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Preface

This dissertation consists of six papers and a summary comprised of the background, 
methodology and results from the papers. The work comprises the development of an 
experimental design procedure of two- and three-phase displacement experiments. 
Technical contribution such as implementation of analytical sensitivity coefficients has 
been performed. The purpose of the experimental design is to determine the number and 
type of experiments, the data and accuracy of the data necessary for estimate multiphase 
flow functions with an acceptable accuracy. The work presents two- and three phase 
relative permeability and capillary pressure functions that have been estimated 
simultaneously from a multiple set of data from several experiments.

Paper HI (submitted for publication) presents the estimation of two-phase relative 
permeability and capillary functions and the statistical criteria for accepting a solution. 
Paper VI (published) compares different experimental designs and including additional 
data for determination of two-phase flow functions. Paper I and II (proceeding papers) 
present the experimental design procedure and methodology for determination of three- 
phase relative permeability and capillary pressure functions. In Paper IV (published) is 
this methodology verified on experimental data. In Paper V (to be submitted) the 
development of analytical sensitivity coefficients using the direct method for two- and 
three-phase flow is proposed.

This work has been performed at RF-Rogaland Research. I have also visited the 
Department of Chemical Engineering at Texas A&M University in College Station for a 
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RF-Rogaland Research in Stavanger. Andre Sylte has contributed in the estimation 
process to determine the three-phase relative permeability and capillary pressure 
functions. Finally, Prof. Ted Watson has contributed with valuable comments to all the 
papers.
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1 Scope of Work

Reliable predictions of reservoir behavior are essential for effective design of 
exploitation strategies. Examples of such strategies, especial in late production phases, 
are water-altering-gas (WAG) injection, gas injection, therm!al oil recovery or surfactant 
flooding. Specification of the multiphase flow properties is necessary for simulation of 
these production processes. Hence, relative permeabilities and capillary pressure (i.e. 
multiphase flow properties) are to be specified at all locations throughout the reservoir. 
Consequently, accurate determination of these flow properties is an issue of great 
concern. However, the relative permeabilities can not be measure directly. Therefore, 
displacement experiments are conducted on core samples and various data sets such as 
pressure drop, production and in situ saturation and pressure (see Figure 1.1) are 
measured. These data are then used to get an estimate of the relative permeabilities by 
calculation from an appropriate mathematical model of the experiment. This calculation 
procedure is referred to as the inverse problem.

The displacement experiments can be conducted under various conditions. If the 
capillary pressure is neglected, the experiments can be represented by a set of partial 
differential equations that can be solved analytically. The inverse problem is then solved 
in an explicit way and the relative permeabilities are determined using the JBN-method, 
proposed by Johnson, Bossier and Nauman [1959], based on the Buckley-Leverett 
theory [Buckley and Leverett, 1942] and Welge [1952]. The experiments are conducted 
with high flow rates to minimize capillary end effects according to the assumptions 
made. However, this approach leads to several numerical problems such as calculation 
of derivatives of the data witch can lead to substantial estimation errors [Tao and 
Watson, 1984] and estimates of the relative permeability at only discrete set of 
saturation values [Richmond and Watson, 1990]. Another explicit method for 
determination of the relative permeabilities is to interpret data form steady state 
experiments [Dullien, 1992]. Here, two phases are injected simultaneously into the core 
at constant total rate until equilibrium (or steady state) and the saturation is assumed to 
be uniform in the core. Since the fluid rates are known and the pressure drop is 
measured, Darcy’s law can be used directly to compute the phase relative permeabilities. 
This method is very time consuming since the equilibrium must be achieved [Marie, 
1981, Honarpour et al., 1994], and only relative permeability points are computed for 
each rate fraction. The capillary pressure is typically determined directly utilizing the 
centrifuge technique [Hassler and Brunner, 1945; Slobod et al., 1951; Forbes, 1991], the 
micro-membran technique [Hammervold, 1994], the diaphragm technique or mercury 
injection [Dullien, 1992]. These techniques for determination of relative permeability 
and capillary pressure are typically conducted under flow conditions different from the 
reservoir conditions and possibly on different core samples or on core samples with 
reestablished initial saturation and wetting conditions.

A fundamentally different manner to solve the inverse problem, is the implicit method. 
In this method the properties are estimated as functions as opposed to points obtained 
through the explicit approach. Corey [1956] proposed an functional relationship
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between the relative permeability and saturation using only few parameters. However, 
few parameters give little flexibility in the functions and bias error is introduced. No 
experimental data has been reconciled using this type of functional representation. 
Watson et al. [1980] introduced B-splines as a functional representation of relative 
permeability and capillary pressure due to its flexibility. Later Watson et al. [1988] 
extended this method and introduced a regression based method for determination of the 
flow function coefficients. B-splines are used to represent the two-phase relative 
permeabilities and capillary pressure because they can represent any function arbitrary 
accurately and bias error can be minimized. In the inverse approach, the effects of 
capillary pressure can be included in the analysis; capillary pressure can be specified 
independently, or it can be estimated simultaneously with the relative permeability. 
Hence, the flow functions are determined from experimental data on the same core 
sample and under the same flow processes. The utility of this method has been 
demonstrated by analyzing dynamic displacement experiments such as pressure drop 
and production data [Richmond et al., 1990], in situ saturation measurement [Mejia et 
al., 1995], centrifuge experiments [Nordtvedt et al., 1993], and its extension to steady- 
state-type displacement experiments as shown in Paper HI.

Differential Pressure Saturation Profile Production

In Situ Pressure In Situ Saturation

Figure 1.1 Different types of data gathered from displacement experiments (figure from Paper Iff).

In two-phase flow, the relative permeability and capillary pressure were taken to be 
univariate functions of saturation. When there are three fluids present, each of the 
relative permeability and capillary pressure functions can be represented as bivariate 
functions of two independent saturations. There are three methods for determination of 
three-phase relative permeabilities. One approach is to calculate them using already 
measured two-phase relative permeabilities in predictive methods [Manjnath and
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Honarpour, 1984; Baker, 1988]. Another approach is to estimate the flow functions on 
the basis of laboratory data collected during displacement experiments either in an 
explicit approach [Vimovsky, 1984; Helseth, 1996] or an implicit approach [Mejia et 
al., 1996].

Historically, three-phase relative permeabilities are found from correlation and 
interpolation of two-phase relative permeability data, see review by Manjnath and 
Honarpour [1984]. Some of these methods were reviewed by Baker [1988] using all 
published three-phase relative permeability data, and compared with two interpolation 
methods he proposed. Baker concluded that the reviewed methods were not very good 
predictors of experimental data. The interpolation methods he proposed provided a 
better match with the experimental data than the reviewed theoretically based methods. 
He also concluded that more accurate three-phase experimental data would be necessary 
for properly testing and developing of correlation models. Robinson and Slattery [1994] 
presented a model for computation of relative permeability of the intermediate phase. 
They found that only a portion of the data [Oak et al., 1990] was suitable for comparison 
with available models.

There are some explicit methods for determination of three-phase relative 
permeabilities. The JBN method [Johnson et al., 1959] has been extended to three 
phases by Vimovsky [1984]. However, this method gives relative permeability data only 
for a limited saturation interval, i.e., after the shock wave. In more recent theoretical 
work on three-phase relative permeability [Helset et al., 1996], in situ saturation and 
pressure data can be used to estimate the relative permeability over a larger scale than 
the JBN method and the method proposed by Vimovsky [1984]. However, dynamic in 
situ saturation and pressure drop data are very expensive (if possible) to measure and 
might not be measured with acceptable accuracy.

Mejia et al. [1996] was the first to report estimation of three-phase flow functions 
depending on two saturations from a set of synthetic data in an implicit approach. The 
regression based method [Watson et al., 1988] was extended so that three-phase flow 
functions could be estimated. In this method the relative permeabilities are represented 
by tensor products of univariat B-splines [Schumaker, 1981] which is an extension of B- 
splines representation of two-phase flow properties. Hence, the dependency on two 
saturations is taken care of. In this approach, capillary effects are also addressed since 
capillary pressure and relative permeabilities can be estimated simultaneously from the 
experimental data.

Since experimental data and the combination of these are essential for accurate 
determination of two- and three-phase flow properties, an experimental design 
procedure for multiphase experiments is proposed in this work. The two-phase flow 
functions can be determined using data from a single experiment, while the three-phase 
relative permeabilities must be determined using data from multiple experiments since 
the entire saturation region must be spanned with data. Hence, an experimental design 
will be essential for the success of estimation of (two- and) three-phase flow properties 
from experimental data. There are a large variety of experimental designs that can be 
used for estimating two- and three-phase flow functions. For design of three-phase 
experiments, one can start experiments at saturations for which one, two, or three fluid
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phases are mobile, and inject, at any fraction, one, two, or three fluid phases. In this 
work average saturation paths similar to those expected for the reservoir flow processes 
have been used. In Paper I and Paper II different three-phase experimental designs have 
been investigated and the accuracy with which the flow functions may be determined 
using the corresponding data have been computed. In that study, a linearized covariance 
analysis was utilized. In the different experimental designs, various experiments (e.g., 
unsteady state, steady state, centrifuge), experimental data sets (differential pressure, 
production, in situ saturation and pressure and saturation profiles as illustrated in Figure 
1.1), injection strategies (high-rate, low-rate, multi-rate) and accuracy of these data are 
evaluated. The information in these data for estimation of multiphase flow functions can 
be used to design the two- and three-phase experiments. The data sets are measured with 
different cost, time and accuracy; in situ measurements (by NMR [Chen, 1993; Chen 
1994], X-ray [Oak, 1988; Oak, 1990; Ebeltoft, 1998]) are much more complicated and 
expensive than pressure drop and production data (Ebeltoft [1998] has presented an 
experimental apparatus for two- and three-phase experiments where differential pressure 
and production data are measured with high accuracy). Hence, the experimental design 
procedure can be used to evaluate the experiments, or the combination of such, in order 
to optimize the accuracy of the estimated flow functions, or to arrange the necessary 
data and accuracy of these in order to get estimates of the flow properties within a 
certain accuracy. Then, the flow functions can be estimated with high accuracy in the 
saturation region of interest with a limited number of experiments and data sets. The 
accuracy of the flow functions can be computed in a linearized covariance analysis 
[Kerig, 1986; Paper nr]. Since the accuracy of the flow functions can be analyzed before 
the experiments take place, guidelines for the experiments can be given to improve the 
information content in the data.

The experimental design has been further developed in Paper V. In this paper analytical 
sensitivity coefficients were developed from two-phase to three-phase flow. Sensitivity 
coefficients are the derivative of the model output (differential pressure, production) 
with respect to the model parameters (coefficients in the functional representation of 
flow functions). Analytical sensitivity coefficients are derived using the direct method 
[Tortorelli, 1994]. The sensitivity coefficients are essential in both parameter estimation 
and in assessing accuracy of flow functions. For correctly evaluation of data and 
experimental designs, accurate sensitivity coefficients are essential. The analytical 
sensitivity coefficients for three-phase flow developed in this work are an extension of a 
method proposed by Anterion [1989] and Vignes [1993] for two-phase relative 
permeabilities. The direct method takes advantage of that the model equations are 
solved using the Newton-Raphson method, and some of the results from this solution 
can be used directly when solving the sensitivity equation. In Paper V it is shown how 
the accuracy of the computations are improved since numerical derivatives are avoided. 
The numerical sensitivity coefficients tend to introduce “false” sensitivity in saturation 
regions with little information content in the data and the accuracy of the estimates are 
over-predicted, i.e., they give too narrow confidence intervals. With the implementation 
of analytical sensitivity coefficients, the “trial and error” when choosing parameter 
increment and the numerical error introduced by “false” sensitivity is avoided. Hence, 
the computation of parameter estimates and assessment of accuracy becomes faster, 
more stable and more accurate. The experimental design procedure has been further
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developed in Paper V where also the contribution of observations is computed and the 
identifiability of the parameters with the current design is investigated.

In this work, the inverse approach is used for determination of three-phase relative 
permeability and two-phase capillary pressure functions from several sets of 
experimental data, in Paper IV. The pressure drop and production data from three 
experiments (one two-phase experiment, and two three-phase experiments) were 
reconciled simultaneously. Ebeltoft et al. [1998] has presented an apparatus for 
displacement experiments at reservoir conditions, with emphasis on getting three-phase 
differential pressure and production data with high accuracy. These data were used to 
get an accurate estimate of the three-phase flow functions in Paper IV. In this paper the 
results obtained using the inverse approach were compared with results using Stone 
[1970] predictive model. Two-phase relative permeabilities estimated using the inverse 
approach were used as input to the Stone model. The Stone three-phase relative 
permeabilities were then used to predict pressure drop and production data and these 
were compared to the experimental data. For this case, Stone predictive model over­
predicted the oil production and differential pressure. This agrees with the conclusions 
from Baker’s [1988] work.

In this work, the inverse methodology for determination of two- and three-phase relative 
permeability and capillary pressure functions is further developed (Paper I, II, m, IV and 
VI). The main work has been development of analytical sensitivity coefficients for two- 
and three-phase flow (Paper V). This technical contribution has improved the accuracy 
both in parameter estimation and accuracy assessment of the estimates and reduced the 
computer time requirements. The proposed experimental design is also dependent on 
accurate sensitivity coefficients to give the right guidelines for how two- and three- 
phase experiments should be conducted. The experimental design has been developed in 
several papers (mainly Paper I and Paper V). Following the proposed experimental 
design, three-phase relative permeability and capillary pressure functions have been 
estimated when multiple sets of experimental data have been reconciled by simulations.
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2 Background

Accurate information of the properties describing fluid flow in porous medium is 
important in reservoir forecasting and exploration. These properties are typically found 
from experimental data measured in experiments on core samples from the reservoir. 
The fluid flow in porous media is simulated by a mathematical model. In this chapter, 
the mathematical model describing multiphase flow will be described in section 2.1. 
The assumptions made will also be discussed. However, some of the flow properties can 
not be determined directly, and they have to be inferred from the experimental data in an 
inverse approach. The methods used for deriving these properties will be discussed in 
section 2.2. The accuracy of estimates and measures of non-linearity in the model are 
discussed in section 2.3.

2.1 Mathematical Model

2.1.1 Problem Formulation
When describing the fluid flow in porous media, we use a macroscopic model where we 
assume the different size in pores and channels will vary randomly with a well-defined 
mean. Therefore, we can introduce mean properties such as velocity and pressure in a 
sufficient reference volume. The continuity equation for single phase flow is given as 
[Aziz and Settari, 1979]:

(2.1)

with q negative for injection and positive for production.

For horizontal, one-dimensional processes the fluid movement is caused by pressure 
differences. Let k denote the permeability of the rock and p the viscosity of the fluid. 
Darcy [1856] showed experimentally that the velocity u at a point would be proportional 
to the pressure gradient, -dpjdx. Darcy’s law is given as

k dp
(2.2)« =-----

/x dx

Darcy’s law assumes that there is no reaction between fluid and rock and that there is 
only one fluid present. Further, the flow must be laminar. For a three dimensional 
medium, the permeability is given as a tensor, [&], giving different permeability for 
different directions. Permeability will be reduced if there is a reaction between fluid and 
rock. There is also a reduction in permeability for each phase when several fluids are
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present. Relative permeability, for generality dependent on two independent phases, is 
introduced for multiphase flow, and when gravity is taken into account, Darcy’s law for 
three-phase flow (here considering water, oil and gas phases) is given as:

^-^-(VPf-PfgVz), f = w,o,g. (2.3)

Substituting Darcy’s law and the continuity equation, and replace the densities by 
volume factors gives the mass conservation equations for water, oil, and gas [Aziz and 
Settari, 1979]. This is called the black oil model:

K = v • |X(VA» - 7wvz)] + <2w d
dt

(
9

V BJ
= 0 (2.4)

fi„=V-[T„{yPa -y„Vz)] + Q„-
dt <P (2.5)

J?g=V"[r$(V^""7gVz)] + V- [R, T0 (Vp„ - y,Vz)] + Q, d_
dt

= 0 (2.6)

where the gravity term, volume factor, volumetric flow term and transmissibility is 
given as:

Pf.RC

T=\mL

The saturations will sum up to unity, giving the relation

S*, +B0+S„ -1, (2.7)

and the capillary pressure relations are given as
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(2.8)

The other equations of state are

Pf=Pf(Po) 

Pf =Pj(Po) 

(P = <P(P„)-

However, these relations are weak functions of pressure.

Darcy’s law for three phases in three dimensions, the continuity equations, the 
saturation relation and the capillary pressure relations give 9 equations. In this system 
we have the following unknowns: pw, pg, pa, Sw, Sg, S0, uw, ug, u0, and we have a 
complete set of equations. From these unknowns, Sw, Sg, and p(> are usually chosen as 
the unknown state variables:

u={#,"W*y-

The unknown parameters may include porosity, permeability, or flow properties as 
relative permeability and capillary pressure. In this work determination of the flow 
properties is addressed, and parameters in the representation of relative permeability and 
capillary pressure functions are assembled in the parameter vector:

2.1.2 Initial and Boundary Conditions
In reservoir simulation, flow in and out of the system occurs only at the boundaries, 
such as the external boundaries of the reservoir and at the boundaries of the wells. It is 
customary in reservoir simulation to represent flow across all boundaries by source/sink 
terms and replace the actual boundary conditions by homogeneous Neumann (no-flow) 
boundary conditions on the entire boundary [Aziz and Settari, 1979].

For multiphase flow, flow rates of all phases must be specified, although they are not 
necessarily independent. There are two basic types of boundaries:

1. Closed boundary (To in Figure 2.1)

There is no flow of any phase across a closed boundary; the product of Darcy velocity 
and the normal vector n vanishes:

=T/(Vp/-y/Vz)-n = 0, f = w,o,g,

where n is the normal to the boundary and 2/ is the transmissibility in the direction of 
the normal.
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2. Boundaries open to flow (Fi and Fg in Figure 2.1)

In this case, the flow rates qy across the boundary are specified. The flow in reservoir 
units is

7)(Vp,-y,Vz)n = g,(F), r = F„F,.

On the boundary F3 where fluids are injected, the flow rates for each phase are 
controlled and therefore known. Figure 2.1 shows typical boundary conditions for 
single-well models.

Figure 2.1 Boundaries for single-well model [Aziz and Settari, 1979].

The saturation SJ,x,y,z,t=0)=fu Sg(x,y,z,t=0)-f2, and pressure po(x,y,z,t=0)=f3 at the 
beginning of an experiment, or production, are used as the initial condition. The initial 
conditions must be given in accordance with the equilibrium of the reservoir, otherwise, 
unstable solutions can be achieved [Aziz and Settari, 1979].

Examples of initial and boundary conditions in a oil-water steady-state-type experiment 
can be:

• Injection of one or two fluid phases at constant total rate.

• Production at constant well pressure.

• Initial conditions: Irreducible water saturation and pressure given as: Sm,

2.1.3 Direct Problems in Multiphase Flow
The non-linear partial differential equations (2.4)-(2.6) must be approximated and then 
solved numerically. In this work, the model equations are approximated by the 
corresponding finite difference equations and then solved numerically. Spatial finite 
difference approximations to the expressions for flow terms have been applied together 
with time discretization of the accumulation terms, and we have
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(2-9)

^(U’P) - To.i+i(Po,M ~ Po,i ~ GJ"+! “ T„j-±(Po,i ~ Po,i-1 - GoT 

+ ToAPwell~ Po,i~Go)n+l

KP) - TwMi(Pwj+1 - Pw,i ~GwYH ~ r ,._|(pw,i -pK,-,-i ~GJn

+ T„,i ^P well ~ Pw,l ~ Gw )"+1

,Yl
At

(2.10)

&("'P) - Rs,i+iTo,i+APo,M ~ Po.i ~ GJ”+1 - P^o.i-A-Po,- ~ Po,i-1 “ GJ” 

+ Rs,i To,l (Pwell ~ Po,i - Go )”+1 + TgJ (pmll - Pgti -Ggrl

vb

At L
= o

(2.11)

Here, we define the vertical downward direction as the z-axis and the gravity heads in x- 
direction is calculated by

Vb is the volume of a grid block and bf = Bfl. 

The vector equation R is defined as

R(u, v;x,t) = {R0,Rw,Rgf. (2.12)

The vector equation R in (2.12) must be solved for the state variable u in each grid 
block. However, these equations are not linear. The accumulation term consists of a 
product of phase saturation and pressure dependent quantities as porosity and volume 
factors. The expression for flow terms contains saturation dependent relative 
permeabilities, pressure dependent PVT-terms and phase potential. The well terms are 
also non-linear. The only way to solve the equations is to use linear approximations. In 
this work, the Newton-Raphson method [Aziz and Settari, 1979] has been applied to 
linearize the flow equations (2.9)-(2.11). This method is shown below:
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The model equation is given as

R(un+1) = 0. (2.13)

This non-linear system of equations is solved by:

(2.14)

where J is the Jacobian of the vector function R(u):

j(*-d = f \ (2.15)

This gives

jtt-«(u<«-n(*-,,) = -R<*-l) (2.16)

for iteration index k> 1 and initial guess 

u(0)=u\

The above equations are solved iteratively and the iterations proceed until a 
convergence criterion lu(t) - u(,:_1)| < £ is reached. The forward solution is then given as

(2.17)

and this iterative procedure continues for each time step until a stop-criterion has been 
reached.

2.1.4 Flow Function Representation
In this work, a methodology for determination of two- and three-phase relative 
permeability and two-phase capillary pressure functions will be proposed. If the 
properties are to be estimated accurately, it is necessary that the functional 
representations be capable of representing the actual (unknown) relative permeability 
and capillary pressure curves. Various functional representations such as Corey 
exponential [Corey et al., 1956] use only a few parameters when representing the flow 
functions. It has been shown [Kerig and Watson, 1986] that functional representations 
as this is not flexible enough to represent the flow functions and therefore introduce bias 
error. B-splines have been used to represent the relative permeability and capillary
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pressure functions in several applications for multiphase flow in porous media [Kerig 
and Watson, 1986; Nordtvedt and Kolltveit, 1993; Mejia et al., 1995; Mejia et al., 
1996]. B-splines has the quality that for a sufficient number of knots, any continuous 
function can be accurately represented [Schumaker, 1981].

Generally a B-splines function for two-phase flow is given as

ft (-V = X cj B™ (Sf, y), f = w,nw.
7-1

(2.18)

In the two-phase case, relative permeability and capillary pressure may be written as 
follows:

krf(Sf) = g1(Sf) f = w,nw

and Figure 2.2 illustrates the two-phase oil relative permeability and corresponding B- 
splines basis functions. Here, y) is the basis function of order (m-1) that can be
evaluated at any value of saturation 5/ in the partition y. cTj is the B-splines coefficients 
that are the parameters to be determined by the parameter estimation method. The two- 
phase parameter vector p consists of the B-splines coefficients c*:

Figure 2.2 a) Two-phase oil relative permeability function, and b) corresponding B-splines basis 
functions.

For three-phase properties, relative permeability is represented by tensor-product B- 
splines [Schumaker, 1981]. A general function can be written as [from Paper II]
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(2.20)

where y, and y2 denote the extended partition, and 5, and S2 the independent 
saturations. N“" are the tensor-products B-splines basis functions.

Three-phase relative permeability may then be represented as

~ SiO^i> ^2) IX if f*w.
X if f = w

(2.21)

Figure 2.3 illustrates the three-phase oil relative permeability function with 
corresponding water and gas B-splines basis functions.

The two capillary pressure functions dependent on one saturation may be represented by 
B-splines as follows:

Xw =gfSJ
(2^2)

The unknown parameters in the three-phase model will be the coefficients cf} in the 
tensor-product B-splines representation of three-phase relative permeability and 
capillary pressure functions. These coefficients are arranged in p as follows:

n_fr» r» ro r° rs rs r<™ r°s rog og 1r
r p-11 >• • • >LjL11 ’• • • ’>t-llj• • ■ >^NtlNs2 ’L1 ’"""’LW„i ’L1 j •
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Basis Function, Sg

Gas SaturationWater Saturation Basis Function, Sw

Figure 2.3 Three-phase oil relative permeability in 3D with corresponding B-splines basis functions.

2.2 Solutions of Inverse Problems
In contrast to the forward solution (F(p)+e in Figure 2.4), the inverse problem seeks to 
find the unknown parameter p when continuous or discrete observations of state u or 
derived measurements F(u) are given (R(Z) in Figure 2.4). To determine flow function 
estimates p, the non-linear parameter estimation problem defined by

/(p) = [F(p)-ZTw[F(p)-Z] (2.23)

subject to the constraints

Gp>pc. (2.24)

must be solved. Figure 2.4 illustrates the relationship between measurement space and 
parameter space. In (2.23), J(p) is a performance criterion that measures the error 
between the model output, F(p) and observations Z (of state u(p) or F(u,p)) when p is 
a vector of model parameters. These observations can be measurements of the state 
variables u = {5W,58,P0} at discrete positions at various times, or at specified positions
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as functions of times, or derived measurements such as pressure drop or production of 
one or more fluid phases.

In this work a fully implicit three-phase, one-dimensional black-oil simulator is used to 
calculate F(p). W is selected to be the inverse of the covariance matrix of the estimate, 
and hence maximum-likelihood estimates result [Bard, 1974]. The parameter estimation 
problem is solved using a trust-region based Levenberg-Marquard algorithm [Gill et al., 
1981]. Least-squares [Neuman and Yakowitz, 1979; Carrera and Neuman, 1986a; 
Carrera and Neuman, 1986b], least-squares with regularization [Watson, 1988; Liu, 
1993; Helseth et al., 1996] or least-squares with Bayesian estimation [Gavalas et al., 
1976; Shah et al., 1978; Watson et al., 1993] give different ways to compose the 
performance criterion, J(p). These criteria can include prior information (Bayesian 
estimation) and smoothing (regularization) to reduce the parameter space and give 
stable solutions of the inverse problem. This will be discussed later.

Note that with the approach used here, data from several separate two- and three-phase 
experiments can be utilized simultaneously. However, to attempt to solve (2.23) as a 
single parameter estimation problem, while including all the data from all the 
experiments, is not likely to be fruitful because of the large dimensionality of the 
parameter space. Also, it is likely that local, non-global solutions to the problem may 
result. For two-phase situations, this problem has been solved as a series of 
minimization problems with increased dimensionality or as a series of largely decoupled 
problems [Watson et al., 1988]. This methodology is developed for three-phase flow 
[Mejia et al., 1996] and further developed in this work (details in Paper H).

Parameter
Space Measurement

Space

F(p) + e

Space of 
Admissible 
Estimates 

Aad

Figure 2.4 Relationship between parameter and measurement spaces for the inverse problems in 
porous media.



2.2.1 Nonlinear Least Squares and Maximum Likelihood Methods

Nonlinear least squares methods and related regression techniques are widely used to 
match experimental models to data [Bard, 1974]. Weighted least squares estimates 
minimize the performance criterion given as

J(P) = [F(p)-Zf W[F(p)-Z]. (2.25)

The forward equations vector (2.9)-(2.11) will generate data corresponding to the 
measurement vector Z with an additive random measurement error ez: Z = F(p) + ez. 
The measurement error is often assumed to be Gaussian in order to facilitate statistical 
analysis of the results [Bard, 1974]. Numerical solutions of the nonlinear least squares 
problem are generally found with iterative search algorithms such as the Gauss-Newton 
or gradient methods (discussed in the next section).

The least squares estimator found from minimizing (2.25) is equivalent to a Gaussian 
maximum likelihood estimator with known statistical properties found from minimizing

Pz,p(zlp) = Pv[Z-F(p)] (2.26)

where is the likelihood function (conditional density) [Neuman and Yakowitz,
1979; Carrera and Neuman, 1986a; Carrera and Neuman, 1986b], The statistical 
properties such as mean and variance of maximum likelihood (and least square) 
estimate p can be computed in a linearized covariance analysis (discussed in a later 
section).

Since maximum likelihood estimation, like least squares estimation, assumes that p is 
an unknown deterministic parameter, the only source of randomness in the formulation 
is measurement error. Therefore, in order to be useful, the concept of measurement error 
must be extended to include such things as scale discrepancies (e.g., differences 
between model discretization and well scales) and modeling errors. This generalization 
of the measurement error concept is particularly important in least squares and 
maximum likelihood methods since there is no other way to account for uncertainty 
[McLaughlin and Townley, 1996].

2.2.2 Solution Criteria
Solution criteria are now presented for validating estimates of relative permeability and 
capillary pressure functions from laboratory data. The solution of the estimation of 
parameters in 2.25 is compared to the statistical expectations of the least squares 
estimator. The sum of squared residuals is given as [Dougherty, 1990]:

5S/? = [F(p)-Zl[F(p)-Z].
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Minimization of SSR results in a sample regression line that best fits the observational 
data [Dougherty, 1990]. The sum of squared residuals (SSR) is satisfactory when the 
quantity jSSRf(Nm -Np-1) gives a reasonable estimate of the standard deviation of

the observation data. SSR/(Nm -Np-1) is an unbiased estimator of a2 (the variance of 
each measurement).

Another solution criterion is the number of runs. This quantity is the number of times 
the residuals changes sign and is expected to be 4f- + l. This property gives additional 
information to the SSR criterion when we want to determine if bias error is present in 
our estimates [Watson et al., 1990] and [Grimstad et al., 1997].

2.2.3 Regularization
Finding the minimum of the non-linear least squares problem in (2.23) is not trivial. 
When noisy data is used, stability in the optimization can be a problem. To stabilize the 
solution of the inverse problem, regularization is introduced. The regularization is based 
on ideas first advanced by Tikhonov [1977] in the solution of ill-posed integral 
equations. For some /3 > 0, a regularization term is added to the objective functional as

^(P) = Jr(P)+y||pl2R- (2.27)

Regularization has been implemented in porous media applications for estimation of 
porosity and permeability properties [Watson, 1980; Watson, 1988]. An important issue 
in regularization is to determine a suitable value of P for the given noisy data, especially 
where the noise level may or may not be known. A general formulation of P is not 
found, and the value has to be chosen for each problem according to various criterion 
[Liu, 1993; Helseth et al., 1996; Lee et al., 1987; Watson, 1988].

2.2.4 Bayesian Estimation
Another approach to reduce instability in the estimates is to include prior information in 
the objective function. Bayesian estimation methods include prior information and have 
been applied to parameter identification in multiphase flow [Gavalas et al., 1976].

Prior information of the system can be incorporated into the problem as a modified 
regularization, po contains the initial guess for p based on the prior information or guess 
about the solution from e.g. geological data. The regularized function J3 in (2.27) can
be written as

JpiP)- •/(P)+-^|P-P0|2- (2.28)
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This approach gives Bayesian estimates for a given distribution of the observations Z 
and parameters p. Suppose the data Z are related to p by

Z = F(p) + ez (2.29)

and that po satisfies

P = Po+£„ (2.30)

for random variables £z and £p. If the underlying probability distributions on these 
random variables are Gaussian, then minimization of Jp as given by (2.28) has a 
Bayesian interpretation for suitably chosen ||-||z, ||j|„, and /?. In particular, if ez and zp 
have zero mean and covariance matrices cr2V and t2E , respectively, and if

(2.31)

then minimization of J? as given in (2.28) gives Bayesian maximum likelihood 
estimates [Watson et al., 1993]. This expression for /? is especially enlightening: it 
shows that the optimal fi is that which equally balances the weight given to the mean- 
squared error in Z and the mean squared error in p.

