the specific free
boundary mode treated here is unstable, even though the local Mercier stability
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Fig. 5. Comparison of perturbation structures obtained by the the TERPSICHORE (right) and 
CAS3D (left) stability codes: For the most unstable case of the series (Bz/Bq = 0.022) the top 
frames show the Fourier coefficients of s versus the dux labels resulting from the free-boundary 
calculation including the Green’s function vacuum formulation; the bottom frames illustrate the 
corresponding fixed-boundary results, £ • Vs = 0 on the plasma boundary; here, the perturbation 
is clearly dominated by the (3, —1) component. Only 4 out of 61 harmonics are shown.

Fig. 6. Eigenvalues (free-boundary: 1011 A, fixed
boundary: 1012A) versus the ratio of vertical mag
netic field to main field for the (3,-1) perturbation 
in W7-AS equilibria. TERPSICHORE results: + for 
the free-boundary mode without vacuum energy, □ 
for the free-boundary mode with the Green’s func
tion vacuum energy (Ns = 48), A for the fixed
boundary mode; cas3d results: o for the free
boundary mode without vacuum energy, • for the 
free-boundary mode with the Green’s function vac
uum energy (Ns = 48), < as • but with Na = 192, 
x for the fixed-boundary mode.

1.5 2.0
102 Bz/Bq

2.5

criterion is satisfied. This behaviour is in contrast to the one found for the low-node
number fixed-boundary modes in low-shear stellarators [1], for which the Mercier 
stability limit sets the marginal point.
For the series investigated here the stability limit given by the N = 1 free-boundary 
modes is obtained for Bz/Bq % 0.014. Though the vacuum energy contribution 
itself is non-negative [compare Eq. (3)] and, therefore, stabilizing, the free-boundary 
modes may be more unstable in the same configuration, since there is no boundary 
condition on the plasma-vacuum interface. Here, the N = l free-boundary modes 
shift the fixed-boundary stability limit by % —0.006 in the ratio of vertical field to 
main field.
Figures 5 and 6 show the momentary status of the comparative calculations done 
with the TERPSICHORE and CAS3D codes. The eigenmode structures (see Fig. 5
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for the N = 1 perturbation in the B%/Bq = 0.022 case) and the corresponding 
eigenvalues (see Fig. 6) are in good agreement.

V. CONCLUSIONS

The extension of the CAS3d stability code to the free-boundary stability problem 
was accomplished with the implementation of the Green’s function approach for the 
vacuum energy. Advantages of the Green’s function technique versus the pseudo
plasma vacuum treatment are, that there is no need to continue the coordinate 
system and the perturbation functions to the vacuum region. As a consequence 
the algebraic eigenvalue problem does not increase in size. Furthermore, an infinite 
vacuum region may be introduced, so that a ’wall’ stabilization of the free-boundary 
modes can be avoided.
The application to a set of W7-AS configurations shows that, in contrast to the 
behaviour of the low-node-number fixed-boundary modes, free-boundary modes may 
be unstable in Mercier-stable configurations. Approximate vanishing of the field 
compression also applies to the free-boundary modes. The specific free-boundary 
modes treated here shift the fixed-boundary-mode stability limit by % 0.006 in the 
ratio of vertical field to main field
Corresponding results of the TERPSICHORE and CAS3d stability codes show good 
agreement for the perturbation structures and eigenvalues. The comparative work 
will be continued.
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Abstract

Low aspect ratio tokamaks can potentially provide a high ratio of plasma pressure to 

magnetic pressure /? and high plasma current / at a modest size, ultimately leading to a 

high power density compact fusion power plant. For the concept to be economically 

feasible, bootstrap current must be a major component of the plasma current. A high value 

of the Troy on factor /?N and strong shaping are required to allow simultaneous operation at 

high /? and high bootstrap current fraction. Ideal magnetohydrodynamic stability of a 
range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure 
profile and shape. The pressure and current profiles are constrained in such a way as to 

assure complete bootstrap current alignment. Both /?N and /J are defined in terms of the 

vacuum toroidal field. Equilibria with /?N >8 and j3 ~ 35% to 55% exist which are stable 

to n = °o ballooning modes, and stable to n = 0,1,2,3 kink modes with a conducting wall. 
The dependence of (3 and /?N with respect to aspect ratio is also considered.
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Low Aspect Ratio Tokamaks (LATs) have received significant attention recently in 

part because of the experimental results from START1 and the potential for tokamak 
operation at high plasma /?, high plasma current, and modest size.2 At low aspect ratio 

there is insufficient space on the inboard side of the tokamak for ohmic coils so non- 
inductive current drive will be required. Additionally, the large plasma currents charac

teristic of low aspect ratio will require prohibitive amounts of non-inductive current drive 

power unless a large fraction of the current can be maintained by the bootstrap current. 
Thus we are led to study the magnetohydrodynamic (MHD) stability of the high /J, large 

bootstrap fraction regime.

