Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
El Plano Euclidiano 1.1 La Geometra Griega
 

Summary: Capítulo 1
El Plano Euclidiano
1.1 La Geometría Griega
En el principio, la geometría era una colección de reglas de uso común para medir
y construir casas y ciudades. Fue hasta el año 300 AC que Euclides de Alejandría,
en sus Elementos, ordena y escribe todo ese saber, imprimiéndole el sello de rigor
lógico que caracteriza y distingue a las matemáticas. Se da cuenta de que todo razon-
amiento riguroso (o demostración) debe basarse sobre ciertos principios previamente
establecidos ya sea, a su vez, por demostración o bien por convención. Pero a final
de cuentas, este método conduce a la necesidad ineludible de convenir en que ciertos
principios básicos (postulados o axiomas) son válidos sin necesidad de demostrarlos,
que están dados y son incontrovertibles para poder construir sobre ellos el resto de
la teoría. Lo que hoy se conoce como Geometría Euclidiana, y hasta hace dos siglos
simplemente como Geometría, está basada sobre los cinco postulados de Euclides:
I Por cualesquiera dos puntos, se puede trazar el segmento de recta que los une.
II Dados un punto y una distancia, se puede trazar el círculo de centro el punto y
radio la distancia.
III Un segmento de recta, se puede extender en ambas direcciones indefinidamente.
IV Todos los ángulos rectos son iguales.
V Dadas dos rectas y una tercera que las corta, si los ángulos internos de un lado

  

Source: Aíza, Ricardo Gómez - Instituto de Matemáticas, Universidad Nacional Autónoma de México

 

Collections: Mathematics