Shah et al. [1978] showed that if reliable prior information is available, Bayesian 
estimation would lead to a smaller variance error of the estimated parameters.

2.2.5 Search Methods
The solution of scalar optimization problems, as the weighting method in (2.23), has 
been extensively discussed by many authors in the past. Numerical solutions can be 
classified into the following three categories: Gauss-Newton, gradient search, and direct 
search methods [Gill et al., 1981].

The Gauss-Newton method and related methods have been extensively used in the 
solution of the inverse problem [Watson et al., 1988; Sun and Yeh, 1990a; Mejia et al., 
1996]. The Gauss-Newton direction, d, is found from

(A[A* - -M)dj - -A[F4 (2.32)

where the vector d is the solution of the sub-problem
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(2.33)minidsR”

subject to 

|d]|2<A.

In order to obtain the Gauss-Newton direction it is necessary to calculate the total 
sensitivity matrix A in each iteration k of the non-linear least squares minimization 
where a~ =<5F(u,p)f/5py is the sensitivity coefficient of the model response F(u,p);
with respect to the discretized unknown parameter p,-.

Gradient search methods [Chavent et al., 1975; Neuman et al., 1980; Carrera and 
Neuman, 1986b] are designed to avoid the calculation of the sensitivity matrix A, 
therefore, in principle, they require less computer time. However, more iteration may be 
required for convergence.

2.3 Sensitivity Analysis and Non-Linearity Measure
The sensitivity in the model equation to the parameters, or coefficients in a 
parameterization of the parameter functions, is essential in parameter estimation, i.e. 
when computing A. However, several aspects have to be investigated in order to find an 
optimal solution with high accuracy. In this section the main steps in a linearized 
covariance analysis are presented. In this analysis, the impact of measurement error on 
the estimated flow functions is computed. Finally, a short discussion on non-linearity 
and sensitivity is addressed.

2.3.1 Covariance Analysis

Several assumptions and sources of error accompany parameter estimation. First, we 
assume the mathematical model of the physical process is correct. Second, we assume 
that the model is linear in the parameters close to the minimum when the global 
minimum is found. Third is bias error, which is the result of using functional 
representations that are incapable of representing the true (although unknown) 
functional relationship. Finally, the variance error is a result of the inexact nature of 
measured data. The mathematical model (2.9)-(2.11) presented before is assumed to 
describe multiphase flow in porous media.

In this work we want to determine the two- and three-phase relative permeability and 
two-phase capillary pressure functions. If accurate estimates of these flow properties are 
to be obtained, it is necessary that the bias error and variance error is small. Choosing 
functional representations of the flow functions with very large numbers of parameters 
will reduce bias error due to increased flexibility. However, this does not ensure 
accurate estimates of the properties. In fact, while increasing the flexibility of the 
candidate functional representation decreases the bias error in the estimates, it tends to 
increase the variance error because of estimating more parameters on the basis of the
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same amount of information [Kerig and Watson, 1986]. This trade off between the bias 
error and variance error must be investigated in an experimental design.

In the absence of significant bias error, the variance error of the estimates can be readily 
evaluated in a linearized covariance analysis.

If we assume the model function F is correct, we can write Z = F(p) + ez for parameter 
vector p and measurement errors ez. We assume that the error element ez, has a normal 
distribution with zero mean and variance i.e. Z is normally distributed with F(p) 
mean and covariance matrix X. We further assume the model function F(p) is linear 
with respect to the parameters p near the solution. When a set of unknown parameters p 
is to be estimated by minimization of an objective function of the form of (2.23), the 
accuracy of the parameter estimate may be obtained by a linearized covariance analysis.

The objective function to minimize is given as

J(p) = [Z - F(p)]r W[Z - F(p)] = £—(Z; -F(( p))2. (2.34)

The expected value of the residual vector, ez = Z-F(p), is given as

.2 0
4& - 3(P))r (Z, - 3(P))] = E[ezTez] = E. (2.35)

.20 a

A Taylor expansion about the true parameters p0 are given as

(2.36)

Instead of minimizing the (2.23), we minimize the expansion about the true parameters 
and neglect the second order terms. When the model function is linear, this expansion is 
exact, and the objective function is exact. To find the minimum of the objective 
function, we differentiate (2.36) with respect to the parameter vector p and set the 
resulting equation equal to zero.

<9/(p) dJ{ p„) d2J( Pq) (2.37)
dp dp dp1

Differentiating the original objective function (2.23) gives the normal equations
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(2.38)

We assume that F is linear in the parameters in the minimum, i.e., the first term in 
(2.38) vanishes. We define the sensitivity matrix as the partial derivative of the model 
output with respect to the parameters in p

Combining the last equations gives

ArW[Z - F(p0)] = ArWA(p - Po). (2.40)

Now, we introduce the covariance matrix of the parameter estimate, P, as

(2.41)

After some matrix operations and introduction of the inverse of the weighting matrix W 
as the covariance matrix of the observation error X, we get an expression for the 
covariance of the parameter estimate as a function of the sensitivity matrix and the 
covariance matrix of measurement error, details are found in Kerig and Watson [1986] 
and Paper m.

P, (A^X-'A)-'. (2.42)

Further can the covariance of the flow functions be found using

C^(J,) = D%)PD(%), (2.43)

where D,, „ = . N„ is the numb
p " [ dp j

vector of the different flow functions, i.e.

where . Nq is the number of flow functions to be estimated and f is a
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f={^(^,^),^%,^),^(^,^),^%,5J,^(^,^)}\

Since the variance of the measurement error is unknown and we use an estimate of this 
variance in X, the t distribution (also called student’s t distribution) is used when the 
confidence intervals are computed. The upper and lower (1-f) level confidence 
intervals for each flow function f; at a specific saturation is given as

(2.44)

2.3.2 Measure of Non-Linearity
One of the assumptions in the previous section was that the model was linear close to 
the parameter minimum. If this assumption fails, the confidence intervals computed 
from the linearized covariance analysis will be too optimistic [Bates and Watts, 1980; 
Liu, 1993]. Therefore, a measure of the non-linearity of the model is necessary. 
Expressions which indicate the adequacy of a linear approximation and its effects on 
inferences are called measures of non-linearity [Bates and Watts, 1980]. Bates and 
Watts introduced the concept of curvature as a measure of non-linearity. Leikvoll [1995] 
investigated error analysis methodologies for nonlinear least squares problems arising 
within porous media applications.

Assume that the model function F defines a vVp-dimensional surface S in the Nm- 
dimensional sample space when the parameters in p vary through their allowed values. 
The measure of non-linearity becomes the maximum curvature tangential to 5 (the 
parameter-effect curvature) and orthogonal to S (the intrinsic curvature). The curve 
•qh(/3) on the surface S is defined by

Tl„U3) = F(p(j8)) = F(p + 0h) (2.45)

where p is a real number and h an arbitrary nonzero vector in the parameter space. 
Assume that the mapping F(p) is smooth enough so that the curve qh will have a 
tangent and acceleration in p. The tangent to t|h at j6 = 0 is the derivative of T|„ with 
respect to P

Ab(^) -Y * dp,
dp

p=o

= Ah. (2.46)

The acceleration of the curve t|h at /3 = 0 can be calculated from
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(2.47)

The acceleration is then decomposed into orthogonal and parallel planes 

where the normal curvature in the direction of h is given by

(2.48)

and the tangential curvature is given by

h: |2 (2.49)
h

The normal curvature is a property of the surface, S, and not affected by a 
reparameterization of F. K[ is the intrinsic curvature. The tangential curvature K'h is 
dependent on the parameterization and is called the parameter-effects curvature. A non­
linear reparameterization of the model can change the parameter-effect curvature 
considerably. To assess the effect of non-linearity on inference, the K£ and K‘h are 
converted to standardized relative curvatures which are invariant under changes of scale 
in the response. The relative curvatures can then be used to compare not only different 
parameterizations for a given problem, but also different data sets for the same or 
different models.

The curvature measure can then be used in an experimental design to evaluate the 
different designs with respect to non-linearity around a global minimum. An 
experimental design with low degree of non-linearity is preferable during parameter 
estimation. When the non-linearity is low, the sensitivity of the parameters will be high 
[Liu, 1993], and this improves the stability in the search around the global minimum 
[McLaughlin et al., 1996].
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3 Analytical Sensitivity Coefficients

The background chapter shows that the sensitivity coefficients play an important role in 
determination parameters in parameter estimation, computation of accuracy of estimated 
parameters in linearized covariance analysis and for determination of non-linearity of 
model close to global minimum. In this chapter different methods for computation of 
sensitivity coefficients are first reviewed. Since the direct method is favorable due to the 
way the model equation is solved, this method is extended from the work by Anterion 
[1984] and Vignes [1993] on two-phase flow to the methodology of determination of 
three-phase flow properties.

3.1 Perturbation Method
In the perturbation method the jth row of the sensitivity matrix AT is approximated by
[Tortorelli et al., 1994]:

^ dFt /y(p + Apyey)-^(p) i = l,...,N„
ij dpj Apj j = l,...,Np

(3.1)

where Apy is the small increment of p;. and e; is the y'th unit vector. The values of 
/^(p + Ap;e;.) and T%p) are obtained by solving the model equation (by simulation)
subject to the initial and boundary conditions. This method is therefore easy to 
implement since the computer code for computing fl(p) and /((p +Ap;e;) already
exist. However, the method requires perturbing each parameter one at a time. If there are 
Np parameters to be identified, the model equation has to be solved (Np +1) times for
each iteration in the non-linear least squares minimization to numerically produce the 
sensitivity coefficients. The value of Apy is usually determined on a trial-and-error
basis, and it will vary for each parameter and each case.

3.2 Adjoint Method
Jacquard and Jain [1965] first used this method (frequently called the variational 
method) for solving the inverse problem of parameter identification. It has later been 
used when solving oil and water two-phase flow problems in porous media [Seinfeld 
and Chen, 1978; Watson et al., 1980]. Consider the general form of the problem 
equations (2.9)-(2.11) and a general performance criterion

(3.2)
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where f(u,p;x,r) is a function specified by the user. The first-order variation of J is

(3.3)

In order to find the functional derivative of /(u,p) with respect to the unknown 
parameter vector p, the unknown term associated with in (3.3) must be eliminated. 
Adjoint operators are introduced together with an adjoint state variable 0. A set of 
adjoint model equations is introduced, in the same manner as the model equation in
(2.9)-(2.11). The adjoint model equations are solved in the same way as the simulator 
equations. Sun and Yeh [1990a] have a detailed description of the method and they 
include an example from two-phase oil-water flow in reservoirs given by Huyakom and 
Finder [1983].

For any unknown parameter p,, the partial functional derivative is given as

(3.4)

By solving the model equation one time only and solving the adjoint equation for each 
interval in the function specified by the user, all sensitivity coefficients can be produced 
[Sun and Yeh, 1990a], This method is expensive to implement compared to the 
perturbation method since a set of adjoint model equations must be derived and solved. 
However, it requires less computations and it is the most efficient method in those 
situations where the state sensitivities are not necessary, i.e. those situations where only 
the sensitivity of the performance criterion is needed (as in gradient search methods in 
parameter estimation). Since numerical differentiation is avoided, the method is more 
accurate and stable than the perturbation method.
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Figure 3.1 Flow chart for computation of sensitivity coefficients by a) the perturbation method and b) 
the direct method.

3.3 Direct Method
In the direct method the sensitivity equation is solved after the simulator equation at 
each time step, since data from the solution of the simulator equation are utilized in 
solving the sensitivity equation. The sensitivity equation is first solved for the state 
sensitivities, then the derived sensitivities used in estimation and experimental design 
are computed [Tortorelli et al., 1994].

3.3.1 State Sensitivities
The model equation has previous been given as

R(u,p;x,r) = 0. (3.5)

This vector function can be separated into terms at time step n+1 (=F), and at time step 
n (=G). This gives the vector equation

F(u,py+l =G(u)\ (3.6)
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The non-linear equation (3.5) has been solved by the Newton-Raphson method, see 
section 2.2 which yields, as a side product, the Jacobian

_ dR(u,p) o?F(ii,p)
(3.7)

The sensitivity in the model (3.5) with respect to the parameters is expressed in the 
sensitivity coefficients, defined within the sensitivity equation as

<#"+' dan+1 _ dGn dan dFn+1 
dan+1 dp da” dp ofc)

(3.8)

The sensitivity matrix (i.e., the state sensitivity coefficients) is given by

(3.9)

When simulating fluid flow in porous media and utilizing Newton-Raphson method, the 
Jacobian will be computed at each time step. Further, the sensitivity equation is linear in 
the sensitivity coefficients. Hence, the sensitivity equation can easily be solved if the 
functional representation of the flow functions is known. In this work, the functional 
representation of the flow properties is known (B-splines and tensor-product B-splines), 
and dFn+1/dp can be computed analytically. dGn/da" can easily be computed and 
dunjdp is the sensitivity coefficient at the previous time step. The Jacobian is 
independent of the sensitivity coefficients and of the parameter vector p, i.e., solving the 
sensitivity equation (3.8) requires computing Np right hand sides and a backward 
substitution for each time step. Since stability of the sensitivity matrix A is connected to 
properties of the Jacobian (3.7), the sensitivity calculations inherit the stability 
properties of the simulator equation. After the simulator equation is discretized, here by 
finite difference, the computation of sensitivity coefficients are performed analytically, 
hence the name “analytical sensitivity coefficients”.

Most of the work associated with solving the sensitivity equation (3.8) is calculation of 
the term dF"+l/dp for various boundary conditions. The sensitivity equation will be 
solved for two- and three-phase flow in section 3.6 and in Appendix A.
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3.3.2 Derivable Sensitivities
From the state sensitivities dan+1/dp, derivable sensitivities can be computed, depending 
on the injection and production scheme.

Considering a one dimensional, two-phase oil-water case with injection of water at 
constant rate and production against constant well pressure. The oil production is then 
given as

N.
(3.10)

i=1

where Nx is the number of grid blocks in the x-direction. Differentiation of the oil 
production (3.10) with respect to a model parameter p;. is given as

The differential pressure is given as

_ p

/

where

KKo , KKmf = pie+piw (3.13)
P'0 P«

qw is the constant water injection rate, and Pconst is the constant outlet well pressure. 
Differentiation of the differential pressure with respect to a model parameter py is given
as

dAP dAP dPo | dAP dS„ ; dAP (3.14)
dpj dp0 dp, dSw dpy dp- 

This gives

(3.15)

!YJPIf2.

Derived sensitivities for other boundary conditions have also been implemented:

1. Injection of oil at constant rate and production against constant well pressure.

2. Simultaneous injection of water and oil at constant rate and production against 
constant well pressure.
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3. Injection of gas at constant rate and production against constant well pressure.

4. Simultaneous injections of water and oil and gas at constant rate and production 
against constant well pressure.

Details on these computations can be found in Appendix B.

3.4 Sources of Error
The different methods for sensitivity coefficient computation inherits different types of 
errors and these errors magnify depending on method and parameterization of sensitivity 
coefficient calculations. Below, truncation error, conditional error and round-off error 
are discussed.

3.4.1 Truncation error
When the derivative is approximated by a Taylor series, the truncation error is 
introduced due to neglecting higher order terms. The Taylor series up to second order is 
given as [Gill etal., 1981]:

F, (p ■+ Ap ,.e j) = F, (p)+ Ap;
^(p) 1 2 d2F(p)

% 2^ #

and the sensitivity coefficients are defined in the perturbation method as

M^.Ap j)
F^p+Ap&)-%($) 

APy

The truncation error is given as

Tj(Apj) = alj(Fi,Apj)- dF,{ P)
dp

y-F.x P)
dp2

(3.16)

Hence, the truncation error is a linear function of Ap; and will decrease when the 
perturbation decreases.

3.4.2 Conditional error
Condition error is introduced since function values calculated at a computer will be 
subject to errors due to inaccurate representation of numbers [Gill et ah, 1981]. This is 
given as

-29-



F(P) = F(P) + <?

F( P + Apye;) = F( p + Ap,e;)+aAf)j

where <7 and <7^. are the absolute error in F at p and p + Ap,e,. If the inexact function
values are used for computation of sensitivity coefficients, and no other errors are made, 
then the computed value of a,, is given by

^(p+Ap;.e,.)-^(p) 

Ap j

and hence

Ap, Ap,
- = (Fi, Ap, ) + C(alj, Ap,). (3.17)

The error C(atj, Ap,) due to inaccurate values of F is termed the conditional error (also 
called cancellation error). The conditional error is a linear function of 1 / Ap,, hence 
increasing the perturbation will reduce the conditional error.

3.4.3 Rounding error

Given F(p) and F(p + Ap,e,), the calculation of the sensitivity coefficient involves 
rounding errors when performing subtraction and division. However, these errors are 
generally negligible with respect to the truncation and condition errors [Gill et al.,1981].

3.5 Comparison of Methods
The perturbation method will generally be less accurate due to truncation and 
conditional error. In this method the parameter increment must be chosen with care 
since decreasing the perturbation decreases the truncation error but increases the 
conditional error and vice versa. Actually, the method will require an analysis of the 
“best” size of the increment for each parameter. However, due to its simplicity, the 
method is popular. But for the cases considered in this work where the accuracy in the 
sensitivity coefficients is crucial, the method is not satisfactory.

For cases where only the gradient vector is required, the adjoint method is very efficient. 
In this work, the state sensitivities are necessary and due to the complexity of solving a 
new set of adjoint simulator equations, this method is not applied.
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Since the simulator equations are solved using the Newton-Raphson method most of the 
computations in the direct method is already performed [Kabala and Milly, 1990]. 
Therefore, this method is chosen for sensitivity coefficient computations.

Previously, several authors [Dogru and Seinfeld, 1981; Yeh, 1986; Skaggs and Barry, 
1996] have derived expressions for when the direct and adjoint methods are most 
efficient. These computations depend on the discretization (number of grid blocks), the 
number of parameters and the number of performance measures (number of times the 
performance criterion is computed). However, these comparisons differ depending on 
the algorithm applied to solve the problem for the different authors. These comparisons 
do not take into account the computer savings using the Newton-Raphson method when 
the simulator equations are solved. The analytical comparison results are therefore not 
discussed here. However, in Paper V, one case is presented where the perturbation and 
direct method are compared with respect to computer time and number of iterations 
before the solution is reached in parameter estimation. These results are also discussed 
in chapter four.

3.6 Implementation of Analytical Sensitivity Coefficients

3.6.1 Solving the Sensitivity Equation
When the simulator equation is solved for time step n+1, the Jacobian is computed and 
can be used to solve the sensitivity equation. However, two other terms must be 
calculated before the sensitivity equation is solved; dGn/dan and <9F”+1/dp; (from 
equation (3.8)).

The vector equation G”(u) for three-phase flow is given as

(3.18)

(3.19)

(3.20)

Differentiating the vector equation G"(u) with respect to the state variable vector u in 
each grid block gives
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The elements in vector equation Fn+1(u,p) are

F«,f(U’P)”+1 = T0,i+i(Po,i+l - Poj - Go)n+1 - To,i-i(Po,i - Poj-l 'GoT

+Toj (PweU ~ Poj ~ Go y+1 - {<Pbo 0 “ Sw - Sg ))
(3.24)

F.,(u,pr = T^(p^ -p„ - G.r - T,_^(P., - P.,_, - GJ"

+Twj(P*dl - Pwj - GJn*1 1
(3.25)
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(3.26)
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Differentiating the vector equation F”+1(u,p) with respect to the model parameters p 
gives

<*.,(,i,pr _ Ki+i

dpj dpj

dpj
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dr.
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(3.29)

dpj

where the transmissibility Tf is differentiated with respect to the model parameters as 

dpj dp j '

Now, all the terms but dan+'jdp) is known, and the sensitivity equation (3.8) is solved

with respect to the state sensitivity coefficient and then the derivable sensitivities are 
computed.

3.6.2 Differentiation of Flow Functions with Respect to Parameters
When solving the sensitivity equation (3.8), the term 3En+l/dp can be computed 
analytically if the functional form of the flow functions is known. In this work, B- 
splines are chosen to represent the two-phase functions, and tensor-product B-splines 
represents the three-phase functions.

Differentiating the two-phase flow functions described in section 2.1.4 with respect to 
the parameters in p gives

(3.30)
dPj

and differentiating the three-phase flow functions with respect to parameter pk = c| 
gives

(3.31)
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The derivatives of two-phase relative permeability and capillary pressure functions are

dp. dpj
(3.32)

dp^

and the derivatives of three-phase relative permeability and capillary pressure functions 
are

S,=S' f

(3.33)

(3.34)

3.6.3 Parameter Estimation
The direct method to compute the sensitivity matrix is implemented in PEST [Parameter 
ESTimation program, developed at Texas A&M University and RF-Rogaland 
Research]. In this program the sensitivity coefficients have previous been computed by 
the perturbation method, i.e. the simulator has been called Np times to compute A in the 
flow chart in Figure 3.2. Analytical sensitivity coefficients have been implemented for 
two- and three-phase flow with the boundary conditions noted in section 3.3.2. Details 
on the implementation can be found in Appendix B.
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Figure 3.2 Flow chart for estimation of parameters.

3.6.4 Covariance Analysis

When the parameters in the model equation have been found in the parameter estimation 
procedure described above, the accuracy of these estimates can be computed in a 
linearized covariance analysis. These computations are dependent on the values of the 
sensitivity coefficients, as given by equation (2.43):

C = D PD

and the confidence intervals are found from the diagonal elements of C, see equation 
(2.44). Hence, the accuracy of confidence interval computations depends on the 
accuracy of the sensitivity matrix A. The accuracy and robustness together with speed of 
computations have motivated the implementation of analytical sensitivity coefficients 
when assessing the accuracy of the estimated parameters.

The direct method for computation of sensitivity coefficients has been implemented for 
various injection and production strategies in COVAN (COVariance ANalysis) 
[Urkedal, 1994]. This program is based on a linearized covariance analysis, and the 
perturbation method has been used to compute the sensitivity matrix.

The new algorithm for COVAN is given below:
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1. Input: estimated or initial guess for the parameter vector p, estimate of the 
measurement errors, E.

2. Call the simulator: 

for z'<-l,JV„

• compute the corresponding row in the sensitivity matrix, A*.

3. Pt-CA^ZA)-'

4. for all saturations (i):

• compute the sensitivity of the flow functions, D.

• C <— DrPD

upper conf. interval! , ,—
• ,„w=, corf, in*™,/

Two parts in the algorithm is changed; the sensitivity matrix A is now computed 
analytically, and the sensitivity of the flow functions with respect to the parameters, D, 
is computed analytically.
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3.7 Conclusions
The direct method for computation of sensitivity coefficients is extended from two- 
phase to three-phase flow in this work. This method is superior for computation of 
sensitivity coefficients when the Newton-Raphson method is used for solving the model 
equation. The direct method takes advantages of that the Jacobian is already computed, 
hence, the main computations are already performed. Further, the problems of choosing 
the right parameter increments in the perturbation method are avoided. The method is 
implemented in procedures both for parameter estimation and assessment of accuracy in 
two-phase and three-phase flow. The improvements of accuracy in sensitivity 
coefficients, stability of the parameter estimation and computer time reduction will be 
discussed in the next chapter where the direct method is tested for two- and three-phase 
cases.

-38



4 Experimental Design

In this chapter optimal experimental design for two- and three-phase displacement 
experiments are derived. The optimality criterion is the covariance of the unbiased 
estimated parameters or the size of the confidence region around the estimated flow 
functions. The design problem is then to minimize the covariance of the estimated 
parameters, i.e., minimize the confidence intervals around the flow functions 
[Pukelsheim, 1993].

One problem that must be addressed first is the identifiability of the parameters. The 
contribution of observations, CTB, can be used to design the necessary experimental 
design to obtain identifiability of the parameters. The experiments must be designed so 
that the parameters can be identified within a certain resolution. Further they must be 
designed so that the accuracy is acceptable for certain saturation intervals. When an 
optimal design is found, this implies a high sensitivity in the data with respect to the 
parameters in the flow function representation. High degree of sensitivity implies a low 
degree of non-linearity in the parameter minimum and that the inverse problem is well- 
posed.

Although there is no general theory for constructing well-posed inverse problems, there 
are methods for dealing with ill-posedness. These methods can be the use of transient 
data, adding more or new kinds of measurements, and constraining the set of admissible 
parameter functions. It is important to note that ill-posedness does not imply that an 
inverse problem is meaningless. It merely indicates that the problem formulation must 
be modified or supplemented in some way before an acceptable solution can be obtained 
[McLaughlin and Townley, 1996]. The important thing is to recognize the 
circumstances that may or may not allow solution of the inverse problem and, if a 
solution is possible, to impose on it the proper limitations so as to make it 
mathematically well-behaved and physically meaningful [Sun and Yeh, 1990a; Sun and 
Yeh, 1990b]. In the experimental design discussed here the information content in the 
data, parameterization of the flow functions, the identifiability of the parameters and the 
stability and uniqueness are addressed, and an optimal combination of data sets is 
proposed for determination of two- and three-phase flow functions.

4.1 Background

4.1.1 Experimental Design for Interval Identifiability
In this section the necessary conditions for 5 -interval identifiabilty will be discussed. 
The question of identifiability is equivalent to ask whether different parameter sets may 
lead to the same model response, if so, the parameters are unidentifiable. The 
uniqueness of the inverse solution may be relaxed if the identified parameters are not 
“too far” from the true parameters, i.e. the identified parameters are within the 
predefined resolution (=5 -interval) of parameters [Sun and Yeh, 1990b],
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When the identifiability of the model parameters are analyzed prior to the experiment, 
the true parameters will be known, p0, together with an estimate of the covariance of 
the parameters, CP and measurements, 2. With an estimate of the upper bound of 
residuals of the least squares problem 8 and the upper limit of the experimental error 
£ , the sufficiency of an experimental design for the 8 -identifiability can be tested. 
This is done by solving the optimization problem:

min ||F(p)-Z||; (4.1)

subject to

l|P-Po|lc,51

If the minimum of the problem is 52 > (8 +ef, we can conclude that the experimental 

design is sufficient for the 8 -interval identifiability when random noise £ is included in 
its observations [Sun and Yeh, 1990b]. An important problem that requires explanation 
is the determination of 8, the upper bound of residuals of the least squares problem 
(2.23). As a residual, |F(p)-Z||w is always less than ||F(p0)-Z|w because p is the

minimizer of the objective function ||F(p)—Z|w (since p0=p + £). Therefore a

conservative estimate of 8 is 5=e. For the observation noise e we only need to know 
the estimation of the upper bound of ||£||w, independent of its statistical distribution 
[Sun and Yeh, 1990b],

The concept of identifiability will be used later as the first step in the experimental 
design of two- and three-phase experiments.

4.1.2 Optimal Parameter Dimension
The identification of parameters in a distributed parameter system should, in principle, 
include the determination of both the parameter structure and its value. Shah et al. 
[1978] showed the relationship between the optimal dimension of parameterization and 
observations in considerable depth. The dimension of parameterization is directly 
related to the quantity and quality of data (observations). In practice, the number of 
observations is limited and observations are corrupted with noise. Without controlling 
parameter dimension, instability often occurs [Yakowitz and Duckstein, 1980]. If 
instability occurs in the inverse problem solution, parameters will become unreasonably 
small (sometimes negative, which is physically impossible) and/or large, if parameters 
are not constrained. In the constrained minimization, instability is characterized by the 
fact that during the solution process parameter values are bouncing back and forth 
between the upper and lower bounds [Liu, 1993; McLaughlin and Townley, 1996]. 
Reduction of parameter dimension or changing parameterization can make the inverse 
solution stable. When the number of parameters increase, the bias error (and modeling 
error) decrease while the variance error (or error in parameter uncertainty) increase. A
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trade off of the two types of errors can then be made from which an optimum parameter 
dimension can be determined. Watson et al. [1988] used a regression based method 
where the number of parameters were increased and the variance error controlled.

4.1.3 Contribution of Observations
The interval identifiability allows an experimental design to guarantee the 
predetermined accuracy or resolution (given in CP) of the identified parameters. 
Obviously, if we limit ourselves only to the problem of parameter estimation, then we 
do not know how to design weighting matrix CP. The determination of Cp must 
depend upon other criterion, for instance, the consideration of the requirements of 
model applications [Sun and Yeh, 1990b].

When solving the inverse problem, the identified model parameters are generally 
allowed to be different from the true parameters within a certain range, provided that the 
required accuracy of model application is assured [Yeh and Sun, 1990]. Let t]} be the 
range, or resolution, of parameter p;. The parameter is said to be interval identifiable if 
the identified value py of the parameter satisfies

(4.2)

where p0 . is the true value of parameter pr The problem of whether a parameter py is 
interval identifiable for a given r\. depends upon the quantity and quality of 
observations.

To evaluate the data requirements of a system in connection with parameter 
identification, the concept of “contribution of observation F: in the identification of 
parameter py”, denoted CTB(/],py), is introduced by Yeh and Sun [1990]. The 
contribution of observation jF to parameter py in the experimental design can be 
represented as

(4.3)

where Fi is a component of model response vector F(p); py is a component of 
parameter vector p, rj} is a given admissible error of the identified parameter p;. (or 
resolution), which can be seen as the element 77. of weighting matrix (Cp); ei is the 
upper bound of observation noise associated with Fi; and dFl!dpj is the sensitivity 
coefficient of observation F with respect to parameter p and (£2.) is a region associated 
with parameter p;.
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Sun and Yeh [1990b] proved that a necessary condition for the interval identifiability is 
that there is at least one observation for each component for the unknown parameters 
whose contribution is larger than 1. See Sun and Yeh [1990b] for details.

4.1.4 Experimental Design Procedure
The concept of interval identifiability, contribution of observations and estimated 
confidence intervals give different criteria for evaluation of experimental designs. First, 
identifiability is addressed, then an experimental design is proposed with emphasize on 
three-phase flow.

To improve the identifiability of the parameters, different approaches can be 
investigated:

1. Increase T]p implying a greater recognition of uncertainty in the identified 
parameter.

2. Decrease £,., implying raising the accuracy of observations.

3. Reduce the parameter dimension, i.e. reduce the flexibility of the B-splines 
functions.

4. Increase sensitivity coefficients, implying changing the experimental design.

However, the first three points are difficult to change since the accuracy of the 
observations are limited by the experimental apparatus and we do not want to 
compromise on the resolution of the parameters, or the flexibility of the flow functions. 
The fourth point indicates that changing the experimental design might give an 
improved identifiability.

The proposed experimental design for determination of multiphase flow functions 
concises of the following steps:

1. Select core and fluid properties. Select an initial relative permeability and capillary 
pressure function.

2. Select a way of conducting the experiments (steady state, unsteady state, centrifuge), 
select the type (low-rate, high-rate, multi-rate), location (in time and space), and give 
an estimate of the accuracy of the measured data, e;. Set a maximum resolution for 
each parameter; r\r

3. Perform a sensitivity analysis:

• Compute the contribution of observations (CTB).

• Compute the confidence interval around the selected flow functions.

4. Evaluate each parameter with respect to the CTB to ensure that the parameters can be 
identifiable with the proposed design and that the flow functions can be estimated 
with acceptable accuracy (check confidence intervals in the saturation regions of 
interest). Otherwise, go to step 2 and reevaluate the experimental setup, data and 
accuracy.
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This experimental design gives a quantitative measure of the identifiability of the 
different parameters and the accuracy of the estimated flow functions.

Three-phase experiments need special attention. Due to the increased complexity in 
three-phase flow compared to two-phase flow, the number of data sets necessary for an 
accurate estimation of the flow functions has increased considerably. Since the three- 
phase flow functions must be flexible, a considerably higher number of parameters must 
be determined compared to the two-phase case. The proposed three-phase experimental 
design comprises the following extra items:

1. Determine or limit the three-phase saturation region where the three-phase flow 
properties must be accurate determined.

2. Evaluate how many experiments, different data types and accuracy of the data that is 
necessary for identifiability of the parameters and to obtain the requested accuracy in 
estimated flow functions.

4.2 Design of Two-Phase Flow Experiments
In this section various experimental designs for determination of two-phase flow 
properties from experimental data will be proposed. The various designs are discussed 
with respect to the information content in the data for accurate determination of the flow 
functions.

4.2.1 Experimental Design
As described in an earlier section, identifiability of parameters can be investigated in 
various experimental designs before any experiment is conducted. In Paper HI different 
experimental designs were discussed for the purpose of estimating oil and water relative 
permeability and capillary pressure functions simultaneously. Finding the “best” 
injection scheme in the experimental design was addressed. Three scenarios were 
discussed; one, two, and six steady state oil injection steps. In Paper VI we also included 
new data when estimating two-phase flow functions. Here the water saturation profiles 
using nuclear magnetic resonance imaging (MRI) were measured and the additional data 
included for estimation.

In Paper HI the results show that the last scenario with six injection steps gives lowest 
confidence intervals on the estimated relative permeability and capillary pressure 
functions, i.e., these data contain most information on the flow functions. This 
observation is also supported by the results from computation of the contribution of 
observations {CTB(Ft,py) presented in section 4.1.3). Using interval identifiability, it
can be shown that only the last scenario (with six injection steps) is capable of 
identifying the parameters. In this analysis an admissible error (or resolution) of 2.5% of 
the true value of each parameter is used (77 ,), and an upper bound of observation noise 
of 1% of the observations is used (£,.).

Figure 4.1 shows the data discussed in design A1 and A3 in Paper IE. Figures 4.2-4.4 
show the contribution of pressure drop data on water and oil relative permeability and
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capillary pressure parameters. Part a) in these figures shows the results on pressure drop 
data from experimental design A1 where only one injection step has been used. Here, all 
the contributions are below 1. This means that the computed observations F(u,p) are 
unable to differentiate two parameters within the given resolution rjj and accuracy ei on 
the observations. Part b) in these figures shows that the last experimental design, A3
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Time [min]
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Pressure Drop 

Production

1500 p

0 2000 4000 6000 8000 10000 12000 14000
Time [min]

Figure 4.1 Pressure and production data for a) experimental design Al, and b) experimental design A3 
(figure from Paper III).

(with six injection steps) gives data where CTB(Fi,'pj) > 1 for most of the parameters. 
Hence, the parameters are identifiable with the current experimental design, resolution 
and measurement error. This is also the conclusion after the confidence intervals are 
computed. The confidence intervals in Figure 4.5 (Figure 3 from Paper HI) are narrow in 
a large saturation range for experimental design A3.
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Figure 4.2 Contribution of observations (AP) versus time for water relative permeability parameters in
a) design A1 and b) design A3 (both cases described in Paper III).
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Figure 4.3 Contribution of observations (AP) versus time for oil relative permeability parameters in
a) design A1 and b) design A3 (both cases described in Paper III).
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Figure 4.4 Contribution of observations (AP) versus time for capillary pressure parameters in a) design
A1 and b) design A3 (both cases described in Paper III).
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Figure 4.5 Estimated two-phase relative permeability and capillary pressure functions with 95% 
confidence intervals (figure from Paper HI).

Now consider parameter 8 in detail. In Figure 4.2 the contribution of pressure drop data 
on the water relative permeability parameters is considered. In Figure 4.2b is 
CTB(AP, p8) > 1 which means that this parameter can be identified with the given 
accuracy in data, £,., and with the resolution in the parameters, rjj. Here, parameter 8 
(the last parameter in the representation of water relative permeability, see Table 4.1) 
has support for Sw = [0.85,1.0], and the contribution of observations for this parameter 
will of course be highest in the beginning of the experiment since this parameter has 
support in the saturation region that first is introduced to the oil injected. 
CTB(AP,Pj) < 1 for the rest of the parameters in figure 4.2a, i.e., |p‘ -p*| > T]j for the

rest of the parameters, hence the experimental design is not sufficient for identifiability 
of the parameters. Experimental design A3 is then considered. In this design pressure 
drop and production data from a multi-step oil injection are analyzed. The new design 
gives CTB(AP,p) > 1 for several parameters, see Figure 4.2b. The situation is the same 
for the oil relative permeability parameters in Figure 4.3b. From the values of the CTB 
for water and oil relative permeability, most of these parameters were identified for a 
multi-step injection design.

Table 4.1 Parameters and location of knots for two-phase experimental designs (A1 and A3).

P(krw) 0.0 0.1e-6 0.5e-3 0.5e-2 0.5e-l 0.15 0.35 1.0
p(kro) 1.0 1.0 0.55 0.3 0.15 0.5e-l 0.1e-4 0.0
P(P=) 5.0e+3 9.0e+2 4.5e+2 3.5e+2 3.0e+2 2.7e+2 2.5e+2 2.0e+2
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Figure 4.6 Contribution of observations (AP) versus time for capillary pressure parameters in a) design 
A1 and b) design A3 (both cases described in Paper III) with increased resolution on the parameters 
(T|j=5%).
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Figure 4.3b) clearly illustrates that the different parameters that have support (see 
discussion on support of parameters in Paper II) in different saturation regions, will be 
identified by the data at different times. To identify parameter p]4, the pressure drop 
data in the time interval t e [0,6000] is necessary, and parameter pn can be identified by 
pressure drop data in the time interval r e[7000,10000]. Only parameter p]0,p,i,p12 can 
be identified by the pressure drop data in design Al, see Figure 4.3a), i.e., the 
parameters with support for Sw = [0,0.5], which is the saturations at the end of the 
experiment (just before and after breakthrough).

The capillary pressure data in the first design is unable to identify the parameters with 
rjj equal to 2.5% of the true parameter values, see Figure 4.4a). The result is the same
for the multi-step design, however, the CTB is higher for the last design, see Figure 
4.4b). Figure 4.6 shows the CTB-results when the accepted resolution of the capillary 
pressure parameters are increased to 5%. Some of the parameters can then be identified 
in the multi-rate experiment, while the identifiability still is too low when data from the 
single-rate injection (Al) are used.

These results coincide with the results from Paper HI. In Paper IH a very good 
agreement between experimental and predicted pressure drop and production data is 
obtained. The values of the SSR for pressure drop and production data are in agreement 
with the estimated standard deviation for these data (here are the estimates of 
measurement errors based on analysis of experimental equipment) and a further 
reduction of the SSR will not likely be obtained. Still, the number of runs is below the 
expected value due to some bias error for some saturation intervals. This is the first time 
experimental data have been reconciled and that the SSR meets the statistical criteria. 
The corresponding confidence intervals are quite narrow for most of the saturation 
interval, see Figure 4.5. Since the sensitivity matrix is computed and used in both the 
computations of CTB and confidence intervals, we see the same results with respect to 
choice of experimental design in the confidence intervals and CTB. The parameters that 
were identifiable within the resolution of rjj have been found with high accuracy. The
capillary pressure parameters were identified within higher resolution than the relative 
permeabilities, and the accuracy of the estimated capillary pressure functions is lower 
than for the other functions, see Figure 4.5.

Another approach to improve the accuracy of estimates is to measure data that contain 
additional information. In Paper VI the use of MRI for observing fluid saturation within 
the core sample and the use of those data in estimation of flow properties are 
demonstrated. An excellent match of pressure drop, production and the saturation 
profiles were obtained, except for low water saturations for the water saturation profiles. 
This may be due to the relative small number of data in this area. However, the 
confidence intervals are larger than desired and this suggests that the preferred 
experimental design may be to use a multi step injection scheme and in situ saturation 
measurements for estimation of two-phase flow properties.
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4.3 Design of Three-Phase Flow Experiments
The three-phase flow properties concise of the three-phase relative permeability and 
capillary pressure. Here the capillary pressures for water-oil and gas-oil are treated as in 
two-phase flow, i.e., Pcim = PC0JSJ and Pc,og= Pc,og(Sg). In this section, the design of
three-phase flow experiments is proposed, the method for estimation of the multiphase 
flow properties is derived and the proposed method is applied on two- and three-phase 
experimental data. Next, details concerning the sensitivity coefficients and their impact 
on “false” sensitivity, support, identifiability, pressure drop and production data and 
confidence intervals are discussed.

4.3.1 Design, Method and Results

There is a huge variety of ways of performing experiments leading to three-phase 
relative permeability estimates. For example, one may inject one, two, or three phases 
simultaneously into a core sample, or conduct some constant pressure drop experiments. 
Obviously, it is desirable to keep the number of experiments needed for three-phase 
relative permeability determination as low as possible, yet the accuracy with which 
these functions are determined as high as possible. In Paper I a systematic approach for 
designing the three-phase experiments leading to accurate determination of the three- 
phase relative permeability functions has been presented. This procedure is based on the 
results from the linearized covariance analysis described in section 2.3.1 and the 
proposed procedure in section 4.1.4. In Paper I, the accuracy with which the relative 
permeability functions may be determined from six different experimental designs have 
been investigated. The cases considered are:

• la and lb: Determination of oil and water relative permeability functions using 
differential pressure and production data from one three-phase experiment (la 
corresponds to a steady state and lb to an unsteady state fluid injection).

• Ha and Hb: Determination of water, oil and gas relative permeability functions using 
differential pressure and production data from two three-phase experiments.

• Ilia and Hlb: Determination of water, oil and gas relative permeability functions 
using differential pressure and production data from two three-phase experiments 
and one two-phase gas injection.

An overall observation is that the relative permeabilities are well determined in 
saturation regions corresponding to regions represented in the data even for a limited 
number of data. The accuracy of the estimated flow functions is highest when the 
steady-state type data are used in estimation, i.e. for the cases la, 11a and Ha described 
above.

After this first analysis of a possible experimental design, the methodology was further 
developed in Paper II. The different parameters in the flow function representation has 
support for a limited saturation region, and this characteristic of the functional 
representation is used to design the experiments so that they produce data in saturation 
regions where the unknown flow function parameters have support. In this paper, a 
synthetic case with pressure and production data from a two-phase experiment and a
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three-phase experiment was analyzed. Three-phase relative permeabilities were 
estimated from the synthetic data and the accuracy of these estimates was computed. 
The results of the estimation were investigated by examination of the final sum of 
squared residuals (SSR) and the number of runs. The results were that when a flexible 
functional representation of the flow functions was used, the three three-phase relative 
permeability functions were accurately estimated in the saturation region corresponding 
to the experimental data. Hence, the experimental design proposed in Paper I was 
confirmed to give accurate estimates of the flow functions in the region of interest. 
Next, the proposed experimental design and interpretation method was used on 
experimental data. Pressure drop and production data from one two-phase oil-water 
experiment and one oil-gas-water experiment were used to determine the three-phase 
relative permeability functions and two-phase oil-water and oil-gas capillary pressure 
functions. This was the first time, to the best of the authors knowledge, that three-phase 
flow functions have been estimated from experimental data and that two- and three- 
phase data have been simultaneously reconciled by simulations.

In Paper IV, the analysis of experimental data has been further developed. In this paper, 
the experimental apparatus constructed for two- and three-phase displacement 
experiments at reservoir conditions is presented. Then three-phase relative permeability 
functions and two-phase oil-water and oil-gas capillary pressure functions have been 
estimated simultaneously from pressure drop and production data from two three-phase 
experiments and one two-phase experiment. The predictive model by Stone has also 
been investigated. The three-phase relative permeabilities have been calculated with that 
method using the estimated two-phase relative permeabilities as input. Then the Stone 
three-phase relative permeabilities have been used to simulate the three-phase pressure 
drop and production data, and the results were compared with the experimental data. 
The results showed that the Stone predictive model overpredicted the oil production and 
the pressure drop, as described by Baker [1988].

4.3.2 Sensitivity Coefficients
In this section, the impact of the sensitivity coefficients on “false” sensitivity, support, 
identifiability, pressure drop and production data and confidence intervals will be 
discussed.

The background chapter shows that both the estimation of parameters and assessing 
accuracy of the estimated functions depend on the sensitivity coefficients. In Paper V, 
the sensitivity coefficients are computed both analytically and numerically. The impact 
of error in the numerical sensitivity coefficients on parameter estimation and accuracy 
computations will now be illustrated. The proposed three-phase experimental design 
from Paper I has been further developed in Paper V.

Due to the complexity in three-phase flow where the relative permeabilities are allowed 
to be functions of two saturations, each parameter to be estimated will have support in a 
limited area. The oil relative permeability function is given as

z=I 1
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where e.g. coefficient cl2 correspond to region 1 and 2 in Figure 4.7a) (from Paper V). 
To estimate this parameter, we need experimental data for water saturation S„ e [0,0.2] 
and oil saturation S0 e [0,0.3], The bold line in the two-phase region from 
(Sw,Sg)- (0,0) to (5W,5'„) = (0.8,0.0) and into the three-phase region 

(Sw,Ss) = (0.2,0.6) shows the saturation trajectory for the single three-phase
experimental case studied in Paper V. As discussed in this paper, coefficient c12 can not 
be estimated from these data since there are almost no experimental data in this region. 
However, the numerical sensitivity coefficient showed some unrealistic high values due 
to numerical differentiation and the concept of “false” sensitivity was introduced, see 
Figure 4.8 (Figure 8a from Paper V). Another parameter, c22, has support in a larger 
saturation region SwxS0= [0,0.4] x [0,0.3] corresponding to area 1-4 in Figure 4.7a. 
This parameter can be estimated from the experimental data, i.e. from data after t=2500 
min (see Figure 4.8b). Hence, the identifiability of the parameters differs depending on 
the way the sensitivity coefficients are computed since the identifi ability is proportional 
to the sensitivity coefficients. The numerical sensitivity coefficients tend to overestimate 
the sensitivity coefficients, especially for parameters with support in regions with low 
sensitivity, see Figure 4.8a) and discussion in section 3.5. Numerical sensitivity 
coefficients become huge and indicate a sensitive region, but there are no data in this 
region. As a result, the contribution of observations for these parameters will be larger 
using numerical sensitivity coefficients than analytical sensitivity coefficients and it can 
look like they are identifiable with the current experimental design. This “false” 
sensitivity leads to a decrease in the convergency rate in the parameter estimation since 
the gradient step is computed from erroneous sensitivity coefficients.

The identifiability of parameters in the three-phase case is considerable more difficult 
than for the two-phase case. The sensitivity coefficients will generally be lower since the 
number of parameter increase, i.e., we will need more data. The measurement error will 
be the same but this requires a highly advanced three-phase apparatus, as described by 
Ebeltoft et al. [1998]. The resolution of the parameters is the same. Figure 4.9 shows the 
CTB of pressure drop and production data for parameter c52 using both analytical and 
numerical sensitivity coefficients. Parameter c$2 has support for 
Sy, x So = [0.4,1.0]x [0.0,0.3], i.e., area 5-8 in Figure 4.7a). This parameter has support in 
an area that covers most of the area where we have high degree of information in the 
data, hence the sensitivity coefficients for this parameter will be large for all the data 
points. With a resolution of 5% on the parameter (c52 =0.005 ±0.00025), an upper 
bound of 1% on the pressure drop data and 1% error in the production data (but a 
minimum of 0.001 PV), the contribution of observations (CTB) for pressure drop and 
oil production data are given in Figure 4.9.
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Figure 4.7 a) Three-phase oil relative permeability seen from above. The water and gas B-splines basis 
functions are also plotted. The saturation trajectory corresponding to a three-phase experiment is also 
plotted (bold line), b) Three-phase oil relative permeability in 3D.
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Figure 4.8 a) Sensitivity coefficient for parameter c}2, illustrating “false” sensitivity in low sensitivity 
regions, and b) Sensitivity coefficient for parameter c22, illustrating oscillation in numerical sensitivity 
coefficients (figure from Paper V).
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Figure 4.9 a) Contribution of pressure drop data on parameter c%, and b) contribution of production 
data on parameter cS2 using analytical and numerical sensitivity coefficients (figure from Paper V).

This analysis shows the importance of accurate computations of the sensitivity 
coefficients since these are the key element when estimating parameters and assessing 
accuracy of the estimates. Further, an experimental design must be conducted before the 
experiment to evaluate the information content in the data which is going to be used 
later for estimation of flow function parameters. This analysis shows that the 
information content in the pressure drop data is higher than the production data, see 
Figure 4.9. Actually, we will not be able to identify the parameter discussed (c52) using 
production data with the given experimental design, error and resolution on the 
parameter as given above (CTBcl in Figure 4.9b)). Only the pressure drop data in the 
last two injection steps will be necessary for identifying this parameter, Figure 4.9a).

The confidence intervals have been computed for the oil relative permeability using 
both numerical and analytical sensitivity coefficients and data from one three-phase
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trajectory. The difference between these two surfaces is plotted in Figure 4.10. This 
figure shows that the confidence intervals are narrow along the saturation path 
corresponding to the experimental data trajectory (actually, they are both low and the 
difference between them is low). However, the confidence intervals computed using 
numerical sensitivity coefficients are smaller than the confidence interval computed 
using analytical sensitivity coefficients. Hence, for the low sensitivity region (outside 
the experimental trajectory) the difference is huge due to the “false” sensitivity in the 
numerical sensitivity coefficient.

This analysis of contribution of observations and the analysis of confidence intervals in 
Paper V show that parameters with support in those saturation regions with high quality 
data can be estimated with an acceptable accuracy. However, when solving the inverse 
problems we are dependent on accurate sensitivity coefficients and for several cases, 
numerically sensitivity coefficients introduce “false” sensitivity and then slow down the 
convergency rate in the estimation procedure. This “false” sensitivity also results in 
narrow confidence intervals, indicating that the information content in the data is higher 
than it really is.

As discussed in chapter two, the non-linearity in the model is inverse proportional with 
the sensitivity [Liu, 1993]. Therefore, the proposed experimental design with analytical 
sensitivity coefficients will give a low degree of non-linearity for several parameters 
characterizing the three-phase flow functions. Hence, the assumption that the model is 
linear close to the global minimum can actually be tested.

0 Gas Saturation

Water Saturation

Figure 4.10 Difference between upper confidence intervals (for three-phase oil relative permeability) 
computed from analytical and numerical sensitivity coefficients (figure from Paper V).
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As shown in chapter two, the non-linearity decreases with increasing sensitivity. 
McLaughlin et al. [1996] discussed the stability problems in parameter estimation 
around minimum with low sensitivity, generally a ill-posed problem. For the case 
considered here, the stability of the estimation can be illustrated by the number of 
iterations necessary to find the minimum. Due to the “false” sensitivity introduced by 
numerical sensitivity coefficients, the parameter estimation is considerably more 
difficult and time consuming than in the case when analytical sensitivity coefficients 
were applied, see Figure 4.11. In this figure the number of iterations in a parameter 
estimation is compared when the perturbation and direct method are used for sensitivity 
coefficient computations. As seen, the analytical sensitivity coefficients give a faster 
solution to the problem.
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Figure 4.11 a) Number of parameters vs. CPU-time in direct computation of sensitivity matrix in Case 
1, b) Number of parameters vs. CPU time, and c) Number of parameters vs. number of iterations after 
estimation of oil relative permeability surface in Case 2.
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4.4 Conclusions
The direct method for computing sensitivity coefficients has been implemented for 
simulation of two- and three-phase flow (Paper V). This method is superior when the 
Newton-Raphson method is used for solving the simulator equation. The problem with 
choosing perturbations in the perturbation method is now avoided since the sensitivity 
coefficients are computed analytically after a discretization scheme is chosen. The direct 
method gives accurate sensitivity coefficients and the problem with “false” sensitivity in 
regions with low or no sensitivity is eliminated. The computational savings using the 
direct method is demonstrated and proves to be huge. The methodology for estimating 
three-phase flow functions has been further developed in Paper V since the concept of 
contribution of observations has been implemented for determination of the 
identifiability of the parameters.

The proposed experimental design for both two- and three-phase flow make it possible 
to evaluate several experiments with respect to a predefined accuracy (or resolution) on 
the parameters, identifiability, accuracy of estimated flow functions, different 
experimental scenarios, sensitivity of parameters, and non-linearity of the model. 
Therefore, a careful experimental design is essential for determination of the three-phase 
flow functions. Accurate sensitivity coefficients are essential for the experimental 
design procedure. Hence, the development of analytical sensitivity coefficients was 
necessary for the development and reliability of the experimental design procedure.

We have developed, tested and verified on synthetic data (Paper I and Paper II) that with 
a suitable experimental design, three-phase flow functions can be estimated 
simultaneously with high accuracy in saturation regions where we have high quality 
data.

For the first time, simultaneous reconciliation of two- and three-phase displacement 
experiment data has been presented (Paper IV). These multiple sets of experimental data 
have been interpreted for estimation of three-phase relative permeability and capillary 
pressure functions.

It has been shown (in Paper HI), that accurate and simultaneous estimates of two-phase 
relative permeability and capillary pressure functions can be achieved using the inverse 
approach. Experimental data have been reconciled by simulations and the solution 
satisfies the statistical criteria, hence the solution is within the estimated standard 
deviation in the data. An analysis of the identifiability of the parameters in this work 
shows that the parameters are identifiable when a multi-rate injection scheme has been 
applied. In Paper VI also in situ saturation profiles are reconciled by simulation. 
However, since a one-step injection scheme has been used in the experiment, the 
accuracy of the estimates is not satisfactory in the entire saturation interval. Therefore, 
the proposed experimental design for two-phase flow experiments is to use a multi-step 
injection scheme. The accuracy of the estimates will be further increased if in situ 
saturation profile data are measured.
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5 Future Work

5.1 Two-Phase Flow
This work shows that two-phase experimental data (pressure drop and production) have 
been reconciled within the statistical criteria for a solution, Paper M. In Paper VI also in 
situ saturation profiles have been reconciled. However, there are still some issues in 
two-phase flow that should be investigated in more detail.

First, hysteresis has not been addressed in this work. Two-phase experiments including 
hysteresis loops can be performed and each experiment can be interpreted go get the 
envelope curve and scanning curves directly. However, in the future, a model including 
only a few extra parameters should be developed (or existing models can be tested) and 
verified experimentally so that the relative permeability and capillary pressure envelope 
and scanning curves can be estimated simultaneously.

Second, the experimental design procedure can be extended to include experimental 
cost. Today, the two-phase steady-state-type experimental data are quite costly to 
measure. Therefore, the future experimental design research work should emphasize on 
reducing the cost without compromising the accuracy of the two-phase flow functions in 
specific saturation intervals. The experimental procedure should consider the following 
steps:

Decide the saturation interval where accurate relative permeability and/or capillary 
pressure must be achieved. For this interval:

• Consider cost and time for steady state, unsteady state and centrifuge experiments.

• Consider cost and time for pressure drop, production, in situ saturation and pressure 
data.

• Consider single rate or multi-rate injection scheme and different injection rates.

A full investigation of all possible experimental designs as presented above is a huge 
project, but it will provide general guidelines for how two-phase experiments can be 
conducted to achieve quality data for determination of the flow properties in a specific 
saturation interval.
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5.2 Three-Phase Flow
A major problem regarding three-phase model studies is the shortness on good quality 
experimental data. A limited number of three-phase data sets have been published 
during the last 50 years. Several of the data sets are supplied with insufficient 
information about saturation history and rock and fluid properties and the analysis of 
experimental three-phase data has often been based on several simplifications such as 
neglecting capillary pressure, uniform saturation profiles and incompressible fluids. 
Therefore, high quality three-phase experiments should be performed where the flow 
processes are controlled. The experiments should include in situ saturation for 
verification of the three-phase model and for controlling the saturation paths in three- 
phase flow.

Next, hysteresis in relative permeability and capillary pressure functions has not been 
investigated in this work. When hysteresis is included, the relative permeabilities will 
also be dependent on the saturation history in the experiment. Several models for three- 
phase hysteresis have been proposed over the years [Land 1966; Killough, 1976; 
Carlson, 1981; Eikje et al., 1992; Skauge et al., 1994], but these models consider the 
relative permeability and capillary pressure to be dependent on only one saturation. 
Therefore, a proposed strategy for determination of hysteresis in three-phase flow 
functions is to further develop the inverse approach where the flow functions are 
represented as functions of two independent saturations. With a hysteresis model 
including the concept of envelope curves and scanning curves from the two-phase 
models, then relative permeability and capillary pressure in thre-phase flow will truly 
depend on the saturation history. However, development of such a model must be 
followed by analysis of three-phase experimental data to include the hysteresis effects 
obtained there.

The cost and complexity of three-phase experiments are considerable and the pitfalls are 
many. This is the reason for lacking three-phase experimental data today. Therefore, 
when high quality three-phase data are available, existing and new three-phase 
predictive models can be tested and developed. The set of three-phase experimental data 
interpreted in this work can be used to verify several predictive models. The Stone 
[1970] model was analyzed in this work, but several others discussed in Baker’s [1988] 
work can be analyzed with respect to their ability to reconcile the three-phase 
experimental data. Ultimately, predictive three-phase flow models based on accurate 
two-phase data will be preferable due to the high cost, difficulties and time associated 
with three-phase flow experiments.

-62-



Nomenclature
A Sensitivity matrix
B/b Volume factor
B B-splines basis function
C Covariance matrix of flow functions
Cp Initial estimate of covariance matrix of estimated parameters
c B-splines coefficient
D Sensitivity of flow functions with respect to model parameters
d Direction towards the minimum of problem
F Model response
F Vector function at time step n+1
f Vector of flow functions
G Constrain matrix
G Vector function at time step n
G Gravity head
g Gravity acceleration vector
g General function
H Hessian matrix
h Arbitrary nonzero vector in the parameter space
J Jacobian matrix
J Performance criteria
K Curvature
[k] Permeability tensor
kr Relative permeability
Ny Tensor-products B-splines basis function
Nm Number of observations
Np Number of parameters
Ng Number of flow functions
Nx Number of grid blocks in x-direction
n Normal vector
P Covariance matrix of parameter estimates
Pc Capillary pressure
Pweii Well pressure
p Vector of parameters
p Estimated parameter vector
p0 True parameter vector
p Pressure
Q Volumetric flow rate
q Injection rate, rate term
R Vector function
Rs Solution gas/oil ratio
S Saturation
T Transmissibility
t Time
u Vector of state variables
u Fluid velocity, Darcy velocity
V Volume of produced fluids
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V Covariance matrix
Vb Volume of grid block
w Weighted matrix of measurement error
X X-direction
y B-splines partition
z Observations
z Z-direction

Greek letters
a Level of confidence interval
P Regularization index
A Convergence criterion
5 Accepted resolution of parameters
£ Convergency criteria
Bi Upper bound of observation noise
Sz Random error in observations
Bp Random error in parameters
<t> Adjoint state variable vector
r Boundary
Y Gravity term
Tlh Curve on surface S in the direction of h
n Admissible error of the identified parameter
X Non-negative scalar
<p Porosity
p Fluid viscosity
p Density
s Covariance of measurement errors
a Measurement error
T Parameter error

Subscripts
f Phase
g Gas
i Block index
k Iteration index
nw Non-wetting phase
0 Oil
og Oil and gas
ow Oil and water
RC Reservoir conditions
SC Standard conditions
w Water, wetting phase

Superscript
f Phase
k Iteration index
m B-splines order
n Time index, normal
t Tangential
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Appendix A Differentiation of Model Equations

The model equation is given in (3.6) as: 

F(u, p)',+1 =G(u,p)\

This vector equation is solved for each grid block i at each time step n. Hence, F is a 
diagonal matrix where the size depend on how many grid blocks there are and how 
many state variables. There is also a F matrix for each phase. G is a vector, the size 
depending on the number of grid blocks, p is the vector of model parameters and u is 
the vector of state variables.

Oil Equation
Using the finite difference scheme with block centred grid system, the discretized form 
of (3.6) can be written in the following form:

(A.1)

Differentiating the right hand side, G0, with respect to the state variables in each grid 
block gives

Differentiating the vector equations F and G with respect to the parameters p gives

(A.3)
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and

dpj dp j

ar,,

dpj

(Po.M ~ Po,~GJ

'(Po,i~Po,i-l~Go)

+ - iPwell ~ Po,i ~ Go )

(A.4)

where the transmissibility is differentiated with respect to the parameters as 

Hoi Cdkro,i
dpj dpj

Water Equation
Using the finite difference scheme with block centred grid system, the discretized form 
of (3.6) can be written in the following form:

Fw,i(U’P)"+1 - TWii^iPw,M - Pw.i - GwT+1 - Tw,i-^Pw,i ~ Pw,i-\ ~Gw)n

+Tw,i(Pwell ~ Pw,l ~ GJ”+1 (A.5)

Differentiating the right hand side, Gw, with respect to the state variables in each grid 
block gives

4?, Af

dG*
dS„

-^t<p(SwKpc,ow-K)

ir=°-

(A.6)

Differentiating the vector equations F and G with respect to the parameters p gives
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(A.7)dGJ^P y 0

and

<#y,(u,p)n+1 _ K,4
dpj jp (Pw,M - P»,i ~GJ + T„J+i

rdPc^t dPC0Wj+1^

*,

dpj
(P»,i ~ Pwj-1 -G«-) + T„,,.4

; J

dPc,0„,i-1
5Pj i /

d\T
+ ~5~-(Pv,ell ~ P»j ~Gw) + T„.i

OP/

'(Km,/

V rj y

(A.8)

where the transmissibility is differentiated with respect to the parameters as

4p,

Gas Equation
Using the finite difference scheme with block centred grid system, the discretized form 
of (3.6) can be written in the following form:

+Rs.iToAP»ell ~ Po,i ~ G»)"+’ + Tg,i(P*eU ~ Pgj ~ A A’ (A.9)

Differentiating the right hand side, G0, with respect to the state variables in each grid 
block gives
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ag
- _ ~^t [(*_ sw - Sg )(&#« + Rs(p b„ + Rs(pb0 ) + SJ(pbg +

(A. 10)

ac: vb
ay. Ar ay.

Differentiating the vector equations F and G with respect to the parameters p gives

p
dpj

(A.ll)

and

ar
^ ap,

dr.
-R o,i-$

dp
(Poj- Po,i-l~Go)

arg,‘+i

dpj

ar_

+Rs,i (P™u ~ Po,i - Go )

ar,.
“(P»eU ~ Pg.i ~Gg) + Tg,i

a^,o8,i>i a]pc,og,j
\ ap^

^a^„ a^,_^

ap. dpj

(A.12)

where the transmissibility is differentiated with respect to the parameters as

ap, ap.
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Derivative of Production Terms
The production terms are a part of the left hand side, and the terms will form the 
diagonal of the Jacobi matrix since all terms are computed at grid block i. They are 
given as

P = ~Ph{Pwell ~Po~Go)

= ~PL(Py,ell ~Pw~ Gw) = -PIw{Pwell + Pc,o» ~ Po~ Gw)

% = ~PIS (Pwell -Pg-Gs)~-PIg (P,jell - Pc,m, +P0-Gg)

Rs<lo = -R,PIo [Pwell ~Po~Ge)

Differentiating the production terms with respect to the model parameters gives 

j JPj

dp.
dpj dpj

<5Pj

dPI b„ dkr,
dpj Ps dpj 

dpj Op;
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Appendix B Differentiation of Boundary Conditions

Several boundary conditions are implemented in the model: injection of water or oil or 
gas at constant rate or injection of all phases simultaneously at constant total rate and 
production against constant well pressure or at constant rate. For these boundary 
conditions are the derivative of production and pressure drop with respect to the model 
parameters computed.

Injection of oil at constant reservoir rate

Considering a one dimensional, two-phase oil-water case with injection of oil at 
constant rate and production of water against constant well pressure. The water 
production is then

K- =^iVb,i(PiK,i[S0J ~ ] ~ 2, Vb/PA.,, [l — $w,i —
r‘=l z=l

where Nx is the number of grid blocks in the x-direction. Differentiation of the water 
production with respect to a model parameter p; is given as

The differential pressure is given as

f

where

q0 is the constant oil injection rate, and Pconst is the outlet well pressure. Differentiation 
of the differential pressure with respect to a model parameter p; is given as

dAP dAP dp0 | dAP dSw < dAP 
dpj dp0 dpj dSw dpj dpj

This gives

dAP
dp j

r 2
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Simultaneous injection of water and oil at constant reservoir rate

Considering a one dimensional, two-phase oil-water case with injection of oil at 
constant rate and production of water against constant well pressure. The water 
production is then

1=1

where Nx is the number of grid blocks in the x-direction. Differentiation of the oil 
production with respect to a model parameter p, is given as

The differential pressure is given as

+ g») + pIoG0 +PIJG* -Pc,ow)
2Plf

where

HPI, = PI + PIn =&&+&&

q„ and qw is the constant oil and water injection rate, and PCOna is the outlet well 
pressure. Differentiation of the differential pressure with respect to a model parameter py 
is given as

dAP _ dAP dp0 + SAP dSw [ SAP 
dPj dp0 dps dSw dp j dp j

This gives

-(-(4* +<?„) + phGo + PIw(G, ~ Pc.ow)) f

!YPIf2
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Injection of gas at constant reservoir rate

Considering a one dimensional, two-phase oil-gas case with injection of gas at constant 
rate and production against constant well pressure. The oil production is then

;=i

where Nx is the number of grid blocks in the x-direction. Differentiation of the oil 
production with respect to a model parameter p, is given as

The differential pressure is given as

7

where

qs the constant gas injection rate and Pconst is the outlet well pressure. Differentiation of 
the differential pressure with respect to a model parameter p,- is given as

dAP dAP dp0 dAP dS dAP 
dPj dp0 dp, dSg dpj dpj

This gives

dAP
dpj

IIPI/.

Simultaneous injection of water, oil, and gas at constant reservoir rate

Considering a one dimensional, three-phase oil-water-gas case with injection of oil, 
water and gas at constant rate and production of oil against constant well pressure. The 
oil production is then
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where Nx is the number of grid blocks in the x-direction. Differentiation of the oil 
production with respect to a model parameter p; is given as

dS„.; dS,
— +

dpj dp
) J

The differential pressure is given as 

&P=Px=L~Px=o

~(qw + <lo + g;) + PIoGcC1 + Rs) + P1w(Gw ~ Pc,<m) + + Pc og)
Po, 1 +-

where

am,
KKo ( KK [ bgk,

A^. A^, A^,

qa, qw and qg is the constant oil, water and gas injection rate, and Pcomt is the outlet well 
pressure. Differentiation of the differential pressure with respect to a model parameter p; 
is given as

dAP _ dAP dp„ t dAP dSw [ dAP dSg ^ dAP 
dpj dp„ dpj dSw dpj dSg dp, dpj
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This gives:
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Abstract
This paper presents, for the first time, a systematic approach to the selection of experi­
mental designs leading to accurate determination of the three-phase relative permeability 
functions. The approach is based on a linearized covariance analysis which is utilized to 
determine the confidence intervals on estimated relative permeabilities. These confidence 
intervals define the accuracy with which the relative permeabilities can be determined 
for the given data, their acccuracy, and the chosen flooding scenario. In this paper, the 
confidence intervals are utilized to quantitatively assess the utility of different designs 
towards accurate three-phase relative permeability determination. For the cases consid­
ered here, we demonstrate that accurate estimates may be obtained in the parts of the 
saturation region which are reflected in the experimental data.

Introduction
Two- and three-phase relative permeabilities are important properties of porous media. In 
order to perform reservoir forcasting in a multi-phase situation, these functions will have to 
be specified at all locations within the considered porous structure. Since one usually does 
not have sufficient field data available for analyses leading to relative permeability estimates, 
the properties are most commonly inferred through analyses of data acquired during some 
process imposed on a sample extracted from the reservoir. These data will typically be from 
some type of displacement experiment, in which one or several fluids are injected into a 
saturated core. The data (called flooding data hereafter) may comprise fluid production and 
pressure drop as a function of time, and, possibly, in situ saturation and/or phase pressures 
as functions of time and position.

For two-phase situations, a sound approach has been developed for determining the rel­
ative permeabilities[15]. In this approach, the relative permeability functions are deter­
mined through a solution of a series of linear inequality constrained least-squares problems 
(a regression-based approach), the idea being that the properties are chosen such that the 
measured flooding data “match™ the ones calculated using a numerical simulator. In each 
step in the regression-based approach, the functions are represented by a set of parameters. 
For a number of two-phase experimental scenarios, it has been demonstrated that relative 
permeability and capillary pressure functions may be accurately determined utilizing this ap­
proach, e.g., dynamic displacement experiments[12, 6], centrifuge experiments)?], and mod­
ified steady-state experiments^]. This methodology has proven to be quite superior to the 
more frequently used JBN method[3] (see analysis in [11]), and has the advantage of being 
able to determine both capillary pressure and relative permeability functions simultaneously 
from a given set of data. One particularly important characteristic of the regression-based
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approach is that it allows for the determination of functions, rather than sets of discrete 
points, the latter being the output of the JBN-type interpretation of displacement data-

in the three-phase case, however, the estimation of functions, as opposed to sets of discrete 
points, has just recently been addressed[5]. Most of the effort up to now has been concen­
trated on extending the JBN-method to three-phase situations (see, e.g.,[13]), and utilization 
of the steady-state technique (see, e.g.,[9, 10]). Both these methods provides relative per­
meability values (i.e., points) along one or several trajectories in the three-phase diagram. 
However, the entire relative permeability functions need to be determined if the estimates 
should be of any utility in reservoir simulation or forecasting. Furthermore, as the capillary 
pressure is neglected in both these approaches, the relative permeability points determined 
from these analyses will suffer from this modeling error[4]. Although the regression-based 
approach circumvents previous problems, the experiments need to be carried out in such a 
manner that sufficient information is extracted for accurate estimation of the three-phase 
relative permeability functions over a relatively large saturation region.

This paper addresses the design of three-phase experiments leading to accurate deter­
mination of relative permeability functions. We will investigate different types of data and 
different flooding scenarios and their impact on the accuracy of the estimated relative per- 
mebility functions.

Design of Experiments
There is a huge variety of ways of performing experiments leading to three-phase relative 
permeability estimates. For example, one may inject one, two, or three phases simultane­
ously into a core sample, or conduct some constant pressure drop experiments. Obviously, it 
is desirable to keep the number of experiments needed for three-phase relative permeability 
determination as low as possible, yet the accuracy with which these functions are determined 
as high as possible. This section presents a systematic approach for designing the three-phase 
experiments leading to accurate determination of the three-phase relative permeability func­
tions. By design of three-phase experiments, we mean the manner in which the experiments 
are conducted (e.g., a series of injections of gas into a sample initially saturated with oil and 
water) and the experimental flooding data measured (both type of data and location of each 
datapoint (in time and/or space), as well as the accuracy with which the data are measured).

The evaluation of the designs will be based upon measures of the accuracy with which 
the relative permeabilities may be determined from a given set of data. In the two-phase 
situation, accuracy measures have been obtained through a linearized covariance analysis[4]. 
In the covariance analysis, it is assumed that a mathematical model capable of describing 
the physics of the considered process exists. It is further assumed that we can adequately 
represent the relative permeability functions by a set of parameters, that the mathematical 
model is linear in these parameters near the solution, and, finally, that the errors in the 
measurements are additive with zero mean and a given standard deviation; see Kerig and 
Watson[4] for details. The parameters are taken to be estimated through solution of the 
constrained least-squares problem defined by:

min J0) =
subject to G/3 > 6.

(1)

(2)
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Here, Ym is the vector of measured data, and Ys(3) is the corresponding vector of simulated 
quantities. W is the weighting matrix, and 3 contains the parameters in the functional 
representation of the relative permeability and/or capillary pressure functions. By choosing 
W to be the inverse of the covariance matrix of the measurements (W = C-1), the solution 
of Eqs. 1- 2 becomes the maximum-likelihood estimates of the parameters, /3[1], It can then 
be shown that the covariance matrix of the parameter estimates is given by[4]

P = (A^-M)-1, (3)

where A is the sensitivity matrix (with elements a,y = dY,j/dfij), and C is the covariance 
matrix of the measurements. Linearizing the relative permeability functions around the true 
parameter values, a (pointwise) relative permeability confidence interval can be calculated for 
any saturation value.

This analysis has been used for determining confidence intervals for the estimates of the 
relative permeability functions for a number of two-phase situations, see[6, 7, 8, 11). Also, 
three-phase situations have recently been considered[5). In this work, we have extended the 
analysis to three-phase situations in which data from several three-phase experiments can be 
considered simultaneously.

Note that these accuracy measures are obtained from knowledge of the simulated exper­
imental data (Ys(/3)), the parameters in the functional representation of the relative perme­
abilities (/?), and the covariance matrix of the measurements (C). Thus, to determine the 
accuracy with which the relative permeabilities may be determined from a particular ex­
perimental design, the core sample and fluid properties will first have to be selected, along 
with injection strategies, types of data and time, position, and accuracies with which these 
measurements are going to be acquired, and finally, the parameters in the functional repre­
sentation of the relative permeabilities. Then, using this selected experimental design, Ys0) 
can be calculated using a numerical simulator; in this work, YS{13) is calculated using the 
fully implicit, black-oil, coreflood simulator CENDRA[2). The sensitivity materix, A, is de­
termined by perturbing (in turn) each element in /3, and calculating each atJ by a first order 
finite difference approximation. Finally, P is calculated through Eq. 3 and thus the relative 
permeability confidence intervals may be found. Note that no actual experimental data are 
needed in this analysis.

Our evaluation of the experimental designs comprises the following steps:

1. Select core and fluid properties, and select a set of relative permeability and capillary 
pressure functions;

2. Select an experimental design (i.e., select a way of conducting the experiments and the 
types of data and location for those data (in time and space));

3. Perform the covariance analysis, i.e., calculate the confidence intervals around the se­
lected relative permeability functions; and

4. Analyze the confidence intervals with respect to desired accuracy in the estimated func­
tions;

In this manner, quantitative measures of the potential performance of different chosen designs 
of the experiment can be obtained. We will next discuss items 1 and 2 in the above evaluation 
procedure.
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The adequacy of this approach depends on the suitability of the representation for the
relative permeability functions. In two-phase situations, univariate B-splines[14] adequately
represent the relative permeability functions[4]. In this work, we have used a bivariate 
extension of this B-spline representation. The relative permeability surfaces are given by

mi+ifl T712+K2

(4)
i i=I »2=1

where / = w,o,g, as we will consider water, oil, and gas cases. For convenience we will 
define Si = 1 — Si, and S2 = Sw if l / to and Sg = Sg otherwise. This representation is a 
tensor-product expansion of the univariate B-spline in the directions along Si and Sg. mi is 
the order of the spline along direction i, and if, is the corresponding number of knots. One 
can increase the flexibility of the surface by increasing the number of knots (in one or both 
directions) and/or by increasing the corresponding spline order. The spline coefficients Cilji2 
will constitute the parameter vector /3.

Table 1: Core properties.

Porosity [/roc.]
Permeability [mfl]
Core length [cm]
Core area [cm2]
Oil formation volume factor 
Water formation volume factor 
Water viscosity [cP]
Oil viscosity [cP]
Gas viscosity [cP]
Initial Water Saturation [/rac.]

0.35
2.0
30
11.22
1.635
1.0
0.34
0.3625
0.0515
1.0

The properties of the fluid and core sample considered in this study are given in Table 1. 
The capillary pressure functions used are shown in Figure 1. In our analysis, we will in­
vestigate the determination of the relative permeability functions, assuming that the core 
and fluid properties as well as capillary pressure functions are known. The analysis works
equally well for estimating the accuracy with which other properties may be determined
(e.g., the capillary pressure functions); however, such considerations are outside the scope 
of the present paper. The relative permeability functions used in this study are shown in 
Figure 2. These functions are tensor-product B-splines of order 3 with 2 knots in each di­
rection, i.e., they are represented by 20 parameters each, giving a total of 60 parameters.
Some of the corresponding B-splines do not have support within the saturation area of in­
terest (as Sw + S0 + Sg = 1, e.g., Sw = S0 — 1 is not a possible saturation combination), 
which decreases the number of effective parameters to 51. The functions are selected by 
utilizing three-phase relative permeability points acquired by Oak[9]. The representation in 
Eq. 4 is fitted to the data through solution of the linear least-squares problem defined by 
min\\k™ — Si, SjOH!, where k™ is the vector of measured relative permeability values, 
and %(/9,Si,Sg) is the corresponding vector of calculated quantities (calculated through 
Eq. 4). The solution is obtained subject to some constraints, see Eq. 2; we have in this work 
imposed monotonicity constraints on these relative permeability surfaces.
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Table 2: Overview of the experiments considered (W: Water; O: Oil; G: Gas.) All steady- 
state experiments stops at 80000 min, while the unsteady-state experiments stops at 40000 
min.

qw[cc/min] q0[cc/min] qg[cc/min] Start time [min]
Experiment 1SS

WO injection 0.020 0.030 0.000 0.0
WOG injection 0.002 0.010 0.040 10000.0
WOG injection 0.001 0.005 0.150 20000.0

OG injection 0.000 0.002 0.500 30000.0
G injection 0.000 0.000 1.000 50000.0

Experiment 2SS
WO injection 0.014 0.014 0.000 0.0

WOG injection 0.014 0.014 0.016 10000.0
WOG injection 0.002 0.002 0.040 20000.0
WOG injection 0.001 0.001 0.160 30000.0

G injection 0.000 0.000 0.500 40000.0
G injection 0.000 0.000 1.000 60000.0

Experiment 3SS
WG injection 0.095 0.000 0.005 0.0
WG injection 0.090 0.000 0.010 10000.0
WG injection 0.050 0.000 0.050 20000.0
WG injection 0.001 0.000 0.099 30000.0

G injection 0.000 0.000 1.000 40000.0
G injection 0.000 0.000 5.000 60000.0

Experiment 1USS
WO injection 0.020 0.030 0.000 0.0

G injection 0.000 0.000 1.000 10000.0
Experiment 2USS

WO injection 0.014 0.014 0.000 0.0
G injection 0.000 0.000 1.000 10000.0

Experiment SUSS
G injection 0.000 0.000 5.000 0.0

Gas Saturation
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Figure 1: Water-oil and oil-gas capillary pressure functions.
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Figure 2: Relative permeabilitity functions used in analysis. Upper left: kr0; upper right: fcr„;
and lower: krs

In this work, we have investigated the accuracy with which the relative permeability func­
tions may be determined from 6 different experimental designs, all of which can be considered 
as modified DDI (decreasing water saturation, decreasing oil saturation, and increasing gas 
saturation) reservoir condition cases, see Figure 3a). The cases are performed to study how 
the relative permeabilities in three-phase apparatuses similar to that at RF - Rogaland 
Research can be determined. In this set-up, three phases can be injected simultaneously at
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Figure 3: a) Trajectories for all the experiments; b) Sections for study of water relative permeability; c)
Sections for study of oil relative permeability; d) Sections for study of gas relative permeability.

reservoir pressure and temperature, and the production of each of the phases and the pressure 
drop across the core can be measured as a function of time, and the three-phase saturation 
profiles can be measured at any steady-state situation. Each of the experimental designs is 
comprised of one to three experiments. Table 2 shows an overview of the injection strategies 
in all the experiments. The details of these experiments will be discussed next.

In steady-state experiment 1 (1SS; see Table 2 for details on the injection strategy for 
this experiment), oil and water are first injected into a fully water saturated core sample, 
and data are “collected” until a near equilibrium situation is reached in both production and 
pressure drop accross the core (i.e., a close to steady-state situation is attained). Then gas 
is introduced into the core sample. This is done through a series of steady-state steps. From 
one steady-state to the next, we decrease the flow rate of liquids (water and oil) and increase 
the gas rate. In the two last steps, we first maintain the gas flow rate, but let the liquid flow 
rate go to zero, and then, finally, increase the gas flow rate. The latter is done to establish 
a high final gas saturation. This procedure follows Oak[9] with only minor modifications. A 
total of 5 steps are utilized for experiment 1SS. In Figure 3a) the average saturation at the 
near steady-state condition (i.e, prior to each of the rate changes) is shown as “trajectory”
#1. (Note that all of the trajectories starts at unity water saturation.) A similar procedure
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is utilized for experiment 2SS (trajectory #2 in Figure 3a)). Experiment 3SS (trajectory 
#3 in Figure 3a)) is a gas-water injection in a fully water saturated sample. Here, the rate 
fraction of gas is increased while the water rate is decreased in 6 steps.

Table 3: Overview of the cases considered.

Case Experiment used Surfaces considered # parameters # datpoints
Case la 1SS ^*rujj kro 34 1800
Case lb 1USS 34 1800
Case Ha 1SS, 2SS 51 3600
Case Hb 1USS, 2USS &ro) &rg 51 3600
Case TTTa 1SS, 2SS, 3SS krtci &j-o i krg 51 5400
Case Hlb 1USS, 2USS, SUSS &r«j 51 5400

For the first unsteady-state experiment (1USS), oil and water are first injected into a 
fully water saturated core sample to establish a two phase oil-water situation in the sample. 
When a near equilibrium state is obtained, only gas is injected at the same rate fraction 
as the last gas rate in the corresponding steady-state experiment (he., experiment 1SS). A 
similar procedure is utilized for experiment 2USS. For experiment 3USS gas is injected into a 
fully water saturated core sample in only 1 step. The end points for gas injections as well as 
oil-water equilibrium average saturations are shown in Figure 3a) for the three unsteady-state 
type experiments.

From the 6 experiments we form 6 different experimental designs (referred to as cases) 
for consideration, see details in Table 3. In the analysis of each of the cases, we assume 
that we measure production of two phases (water and oil), and the pressure drop across the 
core as a function of time. The measurement errors are taken to be ay = 0.005 PV and 
(Jap = 20 kPa for the produced phase volumes and the pressure drop, respectively. In Case 
la we investigate determination of the water and oil relative permeability surfaces with data 
from experiment 1SS. I.e., we assume that the gas relative permeability function is known 
a priori, and investigate only the determination of the water and oil relative permeabilities. 
The dimension of /3 is 34. Case lb is the corresponding unsteady-state case (i.e., using data 
from experiment 1USS). For Case la and lb we have chosen 1200 production data and 600 
pressure data In Case Ha, we study the determination of all relative permeability surfaces 
using data from experiments 1SS and 2SS; Case Hb is the corresponding unsteady-state case. 
Finally, in Case Ilia, we investigate the determination of all of the surfaces from experiments 
1SS, 2SS, and 3SS. Again, Case Illb is the corresponding unsteady-state case; see Table 3 
for details.

Results and Discussion
The results from each of these cases are shown in Figure 4 to 6. The figures are constructed 
to compare the performance of steady-state and unsteady-state type experiments. For each 
surface the results are shown as cross sections, e.g., the water relative permeability surface 
with confidence intervals are shown for constant values of the gas saturations in Figures 4a) 
to 4e). Each of the selected sections are plotted in Figure 3b) together with all the trajectories

8



Figure 4: Water relative permeability sections for all the cases. Plots in left column shows results for 
Case la and lb, in the middle column for Case Ha and Hb, and in the right column for Case 
da and IHb. See Figure 3b) for details on the sections.

9



sw=o.o |j

----- 86%23'VsS
---eSTtcort-hLUSS

f
S 0.1

g 0.01 

1
cc 0.001

e)

Figure 5: Oil relative permeability sections for all the cases. Plots in left column shows results for Case 
la and lb, in the middle column for Case Ha and lib, and in the right column for Case Bla and 
mb. See Figure 3c) for details on the sections.
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(both from steady-state as well as unsteady-state type experiments). The corresponding 
results for determination of the oil relative permeability are plotted in Figure 5a) to 5e), 
with cross sections in Figure 3c), and, finally, the results for the gas relative permeability are 
shown in Figure 6a) to fie), with cross sections in Figure 3d).

Note that each relative permeability surface appears to be well determined whenever its 
“own” phase saturation is zero. In our analyses we have utilized the a priori information 
that kri{Si — 0) = 0. Consequently, the corresponding parameters are eliminated from the 
covariance analysis, leading to zero confidence intervals whenever S; = 0.

An overall observation is that the relative permeabilities are well determined in saturation 
regions corresponding to regions represented in the data. For the cases considered here, this 
region is approximately given by the triangle defined by the intervals Sw 6 [0.3,1] and 
Sg G [0,0.6], and the line S0 = 0; see trajectories in Figure 3a) and Figures 4-6.

For Sg = 0, the confidence intervals of the water relative permeability are narrow (i.e., 
krw is expected to be well determined from the data) for all the cases in a saturation region 
from unity down to about Sw = 0.3. This is the saturation region which is represented in 
the data from experiments 1SS, 2SS, 1USS, and 2USS; see Figures 4a). For Case la, lb, Ha, 
and lib, the water relative permeability will only be well determined in a relatively small 
Sm-interval whenever Sg > 0; see Figure 4b)-d). The reason for this is that the data from the 
experiments along trajectories #1 and #2 will only reveal relative permeability information 
in a saturation region close to the trajectories. This means that we should not expect to be 
able to determine the water relative permeability with any high degree of accuracy for water 
saturations outside the interval Sw G [0.3,0.6], whenever Sg > 0. For example, for Case 
la, the confidence interval is relatively large for Sw values higher than 0.6 for Sg = 0.3; see 
Figure 4vii). However, as data along trajectory #3 is added in Case Ilia and Illb, the water 
relative permeability surface becomes well determined for Sw values higher than 0.4 for any 
fixed value of the gas saturation, see Figures 4iii), 4vi), 4ix), and 4xii). Note that while kTW 
was very poorly determined along the gas-water axis from data from Case la, lb, Ha, and 
lib, data from Case Ilia and Illb determine the relative permeability well along this axis for 
gas saturation higher than 0.6; compare Figure 4xiii) and 4xiv) with 4xv). Also, note that 
steady-state type data better determine the water relative permeability surfaces for all the 
cases and for all the selected sections (frequently by an order of magnitude).

For all the cases, the oil relative permeability is well determined along parts the oil-water 
axis (Sg = 0), see Figures 5e). Generally, kro is well determined in saturation areas close to 
the trajectories for the particular case. For example, for Sw — 0.5 (see Figures 5c)), the kra 
is relatively poorly determined for S0 G [0,0.3], as this saturation interval is not represented 
in the data. For Sa approximately between 0.3 and 0.4, A™ is well determined. This area 
corresponds to the trajectories #1 (and #2), see Figure 3c) for details on oil saturation 
vs. trajectory saturations. Again, steady-state type data determine the surface better than 
unsteady-state data.

For Case Ha and Hb, the gas relative permeability is quite well determined for saturation 
values corresponding to the trajectories #1 and #2, see Figures 6i), fiiii), 6v), fivii), and 
fiix). However, for high water saturation values, as well as along the water-gas axis, krg is 
poorly determined, see Figures 6v) and fivii). This is because this saturation region is not 
represented in the data used in Case Ha and lib. When the gas injection is added (Case Ilia 
and Illb), these regions becomes well determined (see Figures fiviii) and fix)); in fact, the 
gas relative permeability is quite well determined for approximately Sw > 0.35 and Sg < 0.6.
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Although most pronounced for Case Ha and lib, the steady-state type data are superior to 
the unsteady-state type.

Although we limit here the discussion to 6 DDI experimental designs, this approach can be 
utlized to design experiments of any kind, and the estimation of capillary pressure may also be 
considered. The outlined method is particularly fruitful for the design of three-phase relative 
permeability experiments for field applications. In a reservoir engineering context, one may 
know reasonably well the saturation region that is expected to occur in the reservoir. While 
it can be quite acceptable to have poorly determined three-phase relative permeabilitites 
outside this “window,” it is imperative to accurately determine the functions within. Our 
methodology provides a quantitative means for designing experiments leading to accurate 
relative permeability determination in saturation regions of interest.

Conclusions
1. A systematic method for quantitative evaluation of designs of three-phase relative per­

meability experiments leading to accurate determination of the relative permeability 
surfaces has been presented. The evaluation procedure is based on a linearized covari­
ance analysis, and can consider data from several three-phase experiments simultane­
ously.

2. Six different DDI experimental designs have been analyzed. The analysis show that 
from the DDI designs considered here, we are able to determine the relative permeability 
surfaces accurately in a relatively large saturation region, even for a limited number of 
experiments. Also, the inclusion of water-gas data seems to potentially give significant 
improvements in analyses leading to relative permeability estimates.

Nomenclature

ay
P
y

c
C
G
J
k
K
m
N
S
<?A P

Element in sensitivity matrix 
Sensitivity matrix 
Constraint vector
Vector of parameters in representation of relative permeabilities
Spline coefficients
Covariance matrix
Constraint matrix
Objective function
Permeability
Number of knots
Spline order
Normalized B-spline basis function 
Saturation
Measurement error in the pressure drop data 
Measurement error in the production data 
Covariance matrix of parameters 
Spline partition
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Y Vector of measured or simulated data
W Weighting matrix

Subscripts / Superscripts 
c Capillary
g Gas
m Measured
o Oil
r Relative
s Simulated
w Water
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ABSTRACT

In this paper, three-phase relative permeability and 
capillary pressure functions are estimated 
simultaneously from laboratory experiments. The three- 
phase flow functions are represented by tensor-product 
B-splines, and the coefficients in the expansions are 
determined through solution of a series of linearly 
constrained nonlinear parameter estimation problems. 
We demonstrate that data from both two- and three- 
phase experiments can be reconciled simultaneously by 
simulations. Measures of the accuracy of the estimates 
are provided, showing that the flow functions can be 
accurately determined.

INTRODUCTION

Simulation of fluid flow in porous media is a key 
exercise for sound reservoir management. The properties 
of the porous medium must be specified in order to 
simulate reservoir behavior. For multiphase situations, 
relative permeability and capillary pressure functions 
(i.e., the flow functions) are to be specified at all 
locations throughout the reservoir model. Consequently, 
accurate determination of multiphase flow functions is 
an issue of great concern to the oil industry. As there is 
typically insufficient information to determine reliable 
estimates of these functions from data gathered from 
field tests or production history, they are generally 
determined through analyses of data gathered from 
laboratory experiments on small porous medium 
samples. For two-phase situations, accurate 
determination of the relative permeability and capillary 
pressure functions is possible from such experiments 
through solution of the inverse problem associated with 
the mathematical model of the displacement process and 
the measured data '10,11'102. In this methodology, the flow 
functions are parameterized, and the parameters that 
minimize the sum of squared differences between the 
experimental data and corresponding values calculated

through the simulation of the experimental process are 
determined.

To reveal information about three-phase flow functions, 
two approaches have traditionally been utilized: one 
based on prediction of three-phase relative permeability 
values from two-phase data, and one based on 
interpretation of three-phase experiments. The first 
approach (see, e.g., Stone15) is very tractable if reliable, 
as it would make time consuming three-phase 
experimentation unnecessary. However, even though a 
number of such models have been proposed (see Baker' 
for an overview), they remain virtually untested since 
there are insufficient published three-phase relative 
permeability data available for testing purposes. In the 
second approach, three-phase relative permeability 
values have been determined either through steady- 
state' ^15 or unsteady-state experiments521. In both these 
types of experiments, the capillary pressure effects have 
been ignored. Also, the unsteady-state method 
generally suffers from allowing the relative 
permeabilities to be functions of one saturation only. 
Although this may be overcome21, the problem of error 
magnification by differentiation of functions defined by 
noisy experimental data remains. For both types of 
experiments, only discrete values of relative 
permeabilities and corresponding saturations have been 
determined, i.e., the relative permeability functions 
were not estimated.

Recently, Mejia8 et al. published a method for 
simultaneous determination of three-phase flow 
functions. In this work, we further develop that 
methodology. First, we develop constraints on the 
three-phase flow functions, and secondly, we address 
the issue of selecting a flexible functional 
representation allowing for accurate representation of 
the true (although unknown) flow functions with a 
limited number of parameters. Note that in this
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approach, each flow function may depend on two 
saturations, and hence can be represented as a surface 
when plotted against the saturations. We use tensor 
product B-splines to represent the surfaces'7. The 
parameters in these functions are determined through a 
series of linearly constrained nonlinear least-squares 
parameter estimation problems. We demonstrate the 
methodology using both synthetic as well as 
experimental three-phase data. To the best of our 
knowledge, this is the first time that three-phase flow 
functions have been estimated from experimental data.

METHODOLOGY

The basic methodology we use for estimating the 
multiphase flow functions is an implicit approach first 
reported by Mejia8 et al. The selected experimental 
design is simulated with a suitable mathematical model 
of the experiment, and estimates of the multiphase flow 
functions are obtained so that predictions of the 
measured data match those obtained during the 
experiment. Two key components of this process - the 
selection of functional representations for the unknown 
properties, and the determination of coefficients within 
these representations, are discussed below in two 
subsections.

There is a large variety of experimental designs that can 
be used for estimating three-phase flow functions. 
Basically, one can start experiments at saturations for 
which one, two, or three fluid phases are mobile, and 
inject, at any fraction, one, two, or three fluid phases. 
We have directed our work to the use of injection 
schemes giving average saturation paths similar to those 
expected for the reservoir flow processes. We have 
previously investigated different three-phase 
experimental designs and evaluated the accuracy with 
which the flow function may be determined through 
analyses of the corresponding data20. In that study, a 
linearized covariance analysis was utilized. Mejia8 et al. 
estimated all flow functions using synthetic data from a 
single three-phase experiment. Conclusions from these 
studies are that simultaneous and accurate estimates of 
the flow functions corresponding to saturation regions 
spanned by the experiment can be obtained. Here we 
further these studies by developing constraints on the 
properties and select parameters within the functional 
representations that need to be estimated. Also, we 
develop and test a procedure for estimating those 
parameters.

We investigate estimation of flow functions from both 
two-phase as well as three-phase displacement 
experiments, and utilize pressure drop and production 
(of two phases) data. We are using data from 
experiments in which several fluid phases are injected 
simultaneously into a core sample. In these experiments, 
we select the rate fractions so that we gradually (in time)

access a larger and larger range of saturations (see 
Nordtvedt" et al. and Urkeda]”et al. for a discussion of 
this type of experimental design for two-phase and 
three-phase experiments, respectively). The advantage 
with this design is that a limited saturation range is 
accessed for each rate fraction, and hence a time 
interval will correspond to a certain (and limited) range 
of saturation. This feature is utilized in our estimation 
procedure.