The high bootstrap fraction, /bs = /bootstrap/^p requirement — the equilibria here 

have /bs in excess of 95% — constrains the current profile. Usually two independent 

plasma profiles determine an MHD equilibrium, e.g., pressure and safety factor profiles. 

However, for high bootstrap fraction equilibria, the current profile is determined from the 

pressure profile alone; we use the collisionless model of Hirshman3 to model the bootstrap 

current. A small amount of auxiliary current is required near the axis where the bootstrap 

current goes to zero.

Although ultra-low aspect ratios have been proposed,2 Stambaugh et al.4 show that 

given an assumed scaling of /JN « 1/A, the ratio of fusion power to Ohmic dissipation in 

the toroidal coil is maximized at A = 1.4. Although we present evidence that the scaling of 

y3N with A is weaker than 1/A, suggesting larger optimal A than 1.4 with respect to this 

criterion, we primarily focus on A = 1.4 in this paper.

Some appreciation of the parameters required to achieve simultaneous high /J and 

high bootstrap fraction can be seen from a simple relationship between fi and /Jp. The 

Troyon scaling for MHD stable /? is given5

where I is in megamps, a is the minor radius in meters, B is in tesla, and pN is in 

%-T-m/MA. At low A it is particularly important to identify the B used in this formula
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and in the definition of /?. We find that the above equation is best satisfied (i.e., /?N 

nearly a constant) using the vacuum B field at the geometric axis of the outermost flux 

surface, B0. The plasma /? is defined as the volume average of the pressure divided by the 

magnetic pressure due to this field

p = M (2)
r D*

The poloidal (3, /3p, is defined as the volume average of the pressure divided by the 

magnetic pressure due to an average poloidal field at the boundary

r - Wf) = 2Vo(p) = 25
f\+K*}pN

100
(3)

where we are still expressing I in megamps and use the approximation

Lp — 2 ity
1 +Kl

a , (4)

for the poloidal circumference. Poloidal beta is a particularly important quantity in the 

present studies because the fraction of bootstrap current is proportional to /?p. Large /bs 

will require large /?p. Multiplying Eq. (1) by Eq. (3) we get the desired result

/5/Jp=25—-%/lOOf , (5)

where (3 is now expressed as a number and not a percentage. This expression says that to 

achieve simultaneous high /? and high bootstrap fraction (high f3p) we need high /JN and/ 

or high elongation.

The numerical study presented here assesses the MHD stability of high (3, low A 
equilibria for ideal infinite- n ballooning modes and low n kink modes. Additional details 

of some aspects may be found in Ref. 6. The low n stability analysis has been done only 

for selected cases, including the highest (3 cases. It appears, however, that for the beta 

range we study, the kink modes can be wall stabilized. Thus it is the ballooning mode 

which determines the (3 limit, while kink stability is determining the required wall location. 
We scan over a range of elongations and triangularities and find an optimal triangularity of
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about 0.4 while fi is still increasing with elongation up to the maximum k we studied 

of 3. The optimum triangularity can be understood from the constraint on full bootstrap 

alignment at the edge.

The equilibria for this study were generated using the flux-coordinate fixed boundary 

code TOQ.7 This code can solve the Grad-Shafranov equation for a variety of different 

initial specifications. The code was recently modified and now uses a multigrid algorithm8 

to invert the elliptic operator. In this paper we specify pressure and the flux surface 

average of (J • B) where J is the plasma current and B is the magnetic field. (J ■ B) near 

the plasma axis is assumed to result from auxiliary current drive while (J ■ B) away from 

the axis is prescribed as a constant and is entirely generated from bootstrap current as 
described below. The formula for the pressure gradient, p' = dp/ d\ff, is specified as a 

function of normalized poloidal flux iff, where iff varies from 0 at the magnetic axis to 1 

at the boundary. A polynomial form found to be near optimal in this study is given by

p' = C(0.025 + 0.975 iff3 - iff*) , (6)

where the constant C is adjusted to give the desired (3.

The primary contribution to (J ■ B) is the bootstrap current. We use a simple model:

^•5)bootstrap=A)S(vfyp' , (7)

based on the collisionless theory of Hirshman3 and described in more detail in Ref. 6. 

