- 1 BLT set 5 over GF(23) Points on the quadric x2
- There is no Drake / Larson Linear Space on 30 Points: Supplement
- 1 BLT set 3 over GF(67) Points on the quadric x2
- 1 BLT set 4 over GF(37) Points on the quadric x2
- Twisted Tensor Product Codes Anton Betten
- 1 BLT set 6 over GF(41) Points on the quadric x2
- 1 BLT set 6 over GF(23) Points on the quadric x2
- 1 BLT set 6 over GF(29) Points on the quadric x2
- 1 BLT set 8 over GF(47) Points on the quadric x2
- 1 BLT set 3 over GF(27) Points on the quadric x2
- 1 BLT set 6 over GF(31) Points on the quadric x2
- 1 BLT set 5 over GF(27) Points on the quadric x2
- 1 BLT set 3 over GF(29) Points on the quadric x2
- 1 BLT set 4 over GF(53) Points on the quadric x2
- 1 BLT set 5 over GF(37) Points on the quadric x2
- 1 BLT set 3 over GF(53) Points on the quadric x2
- 1 BLT set 5 over GF(47) Points on the quadric x2
- 1 BLT set 4 over GF(49) Points on the quadric x2
- 1 BLT set 6 over GF(25) Points on the quadric x2
- 1 BLT set 1 over GF(3) Points on the quadric x2
- 1 BLT set 3 over GF(17) Points on the quadric x2
- Bayreuther Mathematische Schriften 49 (1995), 213 Es gibt 7-Designs mit kleinen Parametern!
- 1 BLT set 2 over GF(9) Points on the quadric x2
- 1 BLT set 4 over GF(47) Points on the quadric x2
- 1 BLT set 1 over GF(41) Points on the quadric x2
- 1 BLT set 6 over GF(37) Points on the quadric x2
- More on Regular Linear Spaces Anton Betten
- 1 BLT set 6 over GF(49) Points on the quadric x2
- 1 BLT set 4 over GF(41) Points on the quadric x2
- 1 BLT set 7 over GF(47) Points on the quadric x2
- 1 BLT set 7 over GF(53) Points on the quadric x2
- 1 BLT set 4 over GF(59) Points on the quadric x2
- 1 BLT set 7 over GF(37) Points on the quadric x2
- CLIQUE FINDING IN GRAPHS AND THE SEARCH FOR OVOIDS IN POLAR SPACE
- There is No Drake / Larson Linear Space on Anton Betten, Dieter Betten
- 1 BLT set 6 over GF(67) Points on the quadric x2
- Advances in Mathematics of Communications Web site: http://www.aimSciences.org Volume X, No. 0X, 200X, XXX
- Note di Matematica 00, n. 0, 2009, 110. A Class of Transitive BLT-Sets
- 1 BLT set 5 over GF(25) Points on the quadric x2
- 1 BLT set 5 over GF(41) Points on the quadric x2
- 1 BLT set 7 over GF(41) Points on the quadric x2
- 1 BLT set 5 over GF(43) Points on the quadric x2
- 1 BLT set 5 over GF(17) Points on the quadric x2
- Typical Network Problems Combinatorial Optimization Network Algorithms
- 1 BLT set 7 over GF(31) Points on the quadric x2
- 1 BLT set 8 over GF(59) Points on the quadric x2
- 1 BLT set 5 over GF(49) Points on the quadric x2
- Hindawi Publishing Corporation International Journal of Combinatorics
- 1 BLT set 1 over GF(9) Points on the quadric x2
- 1 BLT set 1 over GF(17) Points on the quadric x2
- 1 BLT set 1 over GF(19) Points on the quadric x2
- 1 BLT set 1 over GF(23) Points on the quadric x2
- 1 BLT set 4 over GF(23) Points on the quadric x2
- 1 BLT set 7 over GF(23) Points on the quadric x2
- 1 BLT set 1 over GF(27) Points on the quadric x2
- 1 BLT set 6 over GF(27) Points on the quadric x2
- 1 BLT set 1 over GF(29) Points on the quadric x2
- 1 BLT set 4 over GF(29) Points on the quadric x2
- 1 BLT set 5 over GF(29) Points on the quadric x2
- 1 BLT set 1 over GF(31) Points on the quadric x2
- 1 BLT set 3 over GF(31) Points on the quadric x2
- 1 BLT set 4 over GF(31) Points on the quadric x2