Flow Function Representation
A key aspect in estimating multiphase flow functions 
from measured data is the representation of the 
unknown functions. It is essential that the functions 
have sufficient degrees of freedom to represent the true 
(although unknown) properties; yet, it is desirable that 
the degrees of freedom be limited whenever there is 
insufficient information content in the experimental 
data. B-spline functions have been successfully used for 
representation of the univariate flow functions when 
estimating relative permeability and capillary pressure 
functions from two-phase experiments7'9,10"'22. A key 
advantage of these functions is the degree of control 
one can exert through selection of the partition. While 
any smooth function can be represented arbitrarily 
accurately with sufficient numbers of knots'7, the 
representation is also very efficient since relatively few 
knots, and hence degrees of freedom, can provide for 
many different function shapes. Through selection of 
the partition, one can effectively maximize the 
information content in the experimental data by 
providing sufficient degrees of freedom in regions 
where the information content is high, while reducing 
the degrees of freedom where the experimental data 
provide relatively little information about the 
properties.

For situations with three flowing fluid phases, the flow 
functions are bivariate since the properties may depend 
upon two saturation values (the third saturation value is 
not independent). Thus, the relative permeability and 
capillary pressure functions represent surfaces when 
plotted as a function of two saturations. We represent 
each of these properties using two sets of univariate B- 
splines {/vj|(Si,yi)}”,=*JCl and {^(Sz.yz)}™!^2

defined along coordinates $i and S2. St and S2 may 
be taken to be any two fluid saturations, or any two 
linear combination of the saturations. Our selection will 
be discussed later in this section. y\ and y2 denote the
respective extended partitions (5) = jy,i....%,«,+*, ]7).

We define

(1)
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as the tensor-product B-splines. The space spanned by 
these (m, K\)(m2 + K2) bases is a linear space of 
bivariate polynomial splines of dimension 
(mi +A:i)(m2 +AT2) (simple knots are used here). Each 
function / in this space can be written as a linear 
combination of the tensor-product B-splines;

zero at specific lines in the plane, we represent the three 
relative permeabilities through the following tensor- 
product B-spline expansion:

S, =S, (3)

<1=1

m2+K2 (2)

The tensor-product B-splines have rectangular support. 
Using, e.g., quadratic splines (m,=mj = 3) with one 
interior knot in each coordinate (K, = K2 = l), there will 
be a total of 16 basis functions and coefficients (i.e., 
degrees of freedom). Figure 1 illustrates the tensor 
product basis function generated by the first and the 
fourth basis functions in coordinate Si and S2, 
respectively.

Figure 1: Basis function in the case of quadratic spline 
functions with one knot in each direction. 
Basis function is shown.

The coordinates s, and S2 are selected for convenience 
in establishing correct values for the flow functions 
corresponding to certain lines in the saturation plane. For 
example, for tro(Sw.S$), we know that k„ = 0 along the
line s„ + s,=i. Similar expressions will be valid for
each of the two other relative permeabilities as well as 
the capillary pressures. Thus, to have a simple and 
uniform manner for constraining the flow functions to

The capillary pressures are represented by:

Pcow =f{S],S2) S,=S„ (4)
^cog - 1 '^2) $2 = Sg

f is given by Eq. 2.

The tensor-product expansions of the flow functions 
will contain relatively large numbers of spline 
coefficients to be estimated. On the other hand, not all 
saturation values may be encountered in the 
experiments, so there may be certain regions of the 
functions which can not be determined from the 
experimental data (see Urkedal™ et al. for a discussion). 
We will reduce the number of parameters to be 
estimated by including appropriate constraints that 
represent our knowledge about the functions, and by 
not attempting to estimate coefficients corresponding to 
basis function with support in saturation regions which 
are not represented in the experiment.

The coefficients corresponding to basis functions which 
have no support inside the accessible saturation region 
given by S, + S2 £ 1 need not be estimated. The indices 
(i,y) for these basis functions are implicitly given by:

"4+' = -:-^' f.t)
1 “ m2+l<j£m2+K2

So, the coefficients c,y for integer values (i,)) 
satisfying Eq.5 will not be estimated.

Our expectations on admissible values and shapes of 
the flow functions can be used to reduce the parameter 
space that needs to be considered. The relative 
permeability to phase i will be zero whenever 5, = 0 
(similarly for the capillary pressure functions). This 
condition can be maintained by setting 4, =0 for ; = 1

and j-\,...,m2^K2, for all three phases (see Eq.2). We 
also expect the flow functions to have the following 
properties:

krI < 1 for Si = l.
for oss, <1. 

dS,

<0 for i = 1,2, m=w,g

(6a)
(6b)
(6c)
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We have shown that these inequality constraints are 
linear in the parameters when implemented for any 
specific saturation value. In principle, monotonicity can 
be guaranteed by imposing constraints at a finite number 
of saturation values. In the univariate case, this can be 
conveniently handled for linear and quadratic splines by 
use of constraints at the knots'*. There does not appear to 
be such a convenient implementation for the bivariate 
case. However, we have found that when using a limited 
number of basis functions, implementation of linear 
constraints at a few hundred saturation values will 
suffice. All constraints specified by Eq.6 can be 
implemented as:

Cp < pm (7)

where p is the collection of all spline coefficients.

These functional representations are quite flexible, and 
should provide for accurate approximations of the flow 
functions. The use of these functions for representing 
relative permeabilities can be illustrated by fitting a 
tensor-product B-spline surface to a large number of 
experimental steady-state oil relative permeability points 
acquired by Oak”. To do so, we determine the 
coefficients that solve the linear least square problem 
defined by

(8)

subjected to the constraints given by Eq. 7. In this case, 
we impose monotonicity constraints at 231 points, 
giving a total number of 463 constraint equations. The 
result ot the estimation is shown in Figure 2. As can ; 
seen, the tensor-product spline representation provides 
for a smooth surface that fairly precisely represents the 
leiative permeability values.

Estimation Procedure
To determine flow function estimates, we solve the 
nonlinear parameter estimation problem defined by

J(P) = pc“' 03) - y”,ra'wjf (p) - y™" j (9)

subject to the linear inequality constraints given by Eq.7. 
Here, and rcat(p) are the measured and predicted 
data, respectively, and w is the weighting matrix. In this 
work, we use a fully implicit three-phase, one 
dimensional black-oil simulator to calculate Ycal(P) \ w 

is selected to be the inverse of the covariance matrix of 
the estimate, and hence maximum-likelihood estimates 
result. The parameter estimation problem is solved using 
a trust-region based Levenberg-Marquardt algorithm.

l

Figure 2: kro as a function of water and gas
saturations estimated from Oak’s data”.

Note that with the approach used here, we can utilize 
simultaneously data from several separate two- and 
three-phase experiments. To the best of our knowledge, 
this is the first time this has been implemented and 
demonstrated. However, to attempt to solve Eq.9 as a 
single parameter estimation problem, while including 
all the data from all the experiments, is not likely to be 
fruitful because of the large dimensionality of the 
parameter space. Also, it is likely that local, nonglobal 
solutions to the problem may result. For two-phase 
situations, this problem has been solved as a series of 
minimization problems with increased dimensionalities 
or as a series of largely decoupled problems. For three- 
phase problems, we propose the folio-v.ug procedure.

First, we analyze all the available data from the two- 
phase experiments. Instead of simply estimating the 
univariate functions, as might typically be done, we use 
the three-phase representations and estimate only those 
coefficients corresponding to basis functions that have 
support in saturation regions accessed by the particular 
two-phase experiments. The regression-based 
approach22 is utilized for selection of the partitions. 
Analyzing the three-phase data, we start using the 
partitions and coefficients that will reconcile the two- 
phase data; hence the flow functions are kept equal to 
the two-phase estimates in the two-phase regions. 
Consequently, relatively flexible representations for 
each of the flow functions are used in the initial phase 
in the analysis of the three-phase data. We then analyze 
only parts of the three-phase data, and estimate the 
parameters corresponding to basis functions with 
support in the saturation region corresponding to the
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data used. With fixed partitions, we gradually increase 
the amount of three-phase data utilized. Finally, if 
necessary, we will increase the flexibility of the 
representations. A knot will be added in a saturation 
region corresponding to data which are not well 
matched, and to the function expected to have the 
highest sensitivity in that saturation region.

For the cases considered here, we have available two- 
phase oil/water and oil/gas data. From the two-phase 
estimation, nonzero coefficients corresponding to the 
basis functions along the two independent directions will 
result. For the water and gas relative permeability, the 
only nonzero coefficients will be those corresponding to 
basis functions along the water and gas saturation axis, 
respectively. Therefore, we initially keep the oil relative 
permeability function fixed at the estimate from the two- 
phase data, and obtain an initial estimate for the water 
and gas relative permeabilites utilizing all three-phase 
data. In this estimation, the two capillary pressure 
functions are also kept at the two-phase estimates. Next, 
we estimate all flow functions utilizing only data from 
the first, say, two rate fractions. We estimate the 
coefficients corresponding to the saturation range 
spanned by these data. We then increase the amount of 
data used in the estimation (by including data 
corresponding to an increased number of rate fractions), 
and repeat the above described step. Now, coefficients 
estimated in the previous step can be kept constant, if the 
added data represent a saturation region not accessed by 
the corresponding basis functions. We repeat this 
procedure until no more data is available. This 
estimation procedure can be used with any combination 
of two- and three-phase data.

RESULTS AND DISCUSSION

Two test cases are reported to demonstrate the method; 
one synthetic and one experimental case. In the synthetic 
case, we generate experimental data using the simulator; 
the true flow functions are then known. Such cases are 
very useful for testing purposes, as the error in the 
estimation can be found directly by comparing the 
estimated and true functions. The experimental case was 
designed to determine water, oil and gas relative 
permeability functions simultaneously with the capillary 
pressure functions when water is injected into an oil and 
gas filled zone in the field. Table 1 gives the core and 
fluid properties for the two cases.

Table 1: Core and fluid properties for the two cases.

Synthetic
Case

Experimental
Case

Porosity [ffac.] 0.4 0.398
Permeability [mD] 2.0 2.27
Core length [cm] 10.0 12.27
Core area [cm2] 10.0 11.34
Water viscosity [cP] 1.0 1.280
Oil viscosity [cP] 1.19 1.238
Gas viscosity [cP] 0.02 0.0187
Initial oil saturation [ffac.] 1.0 1.0

Water

Figure 3: Trajectories for the synthetic case.

Analysis of Synthetic Data
In the synthetic case, two “experiments” were 
conducted using the simulator. We have chosen to 
investigate experimental scenarios close to those 
possible for our experimental apparatus, in order to 
investigate to what extent and with what accuracy we 
can expect tc determine the flow functions. We select 
water, oil, and gas to be the three phases, and 
investigate two different experimental scenarios; one 
IDC1 (a two-phase oil/water experiment denoted El) 
and one GDI (a two-phase oil/gas experiment) followed 
by an IDD (E2). Both experiments were started at 100% 
oil saturation. During the IDD experiment, oil and gas 
rates were kept constant while the water rate was 
increased in steps. Figure 3 shows the ternary diagram 
of the trajectory (i.e., the average saturation of the three 
phases at different times during the experiments).

In this synthetic case, the true relative permeability 
functions are represented with tensor-product B-splines

1 The notation IDC refers to increasing water saturation, 
decreasing oil saturation, and constant gas saturation, and 
follows Oak13. The three letters indicate the direction 
saturation changes of each fluid phase within the core 
sample.
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of order 3 with two interior knots in each direction 
(located at 0.3 and 0.6; see Figure 4a) for the true oil 
relative permeability functions. The capillary pressure 
functions are kept constant in this analysis, and are 
represented by univariate B-splines; here we only 
investigate the estimation of the relative permeability 
functions. From the simulation of the experiments using 
the stated relative permeability surfaces, and fluid and 
core properties as given in Table 1, we select 2320 data 
points (pressure drops and production of two phases) to 
be used in the analysis. We add a random error to these 
“true” data points to simulate the measurement process. 
This error has zero mean and a given standard deviation; 
we assumed the standard deviation in the oil production, 
gas production and the pressure drop to be 0.1 cc, 0.15 
cc and 5.0 kPa, respectively. These values are based on 
an analysis of our experimental equipment3.

We perform three different estimations in the synthetic 
case, using different numbers of knots for the relative 
permeability surfaces:

1. Zero knots in each direction (i.e., a total of 27 
parameters);

2. One knot (at 0.45) in each direction (i.e., a total 
of 48 parameters);

3. Two knots (at 0.25 and 0.55) in each direction 
(i.e., a total of 75 parameters):

These estimations are performed to illustrate the utility 
of our estimation procedure and the importance of 
having a functional representation capable of 
representing the true (although unknown) properties. 
The lack of such a representation will result in estimates 
which depart from the true solution, and the predicted 
and measured data will not match. This effect has bee.: 
investigated extensively for two-phase cases (see Kerig 
and Watson’), in which exponential type relative 
permeability correlations are shown to be inadequate for 
accurate estimates of the two-phase functions (and for 
data reconciliation). Here, we show corresponding 
results for the three-phase case. Note that we have not 
utilized exponential type relative permeability 
correlations in this study (as, e.g., suggested by 
Parmeswar et al.15). The lack of success of these models 
in the two-phase case suggest that they will not be useful 
for the three-phase case.

The results of the estimation are investigated by 
examining the final sum of squared residuals (SSR) and 
the number of runs, R (i.e., the number of times the time 
series of the residuals crosses the zero line). By using the 
inverse of the covariance of the measurements as the 
weighting matrix, the SSR should approach the number 
of datapoints, M. At the same time, R should approach 
(M + 1) / 2.

O <3» Selection

O f'tttvrt Onsp

Figure 4: Predicted and measured data for estimated 
functions with two knots in each direction; 
Upper figure: Two-phase trajectory results; 
Lower figure: Three-phase trajectory 
results.

Tne SSR and R values for all these estimations are 
shown in Table 2. In Figure 4 we show the simulated 
and experimental data for the case with two knots. The 
estimated oil relative permeability surfaces are shown 
in Figure 5. We see that a low estimation error is 
obtained using two knots for the oil relative 
permeability. As shown in Table 2, the number of runs 
and the SSR also approach the expected values for the 
two-knot case. In Figure 6 we show the estimation error 
(difference between estimated and true relative 
permeability values) for all the three surfaces. As can 
be seen, all three functions are accurately estimated in 
the saturation region for which we have data in the 
experiments (along the trajectories indicated with a 
thick line on the plots). Figure 7 shows the error in the 
estimation of oil relative permeability for the cases with 
zero, one, and two knots; the estimation error is reduced 
as the number of knots is increased. Figure 8 shows the 
confidence intervals at two constant water saturations 
for the oil relative permeability surface. The confidence 
intervals calculated using a linearized covariance 
analysis” is consistent with the absolute errors shown in 
Figure 5c).
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Figure 6: Absolute error for all three relative permeability functions; a) Gas; b) Oil; c) Water.

3 0.1

Water SaturationWater Saturation

2 0.15-

0.054 1

Water Saturation

Figure 7: Absolute error for estimated oil relative permeability functions; a) Zero knots; b) One knot; c) Two knots.

Figure 8: Confidence intervals around true i,„ for constant water saturation; a) Sw= 0 ; b) S„ = 0.3.
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Analysis of Experimental Data
Two experiments were conducted in our three-phase 
flooding apparatus’. Both these experiments were 
initiated at 100% oil saturation. First, a two phase water- 
oil flow experiment was conducted (IDC); El. Upon 
completion, the core was again brought to 100% oil 
saturation. Then, a two phase oil-gas flood was 
conducted to an intermediate gas saturation (a GDI to 
approximately 40% gas saturation), before water was 
injected (in a series of steady-state steps) simultaneously 
with oil and gas (IDD); E2. During the IDD experiment, 
oil and gas rates were kept constant while the water rate 
was increased in steps. Figure 9 show the ternary 
diagram of the trajectory. Production of all phases were 
measured together with the differential pressure across 
the sample as a function of time. For details of the 
experimental apparatus and detailed analyses of results, 
see Ebeltoft3 et al. and Nordtvedt12 et al., respectively.

Figure 9: Trajectories for the experimental case.

Table 2: Estimation results for Synthetic Case
P SSR R

SI: (850 data points)
Zero knots 8 4161 146
One knot 15 1537 293
Two knots 18 854 396
True partition 18 814 412
S1+S2 (2320 data poinst) 
Zero knots 18 15400 424
One knot 25 7585 617
Two knots 39 2760 1042
True partition 39 2164 1108

In the experimental case, we first estimate the relative 
permeability to oil and water as well as the oil-water 
capillary pressure functions from the two-phase oil/water 
data (Experiment El; trajectory along the axis with zero 
gas saturation in Figure 9). An estimate with a quadratic 
tensor-product B-spline representation for the oil and 
water relative permeabilities with 4 knots in each 
direction results. For the oil-water capillary pressure 
function, we use univariate quadratic B-splines with 6 
knots.

We then utilize the two-phase gas-oil data to determine 
the oil and gas relative permeabilities for zero water 
saturation (two-phase part of Experiment E2; trajectory 
along the axis with zero water saturation in Figure 9). 
The same partition as above was utilized for the oil 
relative permeability; for gas a quadratic expansion 
with 4 knots along the water axis and 2 knots along the 
gas axis was used. The oil-gas capillary pressure was 
represented by univariate quadratic B-splines with 4 
knots.

Figure 16: Predicted and measured data for
experimental case; Upper figure: Two- 
phase trajectory results; Lower figure: 
Three-phase trajectory results.

Finally, we started analyzing the three-phase data 
(three-phase part of Experiment E2; trajectory into the 
three-phase region in Figure 9). In this work, we fix the 
capillary pressure functions at the estimate resulting 
from the two-phase data (i.e., our estimate of the three- 
phase capillary pressure is univariate). We follow the 
estimation procedure outlined above. The estimates of 
the relative permeability and capillary pressure 
functions are shown in Figure 11. Figure 10 shows 
simulated and experimental data. As can be seen, a 
close match is obtained. To the best of the authors"
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knowledge, this is the first time that three-phase flow and that two- and three-phase data have been
functions have been estimated from experimental data simultaneously reconciled by simulations.

Water Saturation Gas Saturation

Figure 11: Estimated three-phase flow functions from experimental case; a) Water relative permeability; b) Oil relative 
permeability; c) Gas relative permeability; d) Oil-water capillary pressure; e) Oil-gas capillary pressure.

CONCLUSIONS

!. We have developed and tested a method for 
estimating three-phase flow functions using data 
from several two- and three-phase flooding 
experiments simultaneously in the analysis. Realistic 
constraints are imposed on the flow functions, and a 
regression-based approach is utilized for estimating 
the functions.

2. For the first time, simultaneous reconciliation of two- 
and three-phase flooding experiments by simulation 
has been presented.

3. Our analysis of the synthetic case shows that accurate 
estimates of the flow functions can be obtained in 
saturation regions for which we have data.

NOMENCLATURE

0 Parameters
c Spline coefficients
f Function defined by Eq. 2
G Constraint matrix

it, Number of knots in direction i 

M Number of data points
m. Spline order in direction i

n Spline basis function
p Number of parameters
R Number of runs
SSR Sum of Squared Residuals 
S Saturation
? Vector of data
? Weighting matrix

Subscript/Superscript 
c Capillary
cal Calculated
con Constraint
s Gas
meas Measured
r Relative
o Oil
w Water
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Summary

We have developed a new design of steady-state type experiments so that relative 
permeability and capillary pressure functions (collectively called multiphase flow 
functions) can be estimated simultaneously from all measured pressure drop and 
production data. The multiphase flow functions are represented by B-splines to ensure a 
flexible representation, and the coefficients in the representation are determined using a 
regression-based approach. Through this method of determining relative permeability 
and capillary pressure functions, we were able to reconcile all pressure drop and 
production data from the steady-state type experiment conducted. An analysis of the 
accuracy of the estimated functions showed that they were accurately determined over a 
large saturation interval.

Introduction

Relative permeability and capillary pressure functions are important properties of 
porous media and essential for understanding multiphase flow behavior. Accurate 
estimates of these properties are important input for reservoir production forecasting. 
Since the reservoir itself is inaccessible for determination of relative permeability and 
capillary pressure functions, these properties are commonly determined through 
laboratory experiments on small core samples. Relative permeability and capillary 
pressure functions are inferred from analysis of various experimental data.

The multiphase flow functions are defined through the system of equations that 
describes the flow in porous media11. The relative permeabilities enter into Darcy’s law 
(or the flow equations) which relates the superficial velocities of each individual phase 
to the corresponding pressure gradient and viscosity (ui = -(kkri / jii)(dPi j dx)), i.e., the 
relative permeabilities are empirical properties defined by these equations. Darcy’s law 
is generally assumed to be adequate for describing capillary dominated flow through 
porous media, i.e., flow for which the capillary number (ratio of viscous-to-capillary 
forces) is relatively low3. As the reservoir flow generally will be capillary dominated 
(with the possible exception of the near-well flow), the relative permeabilities should be 
determined in the corresponding capillary number region.

Conventional methods are generally incapable of determining relative permeabilities 
under such conditions. In the most commonly used method for analyzing unsteady-state 
data, the Johnson, Bossier, and Neuman8 method, capillary pressure is neglected 
altogether. This has computational advantages, as the system of equations describing 
flow through porous media then can be solved analytically, and relative permeability 
values are calculated explicitly. Experimentally, elimination of capillary effects would 
require high injection rates with correspondingly large capillary numbers, possibly
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outside the range of interest. The relative permeabilities are computed as points after 
breakthrough, i.e., on a very limited saturation interval. High flow rates are also required 
in steady-state experiments3'5 to overcome capillary effects and get uniform saturation 
profiles, unless the sample is placed between porous discs (semi permeable 
membranes). The relative permeability points are computed directly from Darcy’s law 
when the average saturation and the pressure drop across the core are measured. This 
method gives relative permeability points distributed over the entire saturation interval. 
In both these methods, the capillary pressure must be found by independent 
experiments6,7,15. This requires multiple experiments on the same core sample, including 
reestablishing the same initial states and wetting conditions. This procedure is both 
difficult and time consuming. Therefore, neighboring core samples are often used to 
determine the flow functions. However, this may lead to errors of unknown magnitude 
since the properties of core samples may differ even on small scales. It is much more 
desirable to determine the relative permeability and capillary pressure functions 
simultaneously and from a single experiment.

By designing experiments so the measured data contain information of both relative 
permeability and capillary pressure effects, simultaneous estimates of these functions 
can be found through the solution of the appropriate inverse problem. In such an 
approach, we estimate porous media properties so that the solution of the mathematical 
model for the process “matches” the measured data. This methodology has been 
demonstrated by analyzing both unsteady-state (pressure drop and production data) as 
well as centrifuge displacement (production data) experiments 16,18. Although the relative 
permeability and capillary pressure curves can, in principle, be identified in those 
conventional experiments16,18, the accuracy may not be adequate due to insufficient 
“information content” of the measured data. This situation can be improved by 
measuring additional data, such as in situ saturation or pressure1,12,13. However, this 
approach requires substantial investments in equipment and training, and has not yet 
been sufficiently demonstrated with actual data.

In this work, we present a method which provides accurate estimates of relative 
permeability and capillary pressure functions using steady-state equipment and pressure 
drop and production measurements. We first design a low-rate steady-state type 
experiment, for which the measured data contain information about relative 
permeability and capillary pressure effects. During the experiment, we need not wait 
until a steady-state saturation distribution has been obtained since we utilize all the 
measured data when estimating the relative permeability and capillary pressure 
functions. Hence, both time and cost of the experiment is reduced compared to the 
conventional steady-state experiment. The proposed method reconciles the experimental 
data and we show it is superior compared to the steady-state method.

New Experimental Design

This section presents a systematic approach for designing experiments leading to 
simultaneous and accurate estimates of relative permeability and capillary pressure 
functions, and analyses of the new design. By design of experiments, we mean the 
manner in which the experiments are conducted (e.g., injection /production strategy) and 
an evaluation of which experimental flooding data should be measured (both type of 
data and location of each datum as well as the accuracy with which the data will be 
measured). The experimental design comprises the following steps:
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1. Measure core and fluid properties, and give reasonable estimates for the relative 
permeability and capillary pressure functions.

2. Select a way of conducting the experiment(s). The types of data and location of 
the data (in time and space) that will be measured in the experiment(s) are predicted 
from the data given in step I using a numerical simulator.

3. Perform a covariance analysis9 and calculate the confidence intervals around the 
initial relative permeability and capillaiy pressure functions based on estimates of the 
measurement error in the simulated experimental data.

4. Analyze the confidence intervals with respect to desired accuracy in the estimated 
functions. If the confidence intervals are large, continue from step 2 and select 
another way to conduct the experiment or include other sets of data.

A variety of different types of data, gathered at different costs may be measured in 
displacement experiments (see Fig. 1). Using different proposed experimental designs, 
we can compare the relative accuracies of the estimated functions to the different costs 
of performing the various experiments.

We have considered the design of a drainage experiment, and investigated three 
different injection schemes, referred to as Case A-l, Case A-2, and Case A-3 in Table
1. The core and fluid properties in these simulated drainage experiments are those 
referred to as Case A in Table 2. In this design phase, we want to investigate whether 
there is an injection scheme for the steady-state type experiment that will provide 
pressure drop and production data with sufficient information content so that both 
relative permeability and capillary pressure functions can be accurately estimated. That 
is, we want to find a way of conducting the experiment so that the flow functions can be 
estimated with acceptable accuracy without including in situ data.

Simulated data for Case A-l (one injection step) and Case A-2 (two injection steps) are 
plotted in Fig. 2a, while Fig. 2b shows the data for Case A-3 (six injection steps). The 
impact of measurement error on estimated flow functions is computed using a linearized 
covariance analysis; see Appendix A for details on this analysis. The 95% confidence 
intervals are computed and plotted around the relative permeability and capillary 
pressure functions for each case, see Fig. 3. For Case A-l, the generally wide 
confidence intervals show that the data contain little information about the relative 
permeability and capillary pressure functions for water saturation from 1.0 down to 0.5. 
In Case A-2 the confidence intervals are generally more narrow. This is due to the two- 
step injection scheme where data are measured during two breakthrough sequences, and 
consequently the information content in these data is higher. For every case, the 
confidence intervals become very large when the water saturation is less than 0.2, as 
saturation does not take on values in that range during the experiments (0.2 is 
approximately the lowest water saturation in all three cases after the oil injection, see 
saturation profiles for Case A in Fig. 4, solid line). By injecting oil in two steps as in 
Case A-2, we decrease the confidence intervals in Fig. 3, but they are still not 
satisfactory. A further reduction in the confidence intervals can be achieved by 
including other sets of data13 (i.e., saturation profiles or in situ pressure and saturation 
data). However, the narrow confidence intervals in Fig. 3 for Case A-3 show that an 
injection strategy with six rate fractions with production and pressure drop data
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measurements will provide accurate estimates of the relative permeability and capillary 
pressure functions in saturation regions corresponding to those where experimental data 
are represented, i.e., from water saturation equal to 1.0 and down to approximately 0.2.

We have also used the experimental design to evaluate how estimates will depend upon 
the degree of capillary effects. We compare two cases; Case A (low absolute 
permeability) and Case B (high absolute permeability). The relative permeability 
functions are set equal for these two cases, but the capillary pressure is reduced for Case 
B with a factor of 10. The calculated steady-state equilibrium relative permeability 
points are plotted in Fig. 3a,b, and the saturation profiles in Fig. 4. These points are not 
accurate estimates of the relative permeability. The reason for the errors is that the 
saturation distributions are not uniform, as is assumed in the steady-state analysis. Fig. 4 
shows that the degree of capillary effects is most pronounced for the high permeability 
case, i.e., the saturation profiles are non-uniform throughout the entire core sample. In 
the low absolute permeability case the saturation profile is uniform except at the end of 
the core due to the capillary end effects. So, even though the two cases reach almost the 
same average saturation, the shape of the saturation profiles in Case B show that the 
capillary forces dominate the flow in the entire core, while fore Case A the capillary 
forces only cause a small end effect. This indicates that data from a high permeable 
medium might contains more information about the capillary pressure, and 
consequently, the capillary pressure function can be estimated more accurately than for 
a low permeable medium.

We have plotted the pressure drop and production data for Case A and Case B in Fig. 
5a,b. Here we compare the data computed using the steady-state relative permeability 
equilibrium points, as plotted in Fig. 3a,b, with the true data. A B-spline19 function is 
fitted to these points and then used to simulate pressure drop and production data. These 
figures show that the equilibrium relative permeabilities do not reconcile the true data, 
and this will be more pronounced for high absolute permeability cases, i.e., for cases 
with higher degree of capillary effects.

These results show that the conventional way of conducting steady-state experiment do 
not provides for accurate determinations of relative permeabilities. Now, we want to 
demonstrate the new methodology when relative permeabilities and capillary pressure 
functions are simultaneously estimated from conventional data measured during steady- 
state type experiments.

Estimation of Flow Functions

The relative permeability and capillary pressure functions are represented by B-splines19 
and given as

kn (Sw) = X CjB? (S. ’ -V')’ i = w,nw (1)
j=1

%(%,) = (2)
j=1
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The functions are defined on 0 < 5^ < 1 and are specified by the order m, the spline 
coefficients C and the extended partition y. The vector of unknown parameters 
becomes

p=[cr Cnw pW pW pC pC
Nnw ’ '-'1 > * • • 5 > '-'l > • • •» (3)

The parameter vector (3 is estimated in a regression-based approach22. We seek a 
solution to the non-linear least squares problem defined by

7GP) = [%.-%(#]'-W)], (4)

subject to the constraints G/3 >b. Here Ym is a vector containing the measured data 
while Ys(p) contains the corresponding values calculated using a mathematical model 
for the process (in this work, the fully implicit core flood simulator CENDRA4 has been 
utilized), and G and b are a constraint matrix and vector, respectively. W is the 
weighting matrix. By choosing W to be the inverse of the covariance matrix of the 
measurements (W=X1), the solution of Eq. 4 becomes the maximum-likelihood 
estimates of the parameters, /?. Details on the estimation algorithm can be found in 
Richmond17.

In the cases investigated here, particular characteristics of the steady-state process are 
used to help select the extended partition. Consider, for simplicity, a primary drainage 
process (similar arguments are valid for secondaiy drainage as well as an imbibition 
process). After injection at the initial rate fraction has begun, the wetting phase 
saturation will decrease, eventually approaching equilibrium. The data collected during 
that period reflect the relative permeability and capillary pressure curves for a range of 
saturations from unity down to the minimum wetting saturation in the sample, say SWil 
(see the plot of saturation profiles in Fig. 4). As the rate fraction of the non-wetting 
phase is increased, the measured data will reflect a larger range of saturations. Data 
corresponding to the nth rate fraction will reflect the relative permeability and capillary 
pressure curves corresponding to a range of saturations from unity down to Swn, where 
Swn represents the lowest saturation value experienced in the nth rate fraction. All the Sw . 
values will form a descending sequence. This feature can be utilized beneficially in 
selecting the extended partition.

In this work, we investigate the residuals (i.e., Ym-Ys(j})), corresponding to the 
sequence of rate fractions, in order to locate the first rate fraction for which the data are 
not well predicted (i.e., has large residuals). By inspecting the saturation profiles 
corresponding to that rate fraction, the saturation region for which the properties are not 
well determined will be obtained. Flexibility is then added by inserting a spline knot in 
the saturation region that is least well determined and to the function which we consider 
to have the largest impact in that region.

