Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
arXiv:1006.3147v1[math.SP]16Jun2010 Karlin Theory On Growth and Mixing
 

Summary: arXiv:1006.3147v1[math.SP]16Jun2010
Karlin Theory On Growth and Mixing
Extended to Linear Differential Equations
Lee Altenberg
altenber@hawaii.edu
June 17, 2010
Abstract
Karlin's (1982) Theorem 5.2 shows that linear systems alternating between
growth and mixing phases have lower asymptotic growth with greater mixing.
Here this result is extended to linear differential equations that combine site-specific
growth or decay rates, and mixing between sites, showing that the spectral abscissa
of a matrix D + mA decreases with m, where D = cI is a real diagonal matrix,
A is an irreducible matrix with non-negative off-diagonal elements (an ML- or es-
sentially non-negative matrix), and m 0. The result is based on the inequality:
u Av < r(A), where u and v are the left and right Perron vectors of the matrix
D + A, and r(A) is the spectral abscissa and Perron root of A. The result gives
an analytic solution to prior work that relied on two-site or numerical simulation of
models of growth and mixing, such as source and sink ecological models, or mul-
tiple tissue compartment models of microbe growth. The result has applications to
the Lyapunov stability of perturbations in nonlinear systems.

  

Source: Altenberg, Lee - