Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
On the non-sequential nature of domain models of real-number computation
 

Summary: On the non-sequential nature of
domain models of real-number computation
Thomas AnberrŽee 1
School of Computer Science
Birmingham University
Birmingham, U.K.
Abstract
EscardŽo, Hofmann and Streicher showed that real-number computations in the interval-domain environment
are inherently parallel, in the sense that they imply the presence of weak parallel-or. Part of the argument
involves showing that the addition operation is not Vuilemin sequential. We generalize this to all continuous
domain environments for the real line. The key property of the real line that leads to this phenomenon is
its connectedness. We show that any continuous domain environment for any connected topological space
exhibits a similar parallel effect.
Keywords: domain theory, real number computation, sequentiality, connectedness
1 Introduction
EscardŽo, Hofmann and Streicher [4] investigated the possibility of sequential com-
putation on the real line via its well known interval-domain environment, considered
by e.g. Edalat [2] and EscardŽo [3]. The main result of [4] is that sequential com-
putation on the reals via the interval domain is extremely restrictive, to the extent
that not even a basic operation such as addition is sequential. The argument in [4]

  

Source: Anberrée, Thomas - School of Computer Science, University of Nottingham Ningbo, China

 

Collections: Computer Technologies and Information Sciences