An initial estimate of the relative permeability functions may be obtained by fitting a 
spline function to the relative permeability points obtained from Darcy’s law using the 
equilibrium (or near equilibrium) data.
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Results and Discussion

Demonstration of Methodology. To demonstrate how experiments are designed and 
flow functions estimated from the measured data, a simulated case is first considered. 
Relative permeability and capillary pressure functions are plotted in Fig. 6c,d. Cubic 
splines were used to represent the functions, including 4, 4, and 5 interior knots for the 
water and oil relative permeability and capillary pressure functions, respectively. Core 
and fluid properties (see Case A in Table 2) were selected. Based on the previous 
discussion on different experimental designs, the new design of steady-state type 
experiments with a six step injection scheme has been used (see Case A in Table 3). 
The simulator CENDRA was then used to compute pressure drop and production data. 
Random errors, with zero mean and a given standard deviation, were drawn from a 
normal distribution and added to the simulated data, giving us a set of synthetic data.

We estimated the relative permeability and capillary pressure functions using the 
procedure described in the previous section. We started with an initial guess of the 
relative permeability and capillary pressure functions where the partition (the way the 
spline knots were distributed) was different from the true one for each function. For the 
relative permeability functions, we used the steady-state relative permeability points as 
an initial estimate. By systematically adding knots (and thereby flexibility) to the flow 
functions, an improved match between the synthetic and estimated data was obtained. 
Fig. 6a shows the results from the estimation and Fig. 6b the residuals (Ym - Yv(b)). The 
match was very good as seen from the residual plot. The residuals of the production 
oscillate around zero with a mean residual of approximately 0.005, which is the value of 
standard deviation of the noise we added to the data. The noise we added to the pressure 
drop data increased after 7000 minutes (due to increasing pressure drop) and this is seen 
as an increase in residuals from 5 to 14 kPa. Table 4 lists some statistical results for this 
case. The sum of squared residuals is satisfactory since the quantity gives a
reasonable estimate of the standard deviation in the data (which is known when we are 
working with synthetic data). Ms^ki is an unbiased estimator of cr2 (the variance of each 
measurement)2. The number of runs are approximately the same as the expected value, 
which is 41 + 1. The number of runs tells how often the residual is crossing the zero line. 
This property gives additional information to the SSR when we want to determine if 
bias error is present in our estimates (for further details on errors in measurements, see 
Watson et al.21). Since the SSR and the number of runs are close to the expected values 
for these quantities, the estimated functions must be close to the true functions.

The estimated and true flow functions with 95% confidence intervals are plotted in Fig. 
6c,d. Here, the 95% confidence intervals are computed around the estimated functions, 
and the true functions are within these intervals. The plots in Fig. 6a,b show that we can 
reconcile the measured pressure drop and production data, and that we can estimate the 
“true” relative permeability and capillary pressure functions simultaneously. This design 
of experiments for estimating flow functions has also been used for estimating three- 
phase relative permeability functions (see Urkedal et al.20 and Nordtvedt et al.1*).

Experimental results. The proposed method to determine relative permeability and 
capillary pressure functions has been used with experimental data. A reservoir condition 
steady-state flow apparatus was utilized5 for acquiring experimental data. The apparatus 
consists of three major parts: a pumping system, a core holder, a high resolution
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differential pressure transmitter, and an acoustic separator. These parts are assembled in 
order to recycle two phases simultaneously through a core sample with accurate and 
virtually pulse free flow rates. Production from the core sample and differential pressure 
across the sample are continuously monitored as a function of time. Both data 
acquisition and monitoring of the apparatus are automated, and performed by a personal 
computer; see Appendix B and Fig. 9 for details.

The core used was an outcrop chalk sample from the Turanian Seaton Chalk Formation 
(“Beer Stone”) in Devon, Southern England23. It was selected on the basis of having 
relatively homogenous CT-scan images. The core was cleaned with solvents and dried 
before testing, and it was water-wet. Mineral oil (Exxon Isopar H) was used as the oil 
phase and a simulated North-Sea chalk formation water as the water phase. Calcium is 
added to the formation water to ensure chemical stability of the chalk matrix. Basic core 
data and fluid properties are listed in Table 2. The new experimental design was used; 
details on the rate fractions are listed in Table 3.

The relative permeability and capillary pressure functions were estimated using the 
same procedure as with the synthetic data set, demonstrated in the previous section. The 
match between experimental and estimated data is plotted in Fig. 7a, and Fig. 7b shows 
the residuals. A very good agreement between the experimental and predicted pressure 
drop and production data is obtained. Table 4 lists the statistical data for the 
experimental case. The values of the SSR for pressure drop and production data are in 
agreement with the estimated standard deviation for these data (estimates of 
measurement errors are based on analysis of experimental equipment) and a further 
reduction will not likely be obtained. Still, we see that the number of runs are below the 
expected value. This is the result of some bias error in our estimates which is seen in the 
residual plot when the residuals are not oscillating around zero.

The estimated functions (see Fig. 7c,d) were quite flexible by the end of the estimation, 
with seven interior knots each in the spline partition. The 95% confidence intervals 
computed and plotted around the estimated functions are quite narrow, which means 
that the information content of the data is relatively large. The steady-state equilibrium 
relative permeability points have been computed and plotted together with the estimated 
functions. These points are only equal to points on the estimated functions for water 
saturation higher than 0.8. This deviation shows that effects of capillary pressure are 
significant. This is consistent with the relatively narrow confidence intervals around the 
estimated capillary pressure functions (see Fig. 7d). For water saturations below 0.2, the 
confidence intervals are large since saturation does not take on values in that range 
during the experiment. Nevertheless, estimates of the functions are obtained. This has 
been done to avoid making a priori assumptions with respect to irreducible water 
saturation in the analyses (i.e., the irreducible water saturation has been kept equal to 
zero throughout the analyses). This is desirable as there is generally no a priori 
information available about the irreducible water saturation.

The capillary pressure estimate has been compared to two other experimental 
techniques; both the micro-membrane7 as well as the mercury injection techniques have 
been utilized to obtain independent estimates (see Fig. 7d). In both these cases, the 
capillary pressure curves are obtained on a neighboring sample. This sample had a 
somewhat different permeability and porosity from the one used in the steady-state type 
experiment. The mercury injection and micro membrane curves in Fig. 7d are therefore
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scaled so that the capillary pressure curves should be comparable to the capillary 
pressure function for the test sample considered here. This scaling is done using the so 
called Leverett J-function10. As can be seen from Fig. 7d, the three techniques provide 
very similar results except for high saturation values.

Finally, we compared the pressure drop and production data predicted from the steady- 
state relative permeability points with the results obtained from estimation of the flow 
functions. We fitted a smooth monotonic B-spline function through the equilibrium 
points in Fig. 7c, but kept the water relative permeability non-zero until zero water 
saturation to avoid the water-cut we otherwise would experience. Then the numerical 
simulator CENDRA was used to predict the pressure drop and production data. These 
data are plotted together with the estimated and experimental data in Fig. 8. These 
figures show that it is impossible to reconcile the experimental pressure drop and 
production data using the conventional equilibrium steady-state relative permeability 
points.

Conclusions

1. A method for simultaneous determination of relative permeability and capillary 
pressure functions from pressure drop and production data measured during steady- 
state type experiments has been developed and tested.

2. All experimental data are reconciled by simulation.

3. The accuracy of the estimates has been calculated using a linearized covariance 
analysis. The analysis shows that the relative permeability and capillary pressure 
functions can be determined accurately over a large saturation range.

4. The feasibility of the method has been demonstrated by analyzing simulated and 
actual experimental data. For the experimental case, the estimated capillary pressure 
is consistent with independent estimates using the micro membrane and mercury 
injection techniques.

Nomenclature

a Sensitivity coefficient
A Sensitivity of simulated data to parameters
b Constrained vector
b Estimate of p
B Spline basis function
P Vector of unknown parameters
C Spline coefficients
C Covariance of estimated flow functions
D Sensitivity of flow functions to parameters
G Constraint matrix
J Objective function
k Permeability
M Number of measured data
m Spline order
ii Viscosity
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N Dimension of spline
Nc Capillary number
Np Number of points in flow function table 
P Pressure
P Covariance of estimated flow function parameters
S Saturation
a Interfacial tension
u Darcy velocity
W Weighting matrix
x Length coordinate
y Spline partition
Y Vector of measured or simulated data
E Covariance of measurements
Subscripts

c Capillary
m Measured
nw Nonwetting phase
r Relative
s Simulated
w Wetting phase

Superscripts

c Capillary
nw Nonwetting phase
w Wetting phase
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Appendix A - Linearized Covariance Analysis

A linearized covariance analysis is utilized to obtain an estimate of the accuracy of the 
estimated functions9. In this analysis it is assumed that the selected functional 
representation, B-splines19, adequately represent the true (although unknown) functions. 
It is further assumed that the simulator adequately represents the physics of flow 
through porous media and that the measurement errors are additive. The analysis is 
based upon the assumption that the objective function, Eq. 4, may adequately be 
approximated in a sufficiently large parameter region near the true parameter values, P, 
by a function that is linear in the parameters. By Taylor expansion of J(b) where b is 
the estimate of /?

J(b) - -]3) + (b-p)
(A.1)

it can be shown9 that a linear relationship exists between the parameter errors and the 
errors in the measurements:

Pa,x7V=(A7"E-1A)-1, (A.2)

where the sensitivity matrix for the simulated data with respect to the parameters is 
defined as

dYs(l5)

dp (A.3)

By assuming a normal distribution for the measurement errors, pointwise confidence 
intervals for the relative permeability and capillary pressure functions may be calculated 
from the covariance matrix of the estimated functions

CNpXNp = Dr(ArE-1A)-1D = DrPD, (A.4)

where the sensitivity in the flow functions with respect to the parameters in the 
representation of the functions is given as

(A.4)dp

where /(/?) represent the flow functions dependent on the parameter vector p.

Appendix B - Steady-State Experiment

A schematic of the two-phase flow apparatus is shown in Fig. 6. The main parts of the 
apparatus are a pumping system, a two-phase separator, and a core holder.

The pumping system consists of five computer controlled cylinders that have the 
capability of recycling two phases simultaneously through a core sample. The cylinders
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are paired, and two cylinder pairs act as pumps for recycling water and oil (or a gaseous 
phase), respectively. Each phase is pumped into the core sample with accurate and 
virtually pulse free flow rates. For each of the cylinder pairs, one cylinder delivers fluid 
into the sample, while the other receives fluid through the return line from the separator. 
The receiving cylinder runs at a slightly higher rate than the delivering cylinder, which 
implies that the receiving cylinder is ready to deliver fluid into the sample before the 
delivering cylinder is empty. By continuously adjusting the rates and the pressures, the 
take-over between the cylinders in one pump can occur smoothly. The fifth cylinder is 
working in a constant pressure mode, and acts as a back pressure regulator within 7 kPa 
accuracy. This cylinder is connected to the water return line, but is in contact with both 
phases indirectly through the separator. It provides for an excellent back pressure 
control, and tracks any leakage that might occur throughout the experimentation. The 
flow rates are adjustable from 0.5 gl/min to 10 ml/min.

A two-phase separator is used for volume detection. It is an acoustic separator used for 
separation of produced fluids, and for continuously monitoring the production from the 
outlet face of the core sample. In the separator, two bores are connected to each other, 
and fluid from the core sample enters in one of the bores at the bottom of the separator, 
where they are separated. The other bore is the measuring bore, and is connected to the 
separation bore by two channels, one at the top of the separator and one at the bottom. 
An acoustic transducer is located in the bottom of the measurement bore. Through 
measurements of the time for an acoustic wave (generated by the transducer) to echo off 
the interface between the water and oil phase and a calibration stub, the distance from 
the transducer to the interface can be determined. From this measurement, the water 
volume in the separator may be calculated. The static accuracy of the volume 
determination is ±0.01 ml, while the dynamic accuracy is empirically determined to be 
±0.07 ml. The accuracy is poorer when the phases are recycled due to the different rates 
of the delivering and receiving cylinders in one pump. This involves that cylinder five is 
compensating for a pressure loss caused by the higher rate of the receiving cylinder. As 
a consequence, the meniscus in the separator will continuously be moving up and down. 
The shape of the meniscus will change with the direction of movement, and hence a 
hysteresis effect in the volume measurements will occur. However, we have minimized 
this effect by covering the bores with a layer of Teflon, and thus rendered the wettability 
of the bore surfaces close to a neutral state.

A hydrostatic core holder is used in the apparatus. The inlet distribution plug has two 
separate spiral grooves for water and oil, ensuring distribution of both phases across the 
entire core inlet face, and a pressure port in the centre. The outlet distribution plug is of 
conventional type with three concentric rings and cross-hatch every 45 degrees. A wire 
screen is placed on the outlet distribution plug to minimize particle washout and to 
ensure uniform fluid flow across the outlet end face. A non-flexible stainless steel 
support screen with no vertical flow possibilities is placed toward each core face to 
prevent the relatively soft chalk sample being forced into the grooves forming the 
distribution plugs. Several rubber washers are placed behind each distribution plug to 
transmit an axial stress proportional to the confinement pressure. The core sample is 
completely covered with Teflon tape and a hydrogenated nitrile sleeve.

The pressure drop across the core sample is measured by a high resolution differential 
pressure transmitter with adjustable range. The range is zero to 3 MPa, and the accuracy 
during re-circulation is within 1% of the measured value.
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The pumps, the separator and the core holder are all placed in a heating cabinet, and 
provide a closed loop and recycling of both phases up to reservoir conditions. The 
apparatus is capable of running either steady-state type experiments or unsteady-state 
type experiments, i.e. either one or two phases can be simultaneously injected into the 
core sample. The monitoring of the apparatus and data acquisition (pressures, volumes, 
temperature etc.) are automated and performed by a personal computer.
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TABLE 1 - INJECTION RATES, q/q, [cc/min] 

Case A-1 1.0/0.0

Case A-2 0.06/0.04, 1.0/0.0

Case A-3 0.001/0.099,0.016/0.084,0.060/0.040,

0.094/0.006, 0.040/0.001, 1.0/0.0

TABLE 2 - CORE AND FLUID PROPERTIES

Case A Case B Exp.

Oil viscosity [cP] 1.2 1.2 1.19

Water viscosity [cP] 0.9 0.9 1.097

Core length [cm] 6.0 6.0 6.81

Core area [cm2] 11.1 11.1 10.927

Porosity [%] 40.0 40.0 28.4

Abs. permeability [md] 1.0 100.0 4.17

Sw, initial [frac.] 1.0 1.0 1.0

TABLE 3 - INJECTION RATES [cc/min]

Case A Case B Experiment

U qA 0.099/0.001 0.098/0.002 0.099/0.001

2) qA 0.084/0.016 0.084/0.016 0.088/0.012

3) qA 0.040/0.060 0.040/0.060 0.040/0.060

4) qA 0.006/0.094 0.001/0.099 0.0/0.10

5)qA 0.001/0.400 0.001/0.500 0.0/0.25

OqA 0.0/1.0 0.0/4.0 0.0/1.0

7) qA 0.0/3.0
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TABLE 4 - STATISTICAL DATA

#Points
W)

#Param.
(AO

SSR 1 SSR
V M-N-1 <7 RUNS

obs.
RUNS

expected
Case A, 
AP(kPa)

433 26 54564.0 11.2 5.0 225 218

Case A,
V(ffac.)

417 26 0.00464 0.0033 0.005 204 210

Exp.,
AP (kPa)

366 21 20672.4 7.5 2.0 41 184

Exp.,
V^(frac-)

337 21 0.00518 0.0039 0.005 76 170

Differential Pressure Saturation Profile Production

Separator

In Situ SaturationIn Situ Pressure

Fig. 1 - Different types of data gathered from displacement experiments.
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Fig. 2 - Production (solid line) and pressure drop (dotted line) data for; a) Case A-1 (one 
injection step) and Case A-2 (two injection steps), and b) Case A-3 (six injection steps).
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Fig. 3 - Experimental design with 95% confidence intervals for the three injection 
strategies; a) Water relative permeability; b) Oil relative permeability; and c) Capillary 
pressure.
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Normalized Core Length

Fig. 4 - Saturation profiles for Case A (low absolute permeability), solid line and Case B 
(high absolute permeability), dotted line.
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Fig. 5 - Experimental design - true pressure drop and production data, and the same data 
computed using equilibrium relative permeabilities; a) Case A; and b) Case B.
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Fig. 6 - Simulated case; a) Match between synthetic and estimated data; b) Residual 
plot; c) Estimated and true relative permeability functions with 95% confidence 
intervals; and d) Estimated and true capillary pressure functions with 95% confidence 
intervals.
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Fig. 7 - Experimental data; a) Match between experimental and estimated data; b) 
Residual plot; c) Estimated relative permeability functions with 95% confidence 
intervals; and d) Estimated capillary pressure function with 95% confidence intervals.
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Fig. 8 - Experimental data predicted using estimated relative permeability functions and 
data predicted using equilibrium relative permeability points; a) Production data; and b) 
Pressure drop data.

Fig. 9 - Two-phase flow apparatus.
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Determination of Three-Phase Relative 
Permeabilities From Displacement 

Experiments
J.E. NorcJtvedf, Einar Ebeltoff, J.E. Iversen, Andre Sylte, Hege Urkedal, and K.O. Vatne, RF - Rogaland Research,

and A.T. Watson, Texas A&M U.

Summary
We describe and demonstrate a method for the determination of 
three-phase relative permeability functions at reservoir conditions. 
Two- and three-phase displacement experiments are conducted on 
a low-permeability chalk sample, and estimates of the three-phase 
relative permeability and capillary pressure functions are obtained. 
We also calculate three-phase relative permeabilities with the Stone 
predictive model, and we evaluate them by simulating the exper­
imental data.

Introduction
Determination of relative permeability and capillary pressure proper­
ties (multiphase-flow functions) from experimental data has received 
a great deal of attention in the past half decade. Substantial improve­
ments in the estimation of two-phase relative permeabilities have 
been made with the development of a generalized procedure for esti­
mating multiphase-flow functions from experimental data.1-4' The 
extension of this method to the determination of three-phase func­
tions also can provide for substantial advances in that area.5,6

The understanding and description of three fluid phases in porous 
media have been hindered severely by the lack of adequate methods 
for determining multiphase-flow functions from experimental data. 
Consequently, the primary method for generating three-phase relative 
permeabilities has been through the use of various predictive methods 
that generally have never been evaluated with actual experimental 
data. These methods are based on simplified models whereby two- 
phase relative-permeability data represented with univariate satura­
tion are extrapolated onto bivariate saturation representations.

Analysis of three-phase experimental data has been based on sev­
eral generally unsupported simplifications (e.g., the neglect of cap­
illary pressure, incompressible fluids, uniform saturation profiles, 
and each relative permeability being a function of its own saturation 
only). In an effort to meet such simplifications, experiments fre­
quently have been conducted under flowing conditions that are un­
representative of those encountered within reservoirs. Consequent­
ly, the estimated three-phase properties may not be suitable for 
describing reservoir flow.

We report the application of a method to overcome these prob­
lems. We have constructed an experimental apparatus whereby two- 
and three-phase displacement experiments may be performed at res­
ervoir conditions.7 The experimental process is modeled by a gener­
al-purpose three-phase simulator that includes the pertinent physi­
cal effects. We then choose the appropriate relative permeability and 
capillary pressure functions through solution of a series of optimiza­
tion problems, so that the quantities calculated with the simulator 
are consistent with the measured values. A low-permeability chalk 
sample demonstrates this method.

The data measured during three-phase experiments can be used 
to evaluate predictive methods when the necessary two-phase rela­
tive permeabilities have been determined. We demonstrate this by 
use of the three-phase relative permeabilities calculated with 
Stone’s method8 to simulate the pressure drop and production using
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the conditions of the experiments and comparing the simulations to 
the actual measured data.

Three-Phase Flow Apparatus
Fig. 1 shows a schematic of the flow apparatus. It consists of a 
pumping system, a three-phase separator, a core holder, and an X- 
ray scanner system for in-situ saturation measurements. Here, we 
review the main features of the apparatus; further details on the 
equipment and testing may be found in Ebeltoff et al7

The pumping system consists of eight computer-controlled cylin­
ders that pump reservoir fluids into the core sample at reservoir 
conditions. Cylinders are paired to act as a pump. Three cylinder 
pairs are used for recycling water, oil, and gas with accurate and 
virtually pulse-free flow rates. For each of the cylinder pairs, one 
cylinder delivers fluid into the sample, while the other receives fluid 
through the return line from the separator. The receiving cylinder 
runs at a slightly higher rate than the delivering cylinder. The receiv­
ing cylinder is then ready to deliver fluid into the sample before the 
delivering cylinder is empty. All rates and pressures are continuous­
ly adjusted, and the switch between the cylinders occurs smoothly. 
The seventh cylinder acts as a back-pressure regulator and works in 
a constant pressure mode. This cylinder is plumbed to the oil return 
line, but is in connection with all three phases through the separator. 
It will respond to any volume and pressure changes in the system. 
These seven cylinders are placed in a heating cabinet, and provide 
a closed loop with recycling of all three phases at reservoir condi­
tions. The eighth cylinder is placed outside the heating cabinet and 
is used to maintain constant overburden pressure to the core sample 
and for various preparation work. A personal computer monitors the 
apparatus and automates and performs collection of data.

Fig. 2 shows a schematic of the separator that is used to monitor 
the production of each fluid phase. Three bores are connected to 
each other, and fluids from the core sample enter into the top of the 
middle bore, where they are separated. Two measuring bores are 
connected to the separator bore by a set of channels. The volumes 
of the phases in the separator are inferred by means of acoustic trans­
ducers determining the distance from the transducer to the interfaces 
formed in the measurement bores. Using these measurements, the 
water and gas volume can be determined. The oil volume is deter­
mined by subtracting the water and gas volume from the total sepa­
rator volume.

A carbon fiber hydrostatic core holder is used. The core holder 
contains an internal heating system that makes it feasible to keep the 
core holder outside the heating cabinet during experimentation. 
This may be necessary in cases when, for example, an X-ray system 
is used to monitor saturation changes.7 The core sample is covered 
by aluminum and placed within a rubber sleeve. This arrangement 
is then mounted into the core holder. Distilled water is used as the 
fluid surrounding the core sample in the holder. The pressure in the 
surrounding fluid is controlled by the eighth cylinder in the pumping 
system. Specially designed plugs are used at the inlet to distribute 
the fluids over the face of the core and at the outlet to avoid hold-up 
of the produced fluids. Several rubber washers behind these plugs 
transmit an axial stress proportional to the pressure in the surround­
ing fluid.

The differential pressure across the core sample is measured with 
a high-resolution transmitter with an adjustable range. Three high- 
pressure titanium cells located inside the heating cabinet are used as 
reservoirs for the fluids (i.e., the formation water, oil, and gas). They
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Fig. 1—Three-phase flow apparatus.
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predictions of the measured data match those obtained during the ex­
periment. The model is based on a continuum representation,9 using 
equations for conservation of mass, the Darcy equations, the capillary 
pressure equations, and appropriate boundary and initial conditions. 
Important effects in this model include compressibility of fluid 
phases, capillary pressure, gravity, and heterogeneity. While the first 
two effects are taken into account explicitly, we assume gravity to be 
negligible, and that the core sample is homogeneous. The neglect of 
gravity effects for these experiments has been verified through X-ray 
saturation monitoring (see Ebeltoft7 for a discussion), while a CT 
scanner has been used to select a homogeneous sample.

A key aspect in estimating multiphase flow functions from 
measured data is the representation of the unknown functions. It is 
essential that the functions have sufficient degrees of freedom to 
represent the true (although unknown) properties, yet it is desirable 
that the degrees of freedom be limited whenever there is insufficient 
information content in the experimental data. B-spline functions 
have been used successfully for representation of the univariate 
flow functions when estimating relative permeability and capillary 
pressure functions from two-phase experiments.1-4

For situations with three flowing fluid phases, the flow functions 
are bivariate because the properties may depend on two saturation 
values (the third saturation value is not independent). Thus, the rela­
tive permeability and capillary pressure functions must be repre­
sented by surfaces when plotted as a function of two saturations. 
This can be achieved by using tensor-product B-splines. The rela­
tive permeability surfaces are given by:

load the apparatus with live fluids at reservoir conditions. A mem­
brane-type back-pressure regulator is used to decrease the pressure 
from the operating condition to atmospheric in a controlled manner 
when loading the system with live reservoir fluids. Both the titanium 
cells and the back-pressure regulator are closed off during exper­
imentation. Everything, except the X-ray scanner and the core hold­
er, is placed in an electrically heated cabinet.

Method
The basic method we use for estimating the multiphase flow functions 
is an implicit approach first reported by Mejia et al.5 and further de­
veloped by Nordtvedt et al6 In this approach, the experimental physi­
cal process is represented with a suitable mathematical model, and es­
timates of the multiphase flow functions are obtained so that

m2 + K2
Z ZVVS,.%.%.?:)................ (1)
;=i j=\

where i=o,w,g,mz- is the order of the spline in direction i, K( is the 
corresponding number of knots, and y, and y2sat the extended parti­

tions |y, - (yn,. . ,,yh 2m, + One can increase the flexibil­

ity of the surface by increasing the number of knots (in one or both 
directions) and/or by increasing the corresponding spline order. 
Similar bivariate expressions can represent the capillary pressure 
functions. The tensor product B-spline expansion in Eq. I can be 
found from two univariate B-splines expansions in any two satura­
tion directions.10 For details on the functional representation, see 
Nordtvedt et al.6
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To determine estimates of the flow functions, we solve the nonlin­
ear parameter estimation problem defined by minimization of the 
following objective function:

Here, Y

r\$) - r

?~and

W Y - YmSaS (2)

are the measured and simulated data, re­

spectively, W is the weighting matrix, and ft is the collection of all 
spline coefficients. In this work, we use a fully implicit three-phase,

one-dimensional black-oil simulator to calculate Y W is se­
lected to be the inverse of the covariance matrix of the estimate, and 
hence maximum-likelihood estimates result. The parameter estima­
tion problem is solved with a trust-region-based Levenberg-Mar- 
quardt algorithm.

In the parameter estimation procedure, it may be convenient that 
the estimates of the flow functions exhibit some particular shape 
characteristics. For example, it is desirable that the flow functions 
be monotonic with increasing saturation. This results in a set of lin­
ear inequality constraints on the parameters,

Gfi </3 (3)

where G is the constraint matrix.3’6
Note that with the approach used here, we can use data simulta­

neously from several separate two- and three-phase experiments. 
However, to attempt to solve Eq. 2 as a single-parameter estimation 
problem while including all the data from all the experiments is not 
likely to be fruitful because local, nonglobal solutions to the problem 
may result. For two-phase situations, this problem has been solved as 
a series of minimization problems with increasing dimensions of the 
parameter space ]’3’4 or as a series of largely decoupled problems.1 
For three-phase problems, we use the following procedure.

First, we analyze all the available data from the two-phase experi­
ments. Instead of simply estimating the univariate functions, as 
might be done typically, we use the three-phase representations and 
estimate only those coefficients corresponding to basis functions 
that have support in saturation regions accessed by the particular 
two-phase experiments. The regression-based approach is used for 
selection of the partitions. Analyzing the three-phase data, we start 
using the partitions and coefficients that will reconcile the two- 
phase data; hence the flow functions are kept equal to the two-phase 
estimates in the two-phase regions. Consequently, relatively flex­
ible representations for each of the flow function are used in the ini­
tial phase in the analysis of the three-phase data. We then analyze 
only parts of the three-phase data and estimate the parameters corre-
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Fig. 4—Estimated three-phase flow functions; a) water relative permeability; b) oil relative permeability; c) gas relative permeability; 
d) oil-water capillary pressure; e) oil gas capillary pressure.

spending to basis functions with support in the saturation region 
corresponding to the data used. With fixed partitions, we gradually 
increase the amount of three-phase data used. Finally, if necessary, 
we will increase the flexibility of the representations. A knot will be 
added in a saturation region corresponding to data that are not well 
matched and to the function expected to have the highest sensitivity 
in that saturation region. For further details on the method, see 
Nordtvedt et al.6

Results and Discussion
We analyzed three-phase flow in a chalk sample with the previously 
described apparatus and estimation method. One two-phase and two 
three-phase experiments were designed to determine water, oil, and 
gas relative-permeability functions to represent simultaneously 
with the capillary pressure functions for a situation in which water 
is injected into an oil- and gas-filled zone in the field. This means 
that the water should be injected into the core sample at initial low-
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water saturation. Because it can be very difficult to replicate the very 
low ini dal saturations that are expected within the field in the labora­
tory, the core sample was saturated fully with oil. Then, we per­
formed the two- and three-phase experiments. We conducted all ex­
periments at 20,700 kPa and 30°C, with a net overburden pressure 
of 7,000 kPa. Fig. 3a shows, in a ternary diagram, the average satu­
ration of the three phases as a function of time for the three experi­
ments. For all the experiments, the production of water and oil was 
measured as a function of time along with the pressure drop. Figs. 
3b through d show the measured pressure and production data.

First, we conducted a two-phase water-displacing-oil experiment 
(IDC). The notations IDC, GDI, and DDI describe the saturation his­
tory. The three capital letters indicate directional saturation changes 
of each fluid phase within the core sample, in order of water, oil and 
gas, to be decreasing, increasing, or remaining constant. The IDC 
experiment consists of a series of steady-state steps. Initially, a low- 
water/oil rate fraction is used, and the production of water and the 
pressure drop across the core sample is measured as a function of 
time until a near steady-state situation is attained. Then, the rate 
fraction of water is increased, keeping the total rate constant. Again, 
production and pressure are measured as functions of time. Two 
more steps using increasing values of the water-rate fraction (the 
last one corresponding to water injection only) are made. Then, the 
total rate is increased. This experiment is denoted El. Fig. 3b shows 
the experimental data.

Upon completion of experiment El, we cleaned the core and satu­
rated it with oil. Then, a two-phase oil-gas flood was conducted to 
an intermediate gas saturation using a constant-rate fraction of gas 
and oil (a GDI to approximately 30% gas saturation).

In Fig. 3c, the data through the first 6,000 minutes represents the 
two-phase production and pressure drop. An increase in the oil pro­
duction as a function of time is observed, while the pressure drop 
rapidly reaches a plateau value. The measured water production is 
zero because this is a two-phase water-gas case. Subsequently, and 
without halting the flow, water was injected simultaneously with oil 
and gas (an IDD process). During the IDD process, a series of 
steady-state steps was conducted in which the oil and gas rates were 
kept constant while the water rate was increased in steps. Fig. 3c 
shows the experimental data. Note that the water production is nega­
tive. This reflects the change of fluid saturation in the core sample. 
The experiment was initiated with a high oil and gas saturation and 
zero water saturation in the core. As we start injecting water, the wa­
ter saturation will increase, and gas and oil will be displaced. This 
means that water will accumulate within the core, giving a negative 
production. The amount of injected fluid can be determined with the 
separator.7 The GDI and IDD experiments are denoted E2. Upon 
completion, the core sample was again cleaned and saturated with 
oil. We conducted a new GDI (in two steps) followed by an IDD ex­
periment (E3), and this time we introduced the water at a gas satura­
tion of about 40%. Fig. 3d shows the data for experiment E3.

To determine the three-phase flow functions, we first estimate the 
two-phase relative permeability functions as well as the two-phase 
capillary pressure functions corresponding to the two-phase oil-wa­
ter data (El) and the two-phase oil-gas data (two-phase part of ex­
periment E3). Then, we analyze the three-phase data (three-phase 
part of experiment E3). In this work, the capillary pressure functions 
resulting from estimation from the two-phase data are kept fixed 
(i.e., our estimate of the three-phase capillary pressure functions are 
univariate). Finally, we analyze the three-phase data resulting from 
experiment E2. Note that the two-phase data from experiment E2 
(IDC) are not included in the analysis. The total number of data in 
the analysis was 2,443, and final value of the objective function was 
17000. At the final step, the total number of parameters was 50. Fig. 
4 shows the estimates of the relative permeability and capillary pres­
sure functions, and Fig. 3 shows the comparison between estimated 
and measured data. As can be seen, a close match between exper­
imental and simulated values is obtained.

