Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Numer. Math. 25, 291-295 (1976) @ by Springer-Verlag 1976
 

Summary: Numer. Math. 25, 291-295 (1976)
@ by Springer-Verlag 1976
Zur Konvergenz des symmetrischen Relaxationsverfahrens
G. Alefeldund R. S. Varga*
Received May 9, 1975
On the Convergence oi the Symmetrie SOR Method
Summary. For the iterative solution of the matrix equation A x = b by means of
the (point) symmetrie SOR method (called the SSOR method), the basic convergence
analysis of this iterative process has been developed in the literature only for the case
when A is Hermitian and positive definite. With the help of the theory of regular
splittings, a more general convergence analysis of this iterative method is obtained,
under the weaker assumption th2t A is a nonsingular H-matrix.
1.
Gegeben sei ein lineares Gleichungssystem
Ax=b
mit einer nichtsingulären (komplexen) Matrix A und einem (komplexen) Vektor b.
Die Matrix A sei zerlegt in
A=D-L-U.
Dabei bezeichnet Deine Diagonalmatrix, L eine strenge untere und U eine
strenge obere Dreiecksmatrix. Zur Auflösung des linearen Systems Ax=b be-

  

Source: Alefeld, Götz - Institut für Angewandte und Numerische Mathematik & Fakultät für Mathematik, Universität Karlsruhe

 

Collections: Mathematics