Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network

  Advanced Search  

http://www.inma.ucl.ac.be/~absil/Publi/stICA.htm 28Nov2008 Gene expression data analysis using

Summary: http://www.inma.ucl.ac.be/~absil/Publi/stICA.htm 28Nov2008
Gene expression data analysis using
spatiotemporal blind source separation
Matthieu Sainlez1
, P.-A. Absil2
, and Andrew E. Teschendorff3
1- CRISIA, Haute Ecole Robert Schuman,
Chemin de Weyler 2, B-6700 Arlon, Belgium (matthieu.sainlez@hers.be)
2- Department of Mathematical Engineering, Universit´e catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium (http://www.inma.ucl.ac.be/~absil/)
3- Medical Genomics Group, Paul O'Gorman Building, UCL Cancer Institute,
University College London, London WC1 6BT, UK
Abstract. We propose a "time-biased" and a "space-biased" method for
spatiotemporal independent component analysis (ICA). The methods rely
on computing an orthogonal approximate joint diagonalizer of a collection
of covariance-like matrices. In the time-biased version, the time signatures
of the ICA modes are imposed to be white, whereas the space-biased ver-
sion imposes the same condition on the space signatures. We apply the
two methods to the analysis of gene expression data, where the genes play
the role of the space and the cell samples stand for the time. This study


Source: Absil, Pierre-Antoine - Département d'ingénierie Mathématique, Université Catholique de Louvain


Collections: Mathematics