As discussed in the introduction, it is desirable to evaluate the ef­
ficacy of methods for calculating three-phase relative permeabili­
ties from two-phase relative permeabilities. Here, we investigate the 
predictive model developed by Stone8 by calculating the three-

phase relative permeabilities with that method and using those prop­
erties to simulate the measured experimental data. If the calculated 
three-phase relative permeabilities are accurate, the simulated val­
ues should be consistent with the measured data.

In the Stone8 predictive model, it is assumed that water and gas 
are spatially separated, and hence are univariate functions, while the 
oil relative permeability depends on two saturations. This depen­
dency can be found from the oil/water and oil/gas two-phase relative 
permeabilities. To get smooth functions for the purposes of simula­
tion, we fit a tensor-product B-spline surface to the three-phase data 
points obtained from the Stone predictive model. The production 
and pressure drop are simulated under the conditions of the experi­
ment. Fig. 3 shows experimental data together with simulated data 
by use of relative permeabilities determined with the Stone predic­
tive model. These values also can be compared with those simulated 
with the relative permeabilities we derived from the experiment. 
The figure shows clearly that relative permeabilities generated us­
ing the Stone predictive model overpredicts the oil production in E2 
and overpredicts the amount of water injected in both E2 and E3. In 
both E2 and E3, the pressure drop is overpredicted for all rate frac­
tions except the last one. A measure of the degree of inconsistency 
between the measured and simulated data is provided by the objec­
tive function. The value calculated using the Stone relative permea­
bilities exceeds the value obtained using our estimates by more than 
a factor of 20.

Conclusions
1. Three-phase relative permeability and capillary pressure func­

tions on a low-permeable chalk sample were determined from data 
measured in serial two- and three-phase experiments.

2. The relative permeabilities generated using the Stone predic­
tive model do not simulate the experiments accurately.
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Nomenclature

fi - parameters 
c = spline coefficients 

G = constraint matrix 
J= objective function (defined in Eq. 2)

K; — number of knots in direction i 
mi — spline order in direction i 
N= spline basis function 
S= saturation 
y = partition vector 
Y = vector of data 

W"= weighting matrix

Subscript/Superscript 
c= capillary 

cal= calculated 
con — constraint 

S- gas
meas= measured 

r— relative 
o = oil 
w= water
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Abstract
Accurate information of the properties describing fluid flow in porous medium is important for 
simulation of reservoir forecasting and exploration. In estimation of these properties from laboratory 
data, the properties are selected so that simulated data match the observed data. The most frequent used 
estimation methods involve computation of the sensitivity of the model response with respect to the 
model parameters. These derivatives are referred to as sensitivity coefficients.

The sensitivity coefficients are traditionally calculated numerically by finite differences. This method 
introduces truncation and condition errors and is also computationally expensive as it requires Np+1 base 
runs of the simulator (Np is the number of parameters characterizing the properties we want to determine). 
In this work we establish a methodology for determination of analytical sensitivity coefficients using the 
direct method. Since the simultor equation is solved using the Newton-Raphson method, we can use the 
properties of this solution to solve the sensitivity equation and get the sensitivity coefficients in the direct 
method. Hence, the number of computations is reduced. The finite difference derivative computations are 
avoided, and we improve the accuracy of both estimation of porous media properties and the accuracy 
assessment.

The direct method for computation of analytical sensitivity coefficients is developed and implemented for 
two- and three-phase flow in porous media. Examples from parameter estimation and computation of 
accuracy of estimates are presented. The difference between numerical and analytical sensitivity 
coefficients, the impact of sensitivity coefficients on “false” sensitivity, support of parameters, 
identifiability of parameters and size of confidence intervals will also be discussed.

1 Introduction
To simulate a practical problem as in history matching or prediction of reservoir 
performance, the porous media properties which appears in terms of coefficients (and/or 
initial and boundary conditions) in the model equations must be specified. Typically, 
these quantities can not be measured directly, but must be inferred through measurement 
of other quantities and utilizing some inverse approach [21]. The inverse approach 
provides a manner in which measurements of state variables or other data sets are used 
to determine the unknown coefficients by matching the model response to the 
measurements [14]. Optimization procedures which minimize an objective function, 
typically the sum of squared differences between the model response and measurements 
are used. These optimization procedures require the partial derivative of the model 
equation with respect to the parameters. These derivatives are called the sensitivity 
coefficients. The sensitivity coefficients provide a quantitative measure of the change of 
direction and magnitude of a model response with the properties. They also contain the 
necessary information for calculation of accuracy of the estimates. This accuracy can be 
computed using a linearized covariance analysis [7,11], and utilized in designing 
experiments [18].

1



The sensitivity coefficients play an important role when estimating the properties and 
determining the accuracy of the estimates. Consequently, it is essential to compute 
accurate and robust sensitivity coefficients in an efficient manner.

There are several methods for computing sensitivity coefficients [13]. They are grouped 
into three methods: perturbation, direct and adjoint method. The perturbation method 
(also called divided difference or influence coefficient) is the simplest of the sensitivity 
methods and is widely used [13]. The model is first run with an estimate of the 
coefficients. The coefficients are then perturbed one by one followed by a simulator 
model run. This gives numerical sensitivity coefficients (NSC) approximate by

YSJ(dl,...,dj+A9j,6j+l,...,0N )-Ysi(61,...,9j,6j+1,...,QN )

A 6j (1)

This is divided differences or finite difference approximation of the derivatives. The 
sensitivity matrix A contain the NDxNP elements a1?, where ND is the number of data 
points and Np the number of parameters. This method requires Np+1 simulation runs. 
The advantage of the perturbation method is that an existing computer code can be used 
with only minimal additional programming. The disadvantages are that it requires 
repeated solutions of the simulator equation. Second, it introduces truncation error since 
second order and higher terms are neglected when computing the derivative. Condition 
error is introduced since the computed function values Ys(d) of Ysexac‘(8) will be subject 
to errors as YJ9) = Ysex“a(d) + a. Rounding errors in performing subtraction and division 
are generally negligible with respect to the truncation and condition errors. Third, 
choosing the right perturbation is difficult. When approximating the sensitivity matrix A 
by the perturbation method in Eq. 1, the error in the computed approximation can be 
viewed as the sum of truncation error and condition error. The truncation error is a 
linear function of A6j and the condition error is a linear function of 1/A0;, and changes
in AOj will tend to have opposite effects on these errors [3]. Hence, the errors 
introduced in the method will give accuracy and robustness problems when the 
sensitivity coefficients are used in later computations.

Instead of a numerical approximation, the direct and adjoint methods (semi-analytical 
methods) compute the sensitivity coefficients analytically by solving the coefficients’ 
sensitivity equations directly. The sensitivity equations are obtained by differentiating 
the model equations together with the associated boundary and initial conditions with 
respect to model parameters.

In the adjoint method (also called variational method), the adjoint simulator equations 
are differentiated with respect to the model parameters. This involve solving the adjoint 
simulator equation and integrate in space and time [4, 13]. The adjoint method also 
makes use of sensitivity equations, but rather than solve them directly, the sensitivities 
are obtained by solving the adjoint problem. Although the adjoint method can be used to 
compute state sensitivities [4], it is primarily used to compute the sensitivity of 
functionals.

The direct method (or sensitivity equation method) requires significantly less storage in 
comparison to the adjoint method. In addition, when the Newton-Raphson’s algorithm
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is used to solve the model equation, a large part of the computations can be spared in the 
sensitivity part, and the resulting system of sensitivity equation can be readily solved by 
performing just matrix back substitutions, rendering thus the direct approach 
computational efficient [6],

Hence, the direct and adjoint methods are much more efficient than the perturbation 
method since less computations are performed, and the accuracy and robustness are 
higher since the perturbation of the parameters and differences between very equal 
numbers is avoided [4, 13, 14, 20]. On the other hand, implementation of the methods 
requires more effort in terms of computer code development. The adjoint method will be 
more efficient than the direct method if the number of parameters is much larger than 
the number of grid blocks, due to integration in space in the adjoint method. The adjoint 
method also requires that a code similar to that of the original simulator be written for 
the adjoint variable. In this work we use relative many parameters to represent the 
unknown properties. However, the number of grid blocks will be in approximately the 
same range or larger than the number of parameters, and the direct method will therefore 
be the most efficient of the two semi-analytical methods. The direct method is 
implemented for reservoir history matching [1], and for two-phase flow in porous media 
[19]. It has also been showed that the method generally can be used in many 
applications [17].

In this paper, we will develop the direct method to compute analytical sensitivity 
coefficients (ASC) for two- and three-phase flow in porous media. The impact of 
different perturbations on truncation and conditional error and on numerical sensitivity 
coefficients (NSC) computed by the perturbation method will be discussed. The impact 
of errenous sensitivity coefficients on contribution of observations and identifiability of 
parameters will also be discussed. We will also present results on estimation of three- 
phase relative permeability and assessment of accuracy of these estimates when the 
direct and perturbation method have been applied to compute model sensitivity. 
Comparison of the two methods with respect to accuracy and CPU-time requirements 
will also be presented.

2 Theory
In this section, we first briefly sketch the experimental data used for determination of 
relative permeabilities. Then, we review the estimation and accuracy assessment 
methodologies, the functional representation of relative permeability and capillary 
pressure functions, the identifiability of parameters and the mathematical model for 
three-phase flow in porous media. Finally, the analytical sensitivity coefficients by the 
direct method developed for three-phase flow is presented.

2.1 Experimental Data

The main problem associated with determination of two- and three-phase relative 
permeabilities, is that the relative permeabilities are properties of the porous medium 
defined through the system of equations for flow through porous medium. 
Consequently, the relative permeabilities are not directly measurable, but have to be 
inferred from measurements of other quantities. The subsequent section will deal with 
the estimation methodologies. Here, we review the data used in such determinations.
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Typically, the relative permeabilities are determined from some displacement 
experiment, in which one or several fluid phases are injected into a core sample at some 
initial saturation of the same or other fluid phases. Frequently, a constant injection rate 
is utilized, and the pressure drop across the core sample and the fluid production are 
measured as a function of time. One example of typical data from such experiments is 
shown in Figure 1. Other measurables are individual phase saturations as a function of 
time at a given location, or as a function of location for a given time (saturation 
profiles). Such saturation information can be acquired using e.g. NMR experiments [8]. 
Also, individual phase pressures can be utilized in a similar manner.

These types of data might be utilized for determination of two-phase as well as three- 
phase relative permeabilities. In the three-phase cases, production and pressure drop as 
well as in situ saturation of two phases need to be considered. Similarly, two individual 
phase pressures might be made available. Figure 2 summarize types of data from 
displacement experiments.

In this paper, we will focus on utilization of production and pressure drop data, see [5] 
for a discussion on equipment and procedures. Note that all of the data can be utilized in 
all the procedures discussed in this paper, and the direct method has been implemented 
correspondingly.

2.2 Estimation of Reservoir Properties

The estimation methodologies for two- and three-phase relative permeabilities have 
been developed through a series of articles, see [7, 9, 10, 11, 21]. Basically, estimates 
are obtained solving a series of linearly constrained nonlinear parameter estimation 
problems. Each of these parameter estimation problems are defined by

minimize J(0) = f(d)T IT'fQD) (2)

subject to the constraints

(3)G6>g.

Here is f(8)=Y0-Ys(Q), where Ya is the vector of observed data, i.e. pressure drop, 
production, in situ saturation or pressure or saturation profiles, and Ys (0) is the vector of 
the corresponding simulated data. f(9) is the residual vector to be minimized in this 
problem. IT1 is the estimated variance of the observations. Hence, we find maximum- 
likelihood estimates. A trust region based, Levenberg-Marquardt algorithm is applied to 
solve the nonlinear least squares problem in Eq. 2 and 3, as described in [21]. The 
Levenberg-Marquardt search direction is defined in Gill [3] as the solution of the 
equation

(4)
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Here, k is the iteration, Xk is a non-negative scalar, fk is the residual vector, and Ak is a 
Nd xNf matrix of sensitivity coefficients defined as A , =dYsi(9)jddj. pk is the 
solution of Eq. 4 and the new parameters are computed as Qnew = 60ld + . The search
direction and the new parameters are functions of the sensitivity coefficients through 
Eq. 4. Hence, the accuracy of the estimated parameters, 6^, depends on an accurate 
computation of the sensitivity coefficients before Eq. 4 is solved. For large problems 
where many parameter are estimated, the method computational expense depends on the 
expense to compute A. The efficiency (cost of computing A and number of iterations 
before convergence) and robustness of the optimization will also depend on the 
accuracy and robustness of the computations of A.

2.3 Functional Representation of Reservoir Properties

Flexible representation of the relative permeabilities is a key element for successful 
determination of the relative permeabilities, see [7], However, the degree of freedom 
must be limited whenever there is insufficient information content in the experimental 
data. B-spline functions have been successfully used for representing the univariate flow 
functions, and tensor-product B-spline functions for representing three-phase relative 
permeability functions [10,9, 18]. A general function can be written as [12]

(5)

where y, and y2 denote the extended partition, and Sl and S2 the independent 
saturations. IV” are the tensor-product B-splines.

Three-phase relative permeability can be represented as

7
Sw if f*w

% if /="

and the capillary pressures are represented by

l°c,ow = f(Si,S2) Sl = Sw 
Pc,og —f(Sl,S2) S2 - Sg

The unknown parameters in the three-phase model will be the coefficients ctj in the
tensor-product B-splines (Eq. 5). These coefficients are arranged in the vector 0 as 
follows

An example of a two-phase oil relative permeability function is plotted in Figure 3a. 
This function is a sum of each of the five basis functions plotted in Figure 3b multiplied 
by the elements in the vector 6 = {1.0, 0.5, 0.05, 0.00002, 0.0}. The basis function N2
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has support in the saturation region S2=[0.0, 0.5]. During estimation of the parameter 
which is multiplied by this basis function, the experimental data must contain oil 
relative permeability information in this saturation region. The differential pressure 
sensitivity coefficient for this second oil relative permeability parameter is plotted in 
Figure 4.

In the three-phase case, oil relative permeability generally depends on two saturations. 
The surface is represented by the sum of tensor-product B-spline functions multiplied 
by a parameter vector. The basis functions BW1 to BW6 and BG1 to B06 in Figure 5a are 
multiplied with a vector containing 36 parameters and give the oil relative permeability 
surface in Figure 5b. A parameter with support in e.g. region 1-2 in Figure 5a is denoted 
c21 and correspond to the basis functions BW2 and Bc . This parameter has support in the 
saturation region corresponding to SwxS0= [0.0,0.5jx[0.0,0.3]. Hence, to estimated the
parameter c21, data containing three-phase oil relative permeability information in the 
corresponding saturation region are necessary.

2.4 Accuracy of Estimates

After the minimization problem in Eq. 2 and 3 is solved, the accuracy of the estimates 
can be computed using a linearized covariance analysis [7, 11]. The covariance of the 
parameter estimate is given as

P = (ArE-i A)™1. (6)

The accuracy or covariance of the estimated relative permeability and capillary pressure 
functions are computed by

C = DtPD (7)

where D is found from differentiating relative permeability and capillary pressure with 
respect to coefficients in their functional representation, i.e. for water relative 
permeability this is Dtj =dk7WjjddJ, where i is the index for saturation and j the
parameter index. From the diagonal elements in C, the confidence intervals can be 
computed for the estimated functions.

Again, the accuracy of these computations is highly connected to the accuracy of the 
elements in A. If the sensitivities are large, i.e. we predict the sensitivity in the data with 
respect to the parameters to be large, the confidence intervals will be small, hi the 
accuracy computations, the CPU-time will be linearly dependent of the number of 
parameters.

The linearized covariance analysis is also used in experimental design to analyze the 
sensitivity in the model to parameters in different parameterizations of the properties, 
different injection strategies, and with different sets of data [18].
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2.5 Contribution of Observations

When solving the inverse problem, the identified model parameters are generally 
allowed to be different from the true parameters within a certain range, provided that the 
required accuracy of model application is assured [22]. Let ^ be the range, or
resolution, of parameter . The parameter is said to be interval identifiable if the

identified value 0; of the parameter satisfies

(8)

where 90 j is the true value of parameter 0,. The problem of whether a parameter 0;. is 
interval identifiable for a given rjj depends upon the quantity and quality of 
observations.

To evaluate the data requirements of a system in connection with parameter 
identification, the concept of “contribution of observation F in the identification of 
parameter 0; ”, denoted CTB(i?,0;), is introduced by [22]. The contribution of 
observation Ft to parameter 0. in the experimental design can be represented as

(9)

where Ft is a component of model response vector F (0); Oj is a component of 
parameter vector 9, is a given admissible error of the identified parameter 0y (or 
resolution), which can be seen as the element 7of parameter weighting matrix (Ce); £, 
is the upper bound of observation noise associated with Fi; and dFi Iddj is the 
sensitivity coefficient of observation F with respect to parameter 6 and (Q.) is a region 
associated with parameter 6}.

Sun and Yeh [15] proved that a necessary condition for the interval identifiability is that 
there is at least one observation for each component for the unknown parameters whose 
contribution is larger than 1.

2.6 Three-Phase Flow Model

We consider three-phase flow in a homogenous porous, one dimensional medium. The 
model for three-phase flow is described by Darcy’s law which relates the flow rate and 
pressure gradient for each phase. Together with the conservation law, we get a coupled 
partial differential equation which is discretized in space and time and solved for the
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state variables, Po, Sw, and Ss, in each grid block at each time step, see [2, 16]. The 
extended version of Darcy’s law for multiphase flow is given as

(10)

where uf is the filtration velocity and VP/ is the fluid pressure gradient, p.p Bp and pf 
are the relative permeability, viscosity, formation volume factor, and density of phase/, 
respectively, k is the absolute permeability and g the gravitational constant. Vz is the 
gradient in the z-direction. Mass conservation gives

where Qf is the source/sinc term of phase/, cp is the porosity and Sf is the saturation of 
phase/. The relations on saturation and capillary pressure are given as

The initial conditions are chosen according to the reservoir conditions studied in each 
case. Various boundary conditions can be applied, depending on the process studied, 
e.g. simultaneous injection of several fluids at constant total rate and production against 
constant pressure.

Darcy’s law and mass conservation together with the relations and initial and boundary 
conditions (depending on the type of injection and production) give the simulator 
equations to be solved

+y.Vz)} = (12)
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with volume factors, gravity term and transmissibility given as:

7/ = P/g

Here, porosity and absolute permeability, (p = (p(x) and k = k(x), are porous media 
properties. Relative permeability is generally dependent on two saturations in three- 
phase flow, k'f =^(S1,S2). Vh represents the pore volume of a grid block. Rs is the 
solution gas-oil ratio describing the mass transfer between oil and gas phases.

The discrete form of Eq. 10 can be written as

A7;(A0J + ^=-^A,(^) (13)

with

When discretization scheme is chosen (upstream weighting), the oil equation becomes

the equations for water and gas will follow the same principles.

The discrete equations for water, oil (Eq. 12) and gas can be written in matrix notation 
as

F(m"+1,0) u"+1=G(m",0)m", (15)

where F is the vector of non-linear difference equations for each grid block and one 
vector for each phase, 6 is the vector of parameters, and u is the vector of unknown 
state variables at each grid block. This leads to a non-linear equation where Eq. 12 is 
approximated with Taylor’s series expansion about an assumed solution, written as
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=G(«",ex [«o -«(")]= ,(16)

p(*) _ p(k-i)1 o 1 o

where k is the iteration level and [«(i) - m<w>] is the change in the unknowns between 

two iterations. The Jacobi matrix 9F(u{k~l> ,6)/9u(kM) is tridiagonal, so that each 
iteration in Eq. 14 is a linear system and solved by Gauss elimination. The exit criterion 
is obtained when the maximum change in the unknowns is less than the preset tolerance 
|«(« -n(t"1)|^ < £. The state variables will then be updated according to ua+l - uk.

2.7 Analytical Sensitivity Coefficients by the Direct Method

In the direct method, the sensitivity coefficients are found by differentiating the model 
equation, Eq. 13 with respect to the model parameters.

Differentiation of the model at grid block i gives

5m”+1 96j 9u" 96j 96j 96 j
f = w,o,g. (17)

The sensitivity equation, Eq. 15, can be solved for the sensitivity coefficients 
Y”J‘ -9u"*'/9dj at each time step n+1. In Eq. 15 we know the Jacobi matrix

9F"f /<9m"+1 at iteration (k-1) from Eq. 9, but we can assume this is a good 
approximation to n+1 since the solution of the model do not change much from iteration 
k-1 to k. On the left hand side of Eq. 15, we must compute 9Gnf j/9u", 9G"f ./96J, and

9F"+' /9dj. This is relatively straight forward, see Appendix A for details. Since the 

relative permeability and capillary pressure functions are known, 9G"f i/96] and 
<3F”*‘ j96j can be computed analytically. We then have an equation which is linearly 
independent in the sensitivity coefficient, and can be solved by algebraic operations. 
When the sensitivity coefficients, Y”+1 = 9u"+'j96j, at each grid block are computed, 

the boundary conditions are differentiated with respect to the coefficients, and 9AP/96j 
and 9V0/96j are computed at each time step, see Appendix B. The sensitivity 
coefficients and the sensitivity in AP and Va with respect to the model parameters are 
then used in parameter estimation and computation of accuracy, whenever the 
sensitivity in the models response to the coefficients is necessary.
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3 Results and Discussion

The direct method to compute analytical sensitivity coefficients has been implemented 
for estimation of two- and three-phase relative permeability and capillary pressure, and 
for accuracy computation of these estimates.

3.1 Outline of Cases

Case 1 is a two-phase unsteady state oil injection example. This case illustrates the 
problem of choosing the right perturbation in the perturbation method, and its influence 
on accuracy of estimated parameters. Then, CPU-time spent on computing the 
sensitivity coefficients for an increasing number of parameters using the perturbation 
method are measured and compared with sensitivity coefficients computed by the direct 
method. The details on core and fluid properties used in this synthetic test are found in 
Table 1 and 2.

Sensitivity coefficients computed by the direct and perturbation method are compared 
for differential pressure data in the three-phase case (Case 2). Here, we focus on 
comparison of sensitivity in data with respect to parameters with support in high and 
low sensitive regions. The identifiability of the parameters is also investigated. CPU­
time requirements for estimation of three-phase relative permeability functions when the 
two methods are applied are also measured. Details on fluid and core properties and 
injection strategies for this case can be found in Table 1-3.

3.2 Selection of Perturbation Parameter

The difficulties of choosing the right perturbations to compute accurate sensitivity 
coefficients as well as the computational effort have motivated the implementation of 
the direct method. Figure 4 shows the pressure drop sensitivity coefficient with respect 
to one parameter in the oil relative permeability representation (the parameter 
corresponding to basis function N2 in Figure 3b). The sensitivity coefficients have been 
computed by the two methods, and for the perturbation method (numerical sensitivity 
coefficients, NSC) for several perturbations (A8=1.0e-3, A6=1.0e-5, A6=1.0e-6, 
A9=1.0e-ll). The pressure drop and production data for this case is plotted in Figure 1. 
This figure shows that the water breakthrough is at approximately t=25 min. Figure 4 
shows the tendency of numerical sensitivity coefficients to oscillate in the transient 
period until breakthrough at t=25 min. Figure 4a shows that the highest perturbation 
(1.0d-3) gives huge oscillations before breakthrough. Decreasing the perturbations 
decreases the oscillations around breakthrough, i.e., the truncation error decrease. But 
the perturbation that gave low oscillations before breakthrough, also gives oscillations 
after, see Figure 4b. This is a result of increasing condition error. This shows that 
simply choosing a low perturbation value will not be sufficient, this only minimize the 
truncation error. In fact, this error trade-off between truncation error and condition error 
imply that, in order for the perturbation method to be successful, an analysis of each 
individual parameter is required.

The accuracy of the estimated functions can be computed and plotted as confidence 
intervals. These intervals has been computed in a linearized covariance analysis [7, 11]. 
In this analysis the confidence intervals are linear dependent on the sensitivity
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coefficients (as shown in the theory section). Figure 6 shows the oil relative 
permeability function with 95% confidence intervals. These intervals are computed 
using different perturbations in the perturbation method and they are compared with the 
confidence intervals calculated from analytical sensitivity coefficients. The direct 
method gives the largest intervals which means that the sensitivity coefficients were less 
than the sensitivity coefficients computed using the perturbation method. The trend is 
that for decreasing perturbations, the confidence intervals computed based on numerical 
sensitivity coefficients becomes larger and closer to the confidence intervals computed 
based on analytical sensitivity coefficients. The truncation error has introduced a “false 
sensitivity” in the numerical sensitivity coefficients. This “false sensitivity” decrease as 
the perturbations decrease. However, for low perturbations (A6=1.0d-ll), the condition 
error is large since the error in numerical computations is large and this introduces 
“false sensitivity”, and consequently, the confidence intervals tend to be very narrow. 
This case illustrates that using the perturbation method without a careful analysis of the 
perturbations will result in too narrow confidence intervals and lead to underestimation 
of the errors in the estimated functions.

3.3 Basis Function Support and Impact on Sensitivity Coefficients and 
Confidence Intervals

Figure 7 shows a comparison of sensitivity coefficients computed by the direct and 
perturbation method for the three-phase case. The derivative of the state variables (Po, 
Sw, and Sg) with respect to the parameters is first computed (as shown in the theory 
section). Then the pressure drop and oil production are differentiated with respect to 
these parameters using the state sensitivity coefficients, details on this can be found in 
Appendix B. The sensitivity of the differential pressure and production data with respect 
to one oil relative permeability parameter is plotted in Figure 7 as a function of time. 
The parameter correspond to the basis functions BW5BW3 which have support in the 
saturation region SwxS0-[0.4,1.0]x[0.0,0.5] in Figure 5a. Figure 7 shows that the two 
methods give comparable results for this parameter. It can be noted, however, that in the 
transient period after the gas injection at t=2000 min and the rate increase at t=2500 
min, the perturbation method will give some oscillations, as discussed in the previous 
section. These oscillations occur with rapid changes in the derivative, and they are a 
result of the truncation and condition error introduced by the numerical method used to 
compute sensitivity coefficients.

Next, identifiability of the parameters is investigated. The identifiability of parameters 
in the three-phase case is considerable more difficult than for the two-phase case. The 
sensitivity coefficients will generally be lower since the number of parameter increase, 
i.e., we will need more data. The measurement error will be the same but this requires a 
highly advanced three-phase apparatus, as described by [5], The resolution of the 
parameters is the same. Figure 8 shows the CTB of pressure drop and production data 
for parameter c52 using both analytical and numerical sensitivity coefficients. Parameter 
c52 has support for SwxS0 = [0.4,1.0]x [0.0,0.3], i.e., area 5-8 in Figure 5a. This 
parameter has support in an area that covers most of the area where we have high degree 
of information in the data, hence the sensitivity coefficients for this parameter will be 
large for all the data points. With a resolution of 5% on the parameter 
(c52 =0.005+0.00025), an upper bound of 1% on the pressure drop data and 1% error
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in the production data (but a minimum of 0.001 PV), the contribution of observations 
(CTB) for pressure drop data and oil production are given in Figure 8. This analysis 
shows the importance of accurate computations of the sensitivity coefficients since these 
are the key element when estimating parameters and assessing accuracy of the estimates. 
This analysis also shows that the information content in the pressure drop data is higher 
than the production data. Actually, we will not be able to identify the parameter 
discussed (cj2) using production data with the given experimental design, error and 
resolution on the parameter as given above. The pressure drop data in the last two 
injection steps will be necessary for identifying this parameter.

Then sensitivity in pressure drop data with respect to two oil relative permeability 
parameters with support in two different saturation regions has been investigated. The 
first parameter (c12) correspond to the basis function BW1BG2 in Figure 5a and has support 
in region 1 and 2 marked in the same figure, the other oil relative permeability 
parameter (c22) corresponds to the basis function BW2BG2 with support in region 1-4. 
Figure 9a shows the sensitivity coefficient for c12 computed by both the direct and 
perturbation method. In this case the perturbation method gives sensitivity coefficients 
with high sensitivities in the transient period after the gas injection and gas rate step up 
at t=2000 min and t=2500min, while the direct method gives no sensitivities for these 
data except for data at the end of the experiment. The numerical sensitivity coefficients 
contain huge “false” sensitivity due to the condition error since there are no data in the 
saturation region 1 and 2. However, a low value of the sensitivity coefficient should be 
expected since the data trajectory stops at the border of the region and these data will be 
influenced by the relative permeability in the nearby region. This small sensitivity is 
computed by the analytical method, see zoomed part of Figure 9a. The sensitivity in 
pressure drop data with respect to c22 (the parameter with support in area 1-4) is plotted 
in Figure 9b. For this case, the two methods have computed the same sensitivity 
coefficient. However, the perturbation method has problems in the transient period after 
the second gas injection and produce huge oscillating sensitivities.

Based on sensitivity coefficients computed from the two methods, the confidence 
interval for the oil relative permeability is computed. The difference between the upper 
confidence surface computed by the two methods is plotted in Figure 10. This figure 
shows that analytical sensitivity coefficients gives larger confidence intervals than 
numerical sensitivity coefficients in regions with low sensitivity, i.e. for parameters with 
support in regions with no data, or data with little information on oil relative 
permeability. Since the confidence intervals computed from numerical sensitivity 
coefficients show that there are sensitivity in data in low sensitive regions, the method 
will produce erroneous sensitivity coefficients. However, the difference in sensitivity 
coefficients computed by the two methods is very low for parameters with support in 
regions with data containing relative permeability information. In Figure 5a, this region 
is marked 5-8 and corresponds to the region in Figure 10 with very low confidence 
intervals; SwxS0 = [0.4,1.0] x [0.0,0.3], i.e. around the saturation trajectory marked with 
bold.

3.4 Estimation and CPU-Time Requirements

The direct method for computation of sensitivity coefficients is implemented both for 
parameter estimation and computation of accuracy. As shown in section 3.3, the
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parameters can be estimated accurately from analytical sensitivity coefficients, if the 
parameters have support in a sensitive region.

Figure 11 shows the results after estimating three-phase oil relative permeability 
parameters using the two methods for sensitivity calculations (we are here estimating 10 
parameters in the three-phase oil relative permeability function, the rest of the 
parameters characterizing the surface is equal to the true parameters, and they are not 
part of the estimation). The true differential pressure and production data and the data 
based on the initial guess of oil relative permeability parameters are plotted together 
with data computed from estimated parameters. Both the direct and perturbation method 
have been used to compute the sensitivity coefficients used in the optimization to 
estimate the oil relative permeability function. Here, both the analytical and numerical 
method provides a good match with the true data. Since the estimated parameters have 
support in sensitive regions, and hence, both analytical and numerical methods for 
sensitivity computations can be used. However, the number of iterations to reach the 
solution differ for the two methods, see Table 4. In the perturbation method the number 
of iterations increases more rapidly than for the direct method. Due to the “false” 
sensitivity introduced in the perturbation method, the accuracy of each step in the search 
for the true parameters is reduced. The “false” sensitivity reduces the accuracy of the 
sensitivity coefficients and the robustness of the parameter estimation method, and 
consequently, slows down the convergence rate.

