Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Voting-based simultaneous tracking of multiple video objects Concordia University, Electrical and Computer Engineering,
 

Summary: Voting-based simultaneous tracking of multiple video objects
Aishy Amer
Concordia University, Electrical and Computer Engineering,
MontrŽeal, QuŽebec, Canada
ABSTRACT
In the context of content-oriented applications such as video surveillance and video retrieval this paper proposes
a stable object tracking method based on both object segmentation and motion estimation. The method focuses
on the issues of speed of execution and reliability in the presence of noise, coding artifacts, shadows, occlusion,
and object split.
Objects are tracked based on the similarity of their features in successive images. This is done in three steps:
object segmentation and motion estimation, object matching, and feature monitoring and correction. In the
first step, objects are segmented and their spatial and temporal features are computed. In the second step, using
a non-linear voting strategy, each object of the previous image is matched with an object of the current image
creating a unique correspondence. In the third step, object segmentation errors, such as when objects occlude
or split, are detected and corrected. These new data are then used to update the results of previous steps, i.e.,
object segmentation and motion estimation. The contributions in this paper are the multi-voting strategy and
the monitoring and correction of segmentation errors.
Extensive experiments on indoor and outdoor video shots containing over 6000 images, including images
with multi-object occlusion, noise, and coding artifacts have demonstrated the reliability and real-time response
of the proposed method.

  

Source: Amer, Aishy - Department of Electrical and Computer Engineering, Concordia University

 

Collections: Engineering