Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
1.1: NEWTON'S LAW OF COOLING Imagine some object like a cannon ball suspended in a swimming
 

Summary: 1.1: NEWTON'S LAW OF COOLING
Imagine some object like a cannon ball suspended in a swimming
pool by a rope. The cannon ball is at some temperature; perhaps
hotter thant the water, perhaps cooler. We can think of it as being a
`point source' of heat flow in or out. We are interested in the tem-
perature T (in degrees centigrade) as a function of time t (in min-
utes). It will be simplest if we measure the temperature relative to
the surrounding water, so T = 0 represents the water temperature.
We would like to understand the function T(t). Another function we
can consider is the derivative T (t) (in degrees per minute.)
One way of approaching this problem is to throw away one of the
variables, time t. We can imagine the STATE SPACE which is the plane
with coordinates (T, T ). A point in the state space is a pair of num-
bers representing a temperature, and a rate of change of tempera-
ture. This represents a possible state the cannon ball could be in. It is
hard to think about the rate of change without thinking about time.
T
T'
T
T'

  

Source: Akhmedov, Azer - Department of Mathematics, University of California at Santa Barbara

 

Collections: Mathematics