Finally, the CPU-time requirements for the two methods have been investigated. In 
Figure 12a the CPU-time vs. number of parameters when computing the sensitivity 
coefficients is plotted for Case 1. The computational expense in the perturbation method 
is clearly illustrated compared to the direct method, and Table 5 gives the results from 
comparison of the two methods. The direct method is approximately 8 times faster than 
the perturbation method when computing the sensitivity matrix A.

In Figure 12b the CPU-time vs. number of parameters when estimating parameters is 
plotted for Case 2. When the number of parameters increase, the advantage of the direct 
method is obvious, both due to reduction in computer time and due to reduced number 
of iterations, as plotted in Figure 12c. The number of iterations increase due to the 
“false” sensitivity introduced by the truncation and condition error.

This analysis has showed that choosing the perturbations, as well as accuracy and 
computational effort might be a significant problem when the perturbation method is 
used to compute the sensitivities. The direct method, however, has proved to be more 
efficient, accurate and robust for sensitivity calculations used in parameter estimation 
and accuracy computations in three-phase flow.
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4 Conclusions
1. The direct method for computing sensitivity coefficients has been implemented to 

compute sensitivity coefficients for two- and three-phase flow in porous media.

2. The problem with choosing perturbations in the perturbation method is avoided since 
the sensitivity coefficients are computed analytically after a discretization scheme is 
chosen.

3. The direct method gives accurate sensitivity coefficients and the problem with “false 
sensitivity” in regions with low or no sensitivity is eliminated.

4. Contribution of observations can be used to check the identihability of the 
parameters and the information contents in various data sets.

5. The computational savings using the direct method to compute sensitivity 
coefficients are huge.
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Appendix A Differentiation of Model Equations

The model equation is given as 

F(n”+1,0)=G(M",e).

This equation is solved for each grid block i at each time step n. Hence, F is a diagonal 
matrix where the size depend on how many grid blocks there are in the problem and 
how many state variables. There is also a F matrix for each phase. G is a vector, the size 
depending on the number of grid blocks. 6 is the vector of model parameters and u is 
the vector of state variables.

Oil Equation

Generally, the oil equation is given as

p; V,8)=

G:OA0)=-^(#,0 - S, -

The derivatives of the right hand side, G, with respect to the state variables in each grid 
block are

dR
K +#»)

g->

For each grid block, the left hand side becomes

Differentiating the model equation with respect to the coefficients gives

dP: A 1 *

A.\
Ax n0b0

AK 1—c-
Ax

(Kell-Po,i~G0,i)

ddj
dKo,i

ddj
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Corresponding calculations are performed for water and gas.

Derivative of Production Terms

The production terms are a part of the left hand side, and the terms will form the 
diagonal of the Jacobi matrix since all terms are computed at grid block i. They are 
given as

Qo = -piAp^u~Po-Go)

9w = -PJw{PweU= -ph{Kell + Pc,ow ~ Po ~ Gw)

9, = ~PIi -Pg~Gg) = -PIi (Pwe« - Pc,og +Po-Gg)

Differentiating the production terms with respect to the model parameters gives

dpI0_cb0 dkro
dd, Vo dei

dPr.
ddj

dPIw
ddj

d(lg

de]

aw,

= c

dO j

K
V„ ddj

a?/

dd,

ddj

b^dk,
Vs dej

{Kdl ~ Pc,og +Po-Gg)+ PIl dp.

ddj ddj
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Appendix B Differentiation of Boundary Conditions with Respect to 
Model Parameters

Several boundary conditions are implemented in the model. Injection of water or oil or 
gas at constant rate or injection of all phases simultaneously at constant total rate. 
Production against constant well pressure or production at constant rate. As an example, 
injection of water at constant reservoir rate and production against constant well 
pressure is considered here. For these boundary conditions are the derivative of oil 
production and pressure drop with respect to the model parameters computed.

Oil Production

For injection of water, the production is given as

where Nx is the number of grid blocks in the x-direction. Differentiation of the oil 
production with respect to a model parameter 0; is given as

Pressure Drop

For injection of water at constant reservoir rate and production against constant 
pressure, the differential pressure is given as

where

<7w = -PIJAdi ~pw~ GJ 
n>if = piw+pi0

The derivative of differential pressure with respect to the model parameters is then

where

dAP dAP dP0 | dAP dSw | dAP
ddj dPa dOj dSw dOj dGj 

This gives
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Tables

Table 1: Core and fluid properties, and initial state for Case 1 and Case 2.

Case 1 Case 2
<p Porosity [frac.] 0.3 0.3
k Absolute permeability [mD] 500.0 10.0
L Core length [cm] 25.0 7.0

Grid blocks in x-direction 50x0.5 20x0.35
A Core area [cm2] 10.0 10.0
Bw Water formation volume factor 1.0 1.0
B0 Oil formation volume factor 1.0 1.0
b£ Gas formation volume factor 1.0
V. Water viscosity [cP] 0.3 0.3
Vo Oil viscosity [cP] 0.4 0.4
vg Gas viscosity [cP] 0.02

Pw Water density [kg/m3] 980.0 1000.0
Po Oil density [kg/m3] 915.0 900.0

ps Gas density [kg/m3] 100.0
S, Initial water saturation [frac.] 0.0 1.0

Table 2: Statistical data for Case 1 and Case 2.

Case 1 Case 2
Standard deviation, AP data [kPa] 0.20 5.00
Number of data points, AP 229 195
Standard deviation, Vo data [frac.] 0.01 0.01
Number of data points, V0 229 195
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Table 3: Injection strategy for Case 2.

TIME
(min)

Qw
(cc/min)

Qs

(cc/min)
Process Measured

data
1 0.0 0.70 0.00 W1 AP, Vo
2 1000.0 2.00 0.00 W2 AP, Vo
3 2000.0 0.00 0.50 G3 AP, Vo
4 2500.0 0.00 40.00 G4 AP, Vo

Table 4: Comparison of efficiency using analytical or numerical sensitivity coefficients 
in parameter estimation in Case 2.

ASC NSC
#Param. #It SSR CPU

time
(sec)

# Call of
simulator

#It SSR CPU
time
(sec)

# Call of
simulator

2 5 407.28 58 7 5 407.28 85 30
4 5 405.93 58 7 5 405.93 88 31
6 7 405.26 119 24 6 405.20 151 50
8 10 404.66 210 41 13 404.59 414 132
9 12 403.09 219 43 17 402.41 628 206

10 16 402.02 281 51 101 433.62 10 461 1143

Table 5: Number of parameters vs. CPU time when computing sensitivity matrix for 
Case 1 using direct method and perturbation method.

# Parameters CPU time, ASC CPU time, NSC NSC/ASC
13 4 18 6
21 5 26 6.5
27 6 39 7.8
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Figures

Production"]

Pressure Drop I

Time [min]

Figure 1 Pressure drop and production data for Case 1 (two-phase).

Differential Pressure Saturation Profile Production

in Situ Pressure In Situ Saturation

Figure 2 Different types of data gathered from displacement experiments.
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Water Saturation
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Figure 3 a) Two-phase oil relative permeability function, and b) corresponding B-splines basis 
functions. The derivative of oil relative permeability with respect to parameter 62=c2 is B-splines basis 
function Nr
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Figure 4 Analytical pressure drop sensitivity coefficient in Case 1 compared with different choices of 
perturbations in the numerical method.
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Figure 5 a) Three-phase oil relative permeability seen from above. The water and gas B-splines basis 
functions are also plotted. The saturation trajectory corresponding to a three-phase experiment is also 
plotted (bold line), b) Three-phase oil relative permeability in 3D.
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Figure 6 Oil relative permeability function for Case 1 with 95% confidence intervals in normal and 
log-scale. The confidence intervals are computed using the analytical method and the numerical method 
with different choices of perturbations.
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Figure 7 Numerical and analytical sensitivity coefficient in Case 2 (three-phase) for parameter c53. a) 
pressure drop data, and b) production data.
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Figure 8 a) Contribution of pressure drop data on parameter c52, and b) contribution of production 
data on parameter causing analytical and numerical sensitivity coefficients.
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Figure 9 Analytical and numerical sensitivity coefficients for Case 2. a) Sensitivity coefficient for 
parameter with support in low-sensitive region, cI2 (region 1 and 2), and b) Sensitivity coefficient for 
parameter with support in a sensitive region cn (region 1-4).
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Water Saturation

Figure 10 Difference between upper confidence intervals (for three-phase oil relative permeability) 
computed from analytical and numerical sensitivity coefficients.
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Figure 11 Differential pressure data and oil production data after parameter estimation using analytical 
and numerical implementation of sensitivity coefficients in Case 2.
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Figure 12 a) Number of parameters vs. CPU-time in direct computation of sensitivity matrix in Case 1, 
b) Number of parameters vs. CPU time, and c) Number of parameters vs. number of iterations after 
estimation of oil relative permeability surface in Case 2.
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Abstract

Properties important for describing the flow of multiple fluid phases through porous media 
are represented as functions of state variables (fluid saturations). A generalized procedure is 
presented to obtain the most accurate estimates of the multiphase flow functions from the 
available experimental data. The procedure is demonstrated for several different experimental 
designs, including a novel experiment in which fluid saturations are measured using nuclear 
magnetic resonance imaging. A method to evaluate the accuracy of the estimates is presented, 
and its use for assessing experimental design is demonstrated.

Introduction

Accurate description of multiphase flow through porous media is important in designing and 
controlling a number of processes of technological significance, among those the production of 
fluids from underground reservoirs and remediation of underground water resources. Multiphase 
flow through porous media is typically modeled by continuum representations whereby the state 
variables are rendered continuous in space and time based on local volume averaging (Slat­
tery, 1981; Bear, 1972). Several properties have to be specified in such models. They include 
fluid properties such as viscosity and density and rock properties such as porosity and absolute 
permeability. In situations where there are multiple fluid phases, relative permeability and ca­
pillary pressure functions are to be specified. We will refer to these collectively as multiphase 
flow functions.

The flow functions are effective properties defined within the mathematical model, so they 
must be determined through solution of some inverse problem. This is done by using observations 
of state variables measured during displacement experiments to infer the flow functions through 
the mathematical model of the experiment. This is particularly challenging since the flow 
functions are functions of state variables (saturations), and the models for the displacement 
processes are coupled partial differential equations.

Typically, a relative permeability function for each fluid phase and a capillary pressure func­
tion for each pair of fluid phases are to be estimated. Hence, for two-phase flow, three flow 
functions are to be estimated while for three-phase flow, five flow functions are to be estimated. 
Traditionally, simplified methods have been used to estimate these flow functions. Capillary 
pressure has been estimated independently (see e.g., Nordtvedt and Kolltveit, 1991). Methods 
to estimate relative permeabilities have been based upon attempts to eliminate capillary pressure 
effects in the experiments so that point values of the relative permeabilities can be explicitly
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calculated (Leverett, 1940; Johnson et al., 1959) using analytical solutions of the model equa­
tions available for those simplified conditions. These methods suffer from simplifications used in 
trying to avoid the capillary pressure effects (Urkedal et al., 1997; Richmond and Watson, 1990) 
and also from the fact that the determination of a few discrete relative permeability values does 
not adequately reconcile the continuous relative permeability functions (Richmond and Wat­
son, 1990). It is desirable that relative permeabilities and capillary pressure be simultaneously 
estimated from the same experiment.

A unified methodology can be used to estimate the multiphase flow functions simultaneously 
from a variety of experimental scenarios (Watson et al., 1988). The method is directed to 
obtaining the most accurate estimates of the unknown functions from the available data, and 
is not limited by the form of the mathematical model, the experimental design (which includes 
the manner in which the experiment is conducted, the types of data measured and the accuracy 
with which the data are measured), or the specification of which unknown functions are to be 
estimated. In this technique, the data analysis problem is formulated as an inverse problem. 
A mathematical model is specified which describes the fluid flow experiment and includes the 
properties to be estimated. Then, the flow functions are adjusted with a statistical methodology 
until the numerical solution of the mathematical model for the process matches the experimental 
data.

A key element of the technique is the suitable representation of the flow functions. Ultimately 
a finite number of parameters are to be estimated from the finite number of measured data. 
Using a suitable functional representation, the estimation of flow functions reduces to a series 
of parameter estimation problems. A regression-based methodology can be used to select the 
appropriate representations (Watson et al., 1988).

In this paper we present the unified methodology in the context of estimating two-phase 
flow functions. We also present a methodology to assess the accuracy of estimates which can be 
obtained from a given experimental design. We demonstrate the estimation method with two 
different experimental scenarios. In the first, the relative permeability and capillary pressure 
functions are estimated from a constant rate dynamic displacement experiment which incor­
porates novel measurements of fluid saturation distributions using magnetic resonance imaging 
(MRI). In the second, the flow functions are estimated from a multirate dynamic displacement 
experiment utilizing only effluent data. In addition, we show how the measures of accuracy of 
the estimates can be used to assess the experimental design.

Estimation Methodology

A particular feature of the estimation of multiphase flow functions is that these properties are 
functions of state variables, fluid saturations. There are several key elements to the estimation. 
A mathematical model is selected to represent the experiment. The model should be sufficiently 
complete so that all important physical effects within the experiment are represented by the 
model. Candidate functional representations are chosen for the multiphase flow functions to be 
estimated. Then, the coefficients within the functional representations are calculated as those 
that minimize a suitable objective functions. Each of these elements is discussed in more detail 
in this section.

Mathematical Model

Multiphase immiscible flow through porous media is modeled by an extension of Darcy’s law 
for single phase flow through porous media. The state variables (saturation and pressure) are
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volume averaged quantities (Slattery, 1981), and are represented as continuous functions of time 
as well as space. The following equations are obtained by combining the Darcy equation with 
continuity equation for each fluid phase (Aziz and Settari, 1979),

= V. (^^"(VfL, + 9Vz)) (1)

= V. +gVz)) (2)

where subscripts nw and w refer to the non-wetting and wetting phases, respectively. In addition, 
the state variables, fluid phase saturations and pressures, are related as follows:

Pnw Pw 
Snw T Sw

Pc

1.
(3)
(4)

Boundary and initial conditions for the pressures and saturations are chosen according to the 
particular experimental design being used.

The densities and viscosities are fluid properties which can be measured independently. The 
porosity <j> and permeability K are effective properties corresponding to local volume averages 
(Slattery, 1981). These can be determined in experiments involving a single saturating fluid 
phase. The relative permeabilities, kw, knw, and capillary pressure, Pc, are effective properties 
which are functions of the fluid saturation. The determination of these multiphase flow functions 
is the objective here.

Functional Representation

The relative permeability and capillary pressure are known to be functions of fluid saturation, 
and are believed to be smooth and monotonic. In particular, the relative permeability of each 
phase in nonnegative and increases with the saturation of that phase. However, the exact 
functional form is unknown and should be inferred from the experimental data.

We use B-splines to represent the flow functions. B-splines are preferred because they can 
represent any smooth function arbitrarily accurately (Schumaker, 1981). At the same time they 
have many convenient computational features. The property representations are given by:

Ni

3=1

Nc

i = w,nw (5)

(6)

The B-spline functions are specified by the order m and the extended partition y. Once these are 
specified, the properties are estimated by determining the following parameter vector through a 
parameter estimation problem:

a__ rz-wv /-rtu z-mtu /tnu> ztc zic i
P — LV1 > ■ • • ? , • • * > UNnw i U1) • • • > UNCJ* (7)

The parameter estimation problem is described in the next subsection.
Selection of a suitable spline partition is important for accurate estimation of flow func­

tions. The goal is to eliminate significant basis errors, while limiting unnecessary variance errors 
(Watson et al, 1988; Kerig and Watson, 1986). This is accomplished by successively increasing

3



the number of knots (and hence the number of unknown parameters, and correspondingly the 
candidate solution space for the unknown functions) until suitable predictions of the measured 
quantities are obtained. A convenient way to assess this is to identify the point at which sig­
nificant reductions in the performance index cannot be obtained with modest increases in the 
number of parameters. The knots are added to those regions of the properties that appear to be 
responsible for the greatest discrepancies between the measured and predicted data (Grimstad 
et al., 1997).

Parameter Estimation

For a given B-spline representation (i.e. order m and extended partition y), the parameters are 
given by solution of the parameter estimation problem represented by:

minimize = - %,(/?)] (8)

subject to the constraints
Gf>%. (9)

Ym is the vector containing measured data. In the regression-based method, a variety of data 
can be used, including pressure drop, production, and saturations measured within the sample. 
Ys(p) is the vector containing corresponding values calculated by numerical simulation of the 
displacement process through the mathematical model represented by Eqs. 1-4. G is the matrix 
specifying the linear inequality constraints on the parameters. For example, each of the functions 
is monotonic with saturation and the relative permeabilities are nonnegative. Such constraints 
can be conveniently expressed as linear inequality constraints on the unknown coefficients in the 
B-spline representation (Watson et al., 1988). W is the weighting matrix. If we assume that 
the measurement errors associated with the data can be represented by a normal distribution 
with zero mean and covariance matrix X, maximum likelihood estimates of the parameters are 
obtained when the weighting matrix W is taken as a scalar multiple of X-1 (Watson et al., 
1990). Generally, it can be taken to be a diagonal matrix with entries equal to the inverse of 
the estimated variances of the data measurement errors. A trust-region based, linear inequal­
ity constrained, Levenberg-Marquardt algorithm (Richmond, 1988) has been used to solve the 
nonlinear least squares problem represented by Eqs. 8 and 9.

Design of Experiments

The multiphase flow properties are determined by setting up a flowing experiment, whereby the 
state variables, or functions of the state variables, corresponding to Eqs. 1-4 can be measured. 
Then, estimates are obtained as discussed in the previous section, using the mathematical model 
represented by Eqs. 1-4 with the associated boundary and initial conditions corresponding to 
the particular flowing experiment. The conventional experiment is a displacement experiment, 
in which a single fluid phase is injected at a constant flow rate into a sample which is initially 
saturated with the other fluid (perhaps containing an irreducible saturation of the injected fluid 
phase). The pressure drop across the sample, and the production of the displaced fluid phase, 
are measured. The pressure drop represents the difference between state variables corresponding 
to spatial locations at either end of the sample. The production is a function of state variables: 
material balances on the fluids provide relations between integrals of saturations distributions 
across the sample and the production.
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An important question is whether such data have sufficient information content to estim­
ate all the unknown functions accurately. This can be evaluated using a linearized covariance 
analysis. In the covariance analysis, it is assumed that the mathematical model is capable of 
describing the physical process, that the B-spline representation can adequately represent the 
flow functions (no bias error), and that the model function Ys(p) is linear with respect to the 
parameters 8 near the solution. Finally, it is assumed the measurement errors are additive (i.e., 
Ym (8) = Ys + e) for some parameter vector 8 and error vector e. Suppose the error vector e 
has a normal distribution with zero mean and covariance matrix E. Then, if we use the inverse 
of the covariance matrix S as the weighing matrix in equation (8), we find that the covariance 
matrix of the estimated parameters is given by (Kerig et al., 1986):

P = (ATE~1A)~1 (10)

where A is given by the sensitivity of the simulated data to the parameters. Note that since the 
vector of data values Ym does not appear in this expression, no experimental data are required 
to compute P. Thus, a statistical analysis of the estimation problem for a specific experimental 
design can be performed before actually conducting any experiments (Nordtvedt et al., 1992).

Of greater interest than the covariance matrix P for the parameters, is the covariance of the 
flow functions themselves at specific saturation values. The covariance of the flow functions, C, 
can be written as(Kerig et al., 1986):

C = DT(Sto)PD(S„) (11)

where the matrix D is the sensitivity of the flow functions with respect to the parameters at 
a specified saturation value. Using the diagonal of C, a point-wise confidence interval can be 
constructed for the flow functions

r*=r±q-Jc8i (12)

where r = [krw, kro, Pc] and q is the appropriate quantile for the given confidence level and 
distribution.

If the properties are not estimated sufficiently accurately, one should investigate alternative 
experimental designs. Possibilities of improving the accuracy of the estimates include measuring 
the data more accurately (if possible), measuring more data, and conducting the experiment 
differently. The accuracy of the estimates corresponding to each experimental design can be 
assessed, and trade-offs of the accuracy with such concerns as costs and experimental convenience 
can be evaluated.

Results and Discussion

We consider here the estimation of two-phase relative permeability and capillary pressure func­
tions from laboratory displacement experiments. The basic experiment is as follows. A cyl­
indrical sample of the porous medium, nominally an inch in diameter and three inches in length, 
is sealed along the periphery. The sample is saturated with one or two fluids at a known satur­
ation. Then, one, or two, fluids are injected into one end of the sample, and production takes 
place at the other end. The pressure drop and production are measured, and in one experi­
ment, the actual saturation distributions within the sample are observed. Several properties 
within the mathematical model can be determined independently, namely the fluid properties 
and those properties used to describe the flow of a single fluid phase. In one example, the poros­
ity distribution is measured using a novel MRI experiment. Otherwise, the average porosity and
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Table 1: Core and fluid properties for experimental design cases

Water viscosity (cP) 1.11
Oil viscosity (cP) 1.121
Core length (cm) 5.0
Core diameter (cm) 3.74
Porosity (%) 25.00
Absolute Permeability(mD) 100.0
Initial Water Saturation 1.0
Injection single-rate (cc/min.) 1.0
Injection multirate (cc/min.) 0.1/1.0/5.0

permeability of the samples are determined, and those properties taken to be uniform in the 
mathematical model. The mathematical model is solved using a fully implicit finite difference 
technique (Guo et al., 1993; Aziz and Settari, 1979).

We first report an investigation of experimental design that demonstrates the accuracy of es­
timates can be improved by simply using multiple injection rates with conventional experiments. 
We then demonstrate the use of novel measurements of saturation distributions for estimating 
the properties. Finally, we demonstrate an experimental design in which two fluid phases are 
injected simultaneously.

Example of Experimental Design

Traditionally, displacement experiments have been conducted using a constant flow rate, appar­
ently because the original methods used to compute relative permeabilities were based on that 
assumption. However, exciting the system through manipulations in the flow rate can provide 
for greater accuracy of estimates of the properties. This is demonstrated by comparing the ac­
curacy of estimates obtained using two different scenarios for conducting two-phase displacement 
experiments.

In both cases, oil is injected into a core sample completely saturated with water (this rep­
resents a primary drainage experiment). The measured data are taken to be the production of 
water from the core sample and the pressure drop across the sample. The accuracy with which 
the flow functions can be estimated are determined for a case in which a single, uniform injection 
rate is used, and a case in which multiple injection rates are used. Details of the core sample, 
fluid properties and injection strategy chosen are tabulated in Table 1. The irreducible water 
saturation is taken to be 0.2.

The estimates of the relative permeabilities and capillary pressure curves, with the associated 
confidence intervals, are shown in Figure 1. The left-right pairs represent the same information, 
but with different scales for the ordinates. (Note that since each relative permeability increases 
with its own saturation, the water relative permeability corresponds to the curve which has 
positive derivatives.) It is evident that the multirate scenario is superior to the single-rate 
scenario for accuracy of estimates of the flow functions. Large improvements in the accuracy of 
estimates of all the properties are apparent in the lower range of water saturation. This is largely 
the result of the greater range of saturations accessed in the multirate scenario through the use of 
the greater flow rate. More accurate estimates of the capillary pressure are obtained throughout
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the saturation range, with the larger improvements occuring at either end of the saturation range. 
While there are some improvements in the accuracy of estimate of the oil relative permeability 
corresponding to larger values of water saturation, the accuracy of estimation of the water 
relative permeability remains poor. Evidently, the production and associated pressure drops 
in the early part of the displacement experiment (during which time the water saturations are 
relatively large) are largely controlled by capillary pressure effects, and to a lesser extent oil 
relative permeability effects, but are relatively insensitive to water relative permeability effects.

Observing Fluid Saturation Distributions

The previous example shows that the accuracy of estimates of multiphase flow functions is 
limited when a single injection rate is used. Multiple injection rates provide one way to enhance 
the accuracy of the estimates. Another approach to improve the accuracy of estimates is to 
measure additional data. In particular, nuclear magnetic resonance imaging (MRI) can provide 
a novel means for determining the fluids states within the core sample (Chen et al 1993; Chen 
et al 1994). Here we demonstrate the use of MRI for observing fluid saturations within the 
sample, and the use of those data in estimating the multiphase flow functions. Note that the 
measurements of the saturation distributions represent distributed observations of the system, 
while the previous measurements used, the production and pressure drop, represent only integral 
observations of fluid states.

A two-phase dynamic displacement experiment was conducted using a Texas Cream lime­
stone sample. Oil was injected at a constant flow rate into the core sample which was completely 
saturated with the aqueous phase. The pressure drop and oil saturation profiles were measured 
until no further changes in the saturation distributions were observed. Hexadecane was used as 
the oleic phase and deuterium oxide was used as the aqueous phase. Oil saturation was measured 
using NMR imaging (Chen et al, 1994, Kulkami et al., 1997). Water production was estimated 
by integration of oil saturation profiles with material balances about the initial state. Further 
details of the core sample, fluid and the displacement process are tabulated in Table 2.

The pressure drop, saturation profiles, and water production data were used in the regression- 
based approach to estimate the relative permeability and capillary pressure functions. Starting 
with just single knot B-spline representations for each flow function, successive parameter estim­
ation problems were solved with increasing numbers of knots. It was found that the performance 
index, calculated using Eq. 8 for a B-spline representation with 7 interior knots each in the relat­
ive permeability representation and 6 interior knots in the capillary pressure representation, did 
not significantly decrease when additional knots were added. This representation was chosen for 
the final estimate. A total of 27 parameters were estimated in the final step of the regression- 
based approach.

The values of pressure drop, saturation distributions, and water production calculated using 
the estimated flow functions are shown together with the measured data in Figures 2-4. An 
excellent match between the data groups are seen, except for low water saturation for the 
water saturation profiles. This may be due to the relatively small number of data in this area. 
The estimated flow functions together with confidence intervals are shown in Figures 5 and 6. 
The measurement of the fluid saturations within the sample provide an important validation 
of the property estimates. Although these additional measurements do improve the accuracy 
as compared to just using conventional meaurements, the confidence intervals are still larger 
than one might desire. A preferred experimental design would be to use multirate injection 
experiments in addition to measurements of saturation distributions, although it is not clear 
that water relative permeabilities corresponding to the larger values of water saturation would
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Table 2: Core and fluid properties for the single rate primary drainage experiment

Water viscosity (cP) 1.26
Oil viscosity (cP) 3.34
Core length (cm) 4.9
Core diameter (cm) 2.5
Porosity (%) 26.6
Absolute Permeability(mD) 10.2
Initial Water Saturation 1.0
Oil Injection Rate (cc/min): 0.05

be accurately from such displacement experiments.

Simultaneous Fluid Injection

While measurements of fluid distributions are desirable, equipment investments are signific­
ant, and the conduct of the experiment under reservoir conditions of temperature and pressure 
presents further difficulties. Yet another experimental scenario is investigated here. The exper­
iment is carried out by injecting both fluid phases, as done in conventional steady state experi­
ments (Urkeda! et al., 1997). Unlike those conventional experiments, the dynamic responses are 
measured and used in estimating the properties.

An outcrop sample from the Turonian Seaton chalk formation (“Bear Stone”) in Devon, 
Southern England was used. Oil and water were injected simultaneously into the core sample 
with the water/oil fraction decreasing in three steps. Then oil was injected at four increasing 
flow rates. Throughout the experiment, both transient and steady-state water production and 
pressure drop data were measured. Mineral oil (Exxon Isopar H) was used as the oleic phase 
and a simulated North-Sea chalk formation water as the aqueous phase. Calcium was added to 
the formation water to ensure chemical stability of the chalk matrix. Further details of the core 
sample, fluid and the displacement process are tabulated in Table 3.

The relative permeability and capillary pressure functions were estimated using the same 
procedure as the single rate primary drainage experiments. A total of 28 parameters were 
estimated in the final step of the regression-based methodology. The measured and simulated 
pressure drop and water production data are shown in Figure 7. A good agreement between 
the simulated and measured data are seen for both the water production and the pressure drop 
data. The estimated flow functions together with confidence intervals are plotted in Figures 8 
and 9. Narrow intervals appear indicating that the experimental design used in this experiment 
is very suitable for accurate flow function estimates.

The capillary pressure estimate is compared to independent estimates obtained using two 
different experimental techniques: micro-membrane (Hammervold and Skjasveland,1992), and 
mercury injection (Wardlaw and Taylor, 1976). In both these cases, the capillary pressure curve 
has been obtained on a companion core sample, and thus, the properties may be expected to 
differ somewhat. As seen from Figure 9, the three techniques provide very similar results except 
for high saturation values.
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Table 3: Core and fluid properties for the multirate experiment

Water viscosity (cP) 1.10
Oil viscosity (cP) 1.19
Core length (cm) 6.81
Core diameter (cm) 3.06
Porosity (%) 28.40
Absolute Permeability (mD) 4.17
Initial Water Saturation 1.0
Injection rates water / oil (cc/min): 0.099 / 0.001 

0.088 / 0.012 
0.04 / 0.06
0.0 / 0.1
0.0 / 0.25
0.0 / 1.0
0.0 / 3.0

Conclusions

A unified methodology was presented for determining properties used to describe the flow of 
multiple fluid phases in porous media. The method is not limited by the form of the mathematical 
model or the experimental design.

The accuracy of estimation of the properties was evaluated by a linearized covariance ana­
lysis and used to investigate the experimental design. Experiments and analyses demonstrated 
advantages of altering fluid injection strategies. A novel method for measuring distributions of 
the fluid states within the sample using MR1 and incorporating those measurements into the 
estimation of the properties was presented.

Nomenclature

Roman

A Sensitivity matrix
B B-spline basis functions
C B-spline coefficients
ca Diagonal elements of C
C Covariance matrix of flow functions
D Sensitivity matrix of flow functions
G Constraint matrix
go Constraint vector
g Gravitational constant
J Objective function
K Absolute permeability
k Relative permeability
N Number of parameters
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P Covariance matrix of parameters
P Pressure
q Quantile for confidence level
S Saturation
W Weigthing matrix
Y Vector of simulated or measured data
y B-spline partition vector

Greek

P
P

4>

p
s

Parameter vector 
Viscosity 
Porosity 
Density
Covariance matrix of measurement errors

Subscript / Superscript

C Capillary
m Measured
nw Non-wetting
s Simulated
T Transposed
w Wetting
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Figure 1: Results from the experimental design study. Upper row: Relative permeabilities and 
95% confidence intervals. Lower row: Capillary pressure and 95% confidence intervals.
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Figure 2: Estimated and measured water production data in single-rate primary drainage ex­
periment.
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Figure 3: Estimated and measured pressure drop data in single-rate primary drainage experi­
ment.
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Figure 4: Estimated and measured water saturation profiles for single-rate primary drainage 
experiment. Curves are simulated values; diamonds are measurements.
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Figure 5: Estimated relative permeability and 95% confidence intervals for single-rate primary 
drainage experiment.
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Figure 6: Estimated capillary pressure and 95% confidence intervals for single-rate primary 
drainage experiment.
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Figure 7: Simulated and measured data in multirate primary drainage experiment.
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Figure 8: Estimated relative permeability functions with 95% confidence intervals for multirate 
primary drainage experiment.
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Figure 9: Estimated capillary pressure function with 95% confidence intervals for multirate 
primary drainage experiment.
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