Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
1. P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (1990) 2. R. E. Greenwood, The number of cycles associated with the elements of a permutation group, this
 

Summary: REFERENCES
1. P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (1990)
216­240.
2. R. E. Greenwood, The number of cycles associated with the elements of a permutation group, this
MONTHLY 60 (1953) 407­409.
3. J. Konvalina, A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian
coefficients, this MONTHLY 107 (2000) 901­910.
4. L. Milne-Thomson, The Calculus of Finite Differences, Chelsea, New York, 1981.
Department of Mathematics
University of Nebraska at Omaha
Omaha, NE 68182-0243
USA
johnkon@unomaha.edu
Another Elementary Proof
of the Nullstellensatz
Enrique Arrondo
In [1], May reproduced an elegant and elementary proof of the Nullstellensatz provided
by Munshi in [2]. We offer here an alternative elementary proof, in which we avoid
some of the algebraic technicalities needed in [1] and [2]. As a counterpart, we need
a simple version of the Noether normalization lemma (Lemma 1). On the other hand,

  

Source: Arrondo, Enrique - Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid

 

Collections: Mathematics