Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Uniformly Diophantine numbers in a fixed real quadratic field
 

Summary: Uniformly Diophantine numbers in a
fixed real quadratic field
Curtis T. McMullen
17 June, 2008
Abstract
The field Q(

5) contains the infinite sequence of uniformly bounded
continued fractions [1, 4, 2, 3], [1, 1, 4, 2, 1, 3], [1, 1, 1, 4, 2, 1, 1, 3] . . ., and
similar patterns can be found in Q(

d) for any d > 0. This paper
studies the broader structure underlying these patterns, and develops
related results and conjectures for closed geodesics on arithmetic man-
ifolds, packing constants of ideals, class numbers and heights.
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Lattices and quadratic fields . . . . . . . . . . . . . . . . . . . 6
3 Loop generators . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Patterns of continued fractions . . . . . . . . . . . . . . . . . 14

  

Source: McMullen, Curtis T.- Department of Mathematics, Harvard University

 

Collections: Mathematics