Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
LEARNING PRECISE SPIKE TIMES IN A TWO-VARIABLE SPIKING NEURAL MODEL
 

Summary: LEARNING PRECISE SPIKE TIMES IN A TWO-VARIABLE SPIKING
NEURAL MODEL
Sven E. Anderson
Computer Science Program
Bard College
Annandale, NY, U.S.A.
email: sanderso@bard.edu
ABSTRACT
We evaluate the ability of reinforcement comparison learn-
ing to induce multispike patterns with sub-millisecond
precision in a two-variable spiking neural model. We
assume that a single reinforcement signal derived from
the fit of the produced spike pattern with a target pattern
is communicated with the neural model following pro-
duction of all spikes of the pattern. We find that arbitrary
multispike patterns can be learned with a precision of 0.2
msec. Patterns of one to five spikes can be learned with a
probability of success ranging from 20% to 70%.
KEY WORDS
pulse-coupled neural network, spiking, reinforcement

  

Source: Anderson, Sven - Computer Science Program, Bard College

 

Collections: Computer Technologies and Information Sciences