Here / is the flux function given by the major radius R times the toroidal field Bj, 
f = RBj. We note in passing that the previously mentioned scaling /bs «= /3p can be easily 

deduced from Eq. (7).

The infinite n ballooning mode equation was solved using BALOO7 and the low n 
kink modes were analyzed using GATO.9 The ballooning results were obtained by com

puting the marginal stable (3 for equilibria with resolutions of (N¥,Ne) = [(67,65), 

(131,129), (259,257)] and extrapolating the results to the marginally stable /? for infinite 

mesh size. Here Ny and Ne are the number of radial and angular mesh points, 

respectively. Some of the equilibrium and ballooning results were reproduced using the
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Lawrence Livermore National Laboratory code TEQ, while some low n kink results were 
confirmed using CHEASE10 and ERATO.11

We first present equilibrium and stability results at A = 1.4 for a range of elongation, 

triangularity, temperature scale lengths, and p' profiles. All of the equilibria are marginally 

stable to ballooning modes. Kink analysis has been done for only a few representative 

cases, including the highest j9 cases. The case K = 3.0, S = 0.5, and p' given by Eq. (6) 
is shown in Fig. 1. The pressure profile across the midplane as a function of major radius 
is shown in Fig. 1(b). The p' profile and q profiles a function of (yr)1/2 are shown in 

Fig. 1(c) and (d). The toroidal current density across the midplane as a function of major 

radius is shown in Fig. 2(a) and the peaking of the current density on the outboard mid

plane is quite striking. This is characteristic of LATs and is due to the strong variation of B 

with R. Note also that the q profile remains monotonic despite the off-axis peaking of the 

current density. The flux surface average { JRq / R) is shown in 2(b) to illustrate the total 

bootstrap alignment. The contributions to the "total bootstrap" current are shown individ

ually as bootstrap, diamagnetic, and Pfirsch-Schluter contributions. The total bootstrap 

fraction for this equilibrium is 99% and the maximum stable /JN is 8.28 The /J is 54% and 

j3p is 1.63. A wall at 1.3 times the plasma radius is sufficient to stabilize these modes.

The variation of maximum stable and y9 with respect to triangularity 5 and 

elongation k are shown in Figs. 3 and 4. The Troyon factor )3N is seen to increase with 

increasing elongation but the increase in (5 is more dramatic because of the well-known 

increase in current / with elongation. j3p on the other hand is more nearly constant 

(Fig. 5) as a function of elongation and Eq. (5) shows in such a situation we expect [5 to 
increase as (1 + k2 )/%.

Somewhat surprisingly, Figs. 3 and 4 show a rather modest optimum triangularity. 

Ordinarily one would expect higher fi with increasing triangularity from stability 
arguments. However, increasing triangularity also reduces the trapped particle fraction and 

thus the bootstrap current. This reduction in bootstrap current illustrated in Fig. 6 will 

increase the magnetic shear at the edge. Since in the equilibria considered here p' is
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Fig. 1. Reference case equilibrium: < = 3.0, 5 = 0.5, Ip/Z/p = 0.5. (a) flux con
tours, (b) pressure profile across the midplane as a function of major radius, (c) p' as a 
function of (v01/2, (d) q as a function of (j/sr)1/2.

required to vanish at the plasma boundary, the larger magnetic shear will make the 

transition from the second stability region to the first regime more difficult, hence, the 

global P limit is lowered. There is a tradeoff in triangularity effects between increasing the 

magnetic well and increasing the magnetic shear. This results in an optimum triangularity 
which increases modestly with elongation (see Fig. 3). For K = 2.5, 5 = 0.3 to 0.4.
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Fig. 2. Toroidal current density for equilibrium of Fig. 1. (a) toroidal current density 
across the midplane as a function of major radius and (b) (JRq/R) versus y. The com
ponents of the "total bootstrap" current density are shown individually as bootstrap (dash), 
diamagnetic (long dash, short dash), and Pfirsch-Schluter contributions (dots).