- 1 BLT set 3 over GF(37) Points on the quadric x2
- 1 BLT set 3 over GF(41) Points on the quadric x2
- 1 BLT set 1 over GF(43) Points on the quadric x2
- 1 BLT set 3 over GF(43) Points on the quadric x2
- 1 BLT set 4 over GF(43) Points on the quadric x2
- 1 BLT set 6 over GF(47) Points on the quadric x2
- 1 BLT set 7 over GF(49) Points on the quadric x2
- 1 BLT set 5 over GF(53) Points on the quadric x2
- 1 BLT set 3 over GF(59) Points on the quadric x2
- 1 BLT set 4 over GF(61) Points on the quadric x2
- 1 BLT set 4 over GF(67) Points on the quadric x2
- 1 BLT set 4 over GF(27) Points on the quadric x2
- Anton Betten betten@math.colostate.edu
- 1 BLT set 5 over GF(31) Points on the quadric x2
- 1 BLT set 1 over GF(47) Points on the quadric x2
- 1 BLT set 4 over GF(25) Points on the quadric x2
- 1 BLT set 3 over GF(19) Points on the quadric x2
- Das Lucas Kriterium Anton Betten
- 1 BLT set 3 over GF(61) Points on the quadric x2
- There is no Drake / Larson Linear Space on 30 Points: Supplement
- 1 BLT set 6 over GF(53) Points on the quadric x2
- 1 BLT set 7 over GF(59) Points on the quadric x2
- 1 BLT set 3 over GF(13) Points on the quadric x2
- Geometric Codes and Hyperovals Anton Betten
- Lab 2 : Newton's Method In this lab, we will explore Newton's method. This is familiar from Calc I, but you may revisit Section 4.6
- M161, Test 1, Fall 04 INSTRUCTOR
- M161, Test 3, Fall 2004 INSTRUCTOR
- M , Test , Spring Instructor
- M , Test , Spring Instructor
- M161, Test 1, Spring 2008 Please circle where you took M160 (or equivalent)
- M , Test , Fall Instructor
- M , Test , Fall Instructor
- M161, Final Exam, Spring Instructor
- M161, Test 3, Fall 2007 Instructor
- M , Final, Fall Instructor
- M , Test , Spring Instructor
- M161, Final, Spring 2007 Instructor
- M , Test , Fall Instructor
- M161, Test 3, Spring 2007 Instructor
- Lab 1: Sequences Welcome to Maple. Remember that this is a worksheet. You can be in one of two modes
- M161, Test 3, Spring 2008 Instructor
- M161, Test 2, Fall 2009 Instructor
- M , Test , Fall Instructor
- M , Final, Spring Instructor
- M161, Test 1, Spring 2007 Instructor
- M , Test , Spring Instructor
- M161, Final, Fall 2007 Please circle where you took M160 (or equivalent)
- M161, Test 3, Spring 2005 INSTRUCTOR
- M161, Test 2, Spring 2007 Instructor
- M161, Midterm 3, Fall 2010 Instructor
- M161, Final, Spring 2008 Instructor
- M , Test , Fall Instructor
- M161, Final Exam, Fall 2005 INSTRUCTOR
- M161, Test 1, Fall 2007 Instructor
- M , Final, Fall Instructor
- M161, Test 2, Spring 2005 INSTRUCTOR
- M161, Test 2, Fall 2007 Instructor
- M161, Final Exam, Spring 2006 INSTRUCTOR
- M161 Midterm 2, Spring 11 Instructor
- M , Test , Spring Instructor
- M161, Test 1, Spring 05 INSTRUCTOR
- M , Test , Fall Instructor
- M161, Final Exam, Fall 2006 INSTRUCTOR
- M161, Test 2, Fall 2004 INSTRUCTOR
- Maple Lab Report Turn-in Format Right now I am writing in text mode (press F5 to switch between text and math mode).
- MATH161 LAB ASSIGNMENT #2
- M161, Midterm 3, Spring Instructor
- M161, Test 2, Spring 2008 Instructor
- MATH 161 Spring 2012 MATH 161 Detailed Syllabus
- MATH 161 LAB 2 Approximating e and Pi
- M161, Final Exam, Fall 2004 INSTRUCTOR
- MATH 161 Spring 2012 MATH 161 Syllabus
- M161, Test 1, Fall 2008 Please circle where you took M160 (or equivalent)