Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network

  Advanced Search  

Course Outline and Information Winter 2012

Summary: Math 240B
Course Outline and Information
Winter 2012
Lecture: MWF 9:00 9:50;
Text: M. P. do Carmo, Riemannian Geometry. Birkhauser, 1992.
Instructor: Guofang Wei, South Hall 6503
email: wei@math.ucsb.edu
Office hours: MWF 12:00-1:00pm or by appointment
Homework: There will be about five homework assignments, which will also be
posted on my web page http://www.math.ucsb.edu/wei.
Grades: 25% homework; 30% midterm (take home); 45% final (take home)
Course Material: Chapters 1-8 of book by M. P. do Carmo
Course outline: We will first introduce the basic concepts: Riemannian metric,
Riemannian connection, geodesics, and curvature. A lot of geometrics information
can be derived from our understanding of geodesic and the interaction of geodesics
and curvature is our primary concern. At the most fundamental level this interaction
is exhibited by what are called Jacobi fields.
We then start the study of global geometry with another very important concept:
completeness. Its characterization by the so called Hopf-Rinow theorem is the most
fundamental result in Riemannain geometry. After looking into spaces of constant


Source: Akhmedov, Azer - Department of Mathematics, University of California at Santa Barbara


Collections: Mathematics