Although the optimum triangularity is near 0.4, wall stabilization becomes easier as 5 

increases. For k = 3, rw,ii/rplasma = 1-15 to stabilize n = 1,2, and 3 at 5 = 0.4, while at 

5 = 0.5, rwall/rplasma - 1.3. These wall locations are all adequate to stabilize the n = 0 
mode for the respective equilibria.
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Fig. 4. Variation of /? with respect to triangularity 5 for a range of elongations.
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Pp versus Triangularity (S)
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Fig, 5. Pp increases modestly with increasing triangularity. This increase is necessary 
to maintain constant /bs - 100%.
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Fig. 6. The bootstrap coefficient a /t,s VA/jSp is seen to depend weakly upon 
elongation but decreases with triangularity. This higher /?p is required at larger 5 to 
maintain /te.
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As mentioned in the previous section, Eq. (6) for p' was found to be near optimal 
and Fig. 7 shows partial evidence for that. Here p' is parameterized as

p' = c(o. 025+ 0.975 y/" - y/*+1) ,

and n is varied from 1 to 4. The maximum magnitude of p' occurs at \j/ = 0.915 nl 
(n +1). The advantage of pushing the maximum towards the edge of the plasma is 
apparent from Fig. 7. The two different values of on-axis seed current in Fig. 7 show the 

advantage of raising q on axis. Note that qaxis °= l/(7-fl)axis. Further reductions of seed 

current beyond that shown produce almost no effect.

Location ( k=3, 8=0.4)Maximum (3 versus p
I I | i i i i | I I M |fyn i i \ i i i i \ i i i i | i

—E3 - (JBX

•«***■»■■
0.7 0.75 0.8 0.850.45 0.5 0.55

P max Location

Fig. 7. Variation of fa and )3 with respect to location of maximum p' for K = 3 and 
5 = 0.4. </-B>nom = </.B>axisa/Sb2.

It is also of interest to ask what limits the ballooning j3 to the values observed in this 

paper. This issue is addressed in Ref. 6 where s-a diagrams12 are presented. It is 

shown that if p' is allowed to be finite at the edge of the plasma, as is routinely found in 

equilibrium reconstruction of DUI-D data,13 that fa > 10 is possible. The equilibrium is 

in that case everywhere in the second stable regime.
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Finally we consider the dependence of /? and j3N upon aspect ratio. An attempt to 

study other A’s in as much detail as we have devoted to A = 1.4 would require extensive 

searches to determine an optimal p'(yr) at each A. We have taken the far more modest 
course of examining only ballooning stability and only for the p' profile given by Eq. (6) 

for A ranging from 1.2 to 2.8. We looked at a range of triangularities from 0.2 to 0.6 and 

at elongations of 2, 2.5, and 3. The results are shown in Figs. 8 and 9. Because we did 

not modify the profiles as we varied A, /bs falls off somewhat for some of the higher A 
cases but is still always in excess of 80%. The triangularity yielding the highest fi does 
not vary much at A Even at A = 2.8 it is -0.44 at k = 2 and -0.52 at k = 3.

(3 versus A

K=2.0
n - K—2.5

- K=3.0

Fig. 8. Variations of fi with respect to A for a range of elongations. Ballooning 
stability only.

Figures 8 and 9 show that higher elongation yields higher /3 and even higher /JN at 

every aspect ratio considered. The magnitude of /JN - 6 at A = 2.8 for k = 2 is content 

with previous stability calculations14 in this parameter regime despite the large /3p’s (1.7 to 

2 at A = 2.8) being considered here. Also the fact that /3N(A = 1.2) > /JN (A = 1.4) even 
though p' was not optimized for A = 1.2 strongly suggests that /?N increases with 
decreasing A. Nevertheless, the reader is reminded of the limitations of this restricted 

optimization and, in particular, that wall stabilization of the kink at reasonable wall
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P N versus A
i—i—|—r i—i—r

— - k=3.0
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Fig. 9. Variations of /?N with respect to A for a range of elongations. Ballooning 
stability only.

distances has not yet been demonstrated except at A = 1.4.In summary, we have explored 

the dependence of and /?N on shape and pressure profile for the high /? high bootstrap 

fraction tokamak regime at A = 1.4. We find with fbs ~ 99% that ballooning mode 

instabilities limit /JN to the rather high range of - 8 with p' = 0 at the plasma edge. The 

cases examined for kink stability indicate that these modes can be wall-stabilized. The case 

with k = 3.0 and 5 = 0.5 had /3 = 55%. A triangularity of 5-0.4 is optimal while /? 

increases significantly with elongation to the highest elongation studied ( k = 3).

This study is a step towards determining shapes and profiles at low aspect ratio to 

yield high /? and high bootstrap fraction. Issues which remain to be addressed include: 
creating high (3 strongly shaped free-boundary equilibria with a realistic field-shaping coil 
set, determining optimum pressure profiles consistent with a transport model, exploring 

effects of collisionality in the bootstrap current model, and assessing the need for current 

profile control.
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