- MATH/CS/ECE 435 SYLLABUS, Spring Semester, 2004-05 Academic Year Lec. 1, TR 9:30 10:45 PM, B105 Van Vleck Hall
- MATH/CS 240 (Elem. Discrete Math.) SYLLABUS, SPRING Sem. 2003-04 Lec. 1, MWF 11:00-11:50 p.m, B239 Van Vleck Hall
- MATH 240; EXAM # 2, 100 points, November 24, 2003 (R.A.Brualdi) TOTAL SCORE (7 problems; 100 points possible)
- MATH 240; EXAM # 1, 100 points, October 14, 2004 (R.A.Brualdi) TOTAL SCORE (13 problems; 100 points possible)
- MATH 240; EXAM # 2, 100 points, November 21, 2006 (R.A.Brualdi) TOTAL SCORE (7 problems; 100 points possible)
- MATH 475 SYLLABUS, Fall Semester, 200708 Academic Year Lec. 1, TR 9:3010:45 AM, B105 Van Vleck Hall
- MATH 240; EXAM # 1, 100 points, October 13, 2003 (R.A.Brualdi) TOTAL SCORE (11 problems; 100 points possible)
- MATH 240; EXAM # 2, 101 points, November 22, 2005 (R.A.Brualdi) TOTAL SCORE (10 problems; 101 points possible)
- MATH/ECE 641: Introduction to Error-Correcting Codes Spring Semester 2006-2007: Tues./Thurs. 9:3010:45 A.M., B341 Van Vleck Hall
- MATH 240; EXAM # 2, 100 points, November 23, 2004 (R.A.Brualdi) TOTAL SCORE (9 problems; 100 points possible)
- MATH 240 (Elementary Discrete Math.) SYLLABUS, Fall Sem. 2001-02 Lec. 1, MWF 11:00-11:50 p.m, B-115 Van Vleck
- MATH 475; EXAM # 1, 100 points, October 11, 2007 (R.A.Brualdi) TOTAL SCORE
- TOTAL SCORE (90 points possible): MATH 340; EXAM # 1, February 28, 2005 (R.A.Brualdi)
- MATH 210 SYLLABUS, Fall, 19992000 academic year Lec. 3, MWF 9:5510:45 a.m, B239 Van Vleck
- MATH 475; EXAM # 2, 100 points, December 1, 2005 (R.A.Brualdi) TOTAL SCORE (100 points possible)
- Landau's Inequalities for Tournament Scores and a Short Proof of a Theorem on Transitive
- Errata for Introductory Combinatorics, 4th edition Author: Richard A. Brualdi
- On the Diameter of Interchange Graphs Richard A. Brualdi and Jian Shen y
- Diameter of the NEPS of Bipartite Graphs Richard A. Brualdi and Jian Shen y
- Discrepancy of Matrices of Zeros and Ones Richard A. Brualdi and Jian Shen y
- MATH 475; EXAM # 1, 100 points, October 12, 2004 (R.A.Brualdi) TOTAL SCORE (7 problems; 100 points possible)
- Corrections and Comments for the 5th edition of: "Introductory Combinatorics"
- Aztec Diamonds and Digraphs, and Hankel Determinants of Schroder Numbers
- MATH 340 SYLLABUS, Fall Semester, 2007-08 Academic Year Lec. 2, TR 11:00AM12:15PM, B135 Van Vleck Hall
- MATH 340; EXAM # 1, 100 points, October 11, 2007 (R.A.Brualdi) TOTAL SCORE
- MATH/CS 240 (Intro. Discrete Math.) SYLLABUS, Fall Semester, 2006-2007 Lec. 1, TR 11:00 AM12:15 PM, B302 BIRGE Hall
- MATH 240; EXAM # 1, 100 points, October 17, 2005 (R.A.Brualdi) TOTAL SCORE (10 problems; 100 points possible)
- Math 846 Exercises 1. Let A = (A1, A2, . . . , An) be a family of subsets of a finite set E and let m 1. Prove that
- MATH 340 SYLLABUS, Spring Semester, 2005-06 Academic Year Lec. 1, TR 9:3010:45 AM, B239 Van Vleck Hall
- Math 340 (row space, column space, null space of a matrix) Let A = [aij] be an m by n matrix. Then
- TOTAL SCORE (90 points possible): MATH 340; EXAM # 2, April 11, 2006 (R.A.Brualdi)
- MATH/CS 240 (Intro. Discrete Math.) SYLLABUS, Fall Semester, 2005-2006 Lec. 1, TR 11:00 AM12:15 PM, B102 Van Vleck Hall
- MATH 240; EXAM # 1, 100 points, October 18, 2005 (R.A.Brualdi) TOTAL SCORE (11 problems; 100 points possible)
- MATH 441; EXAM # 1, 100 points, February 22, 2005 (R.A.Brualdi) TOTAL SCORE (5 problems; 100 points possible)
- MATH 441; EXAM # 2, 100 points, April 14, 2005 (R.A.Brualdi) TOTAL SCORE (7 problems; 100 points possible)
- Section 8.8 Graph Coloring Coloring of a graph G: an assignment of colors to the vertices so that
- MATH/CS 240 (Elem. Discrete Math.) SYLLABUS, FALL Sem. 2003-04 Lec. 1, MWF 11:00-11:50 p.m, 5208 Social Science
- Some solutions for exercises in Set # 1 1.1.25 Petersen graph has no cycle of length 7.
- MATH 240; EXAM # 2, 100 points, November 8, 2002 (R.A.Brualdi) TOTAL SCORE (10 problems)
- Multicolored forests in complete bipartite Richard A. Brualdi and Susan Hollingsworth
- MATH/CS 240 (Elem. Discrete Math.) SYLLABUS, Fall Semester, 2004-05 Lec. 1, TR 11:00 AM12:15 PM, 165 Bascom Hall
- MATH 475; EXAM # 1, 100 points, October 20, 2005 (R.A.Brualdi) TOTAL SCORE (100 points possible)
- MATH 441 SYLLABUS, Spring Semester, 2004-05 Academic Year Lec. 1, TR 11:00 AM -12:15 PM, B341 Van Vleck Hall
- MATH 475 SYLLABUS, Fall Semester, 2005-06 Academic Year Lec. 1, TR 9:3010:45 AM, B113 Van Vleck Hall
- MATH 475; EXAM # 2, 100 points, November 23, 2004 (R.A.Brualdi) TOTAL SCORE (5 problems; 100 points possible)
- MATH 340; EXAM # 1, 100 points, November 13 , 2007 (R.A.Brualdi) TOTAL SCORE
- Short Proofs of the Gale & Ryser and Ford & Fulkerson Characterizations of the Row and
- MATH 475 SYLLABUS, Fall Semester, 2004 Academic Year Lec. 1, TR 9:3010:45 AM, B105 Van Vleck Hall
- MATH/CS/ECE 435; Mid-Term Exam, 100 points, March 10, 2005 (R.A.Brualdi) TOTAL SCORE (6 problems; 100 points possible)
- MATH 240; EXAM # 2, 100 points, November 8, 2002 (R.A.Brualdi) TOTAL SCORE (10 problems)
- Biosketch of Richard A. Brualdi Contact Information: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive,
- Corrections and Comments for the 5th edition of: "Introductory Combinatorics"