Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Minimal genus problem: New approach Mohamed AIT NOUH
 

Summary: Minimal genus problem: New approach
Mohamed AIT NOUH
Department of Mathematics,
University of California at Santa Barbara
Santa Barbara, CA 93106
Email: aitnouh@math.ucsb.edu
Abstract
The minimal genus problem of connected sums of 4-manifolds and the minimal slice genus of
knots in CP 2 are treated. The approach used is twisting operations on knots in S3.
We give an upper bound of the smooth slice genus of left-handed torus knots in CP 2 and we
study the smooth slice genus of the family of (2, q)-torus knots in CP 2 for any q 3.
T. Lawson conjectured in [23] that the minimal genus of (m, n) H2(CP2#CP2) is given by
(m-1
2 ) + (n-1
2 ) -this is the genus realized by the connected sum of algebraic curves in each factor.
T. Lawson also conjectured in [23] that if X = X1#X2 is the connected sum of two symplectic
4-manifolds with b+
2 3, and if (a, b) H2(X) = H2(X1)H2(X2) satisfies a.a 0 and b.b 0,
then the minimal genus for this class is the sum of the minimal genus for the class a and the
minimal genus for the class b.

  

Source: Ait Nouh, Mohamed - Mathematics Department, California State University Channel Islands
Akhmedov, Azer - Department of Mathematics, University of California at Santa Barbara

 

Collections: Mathematics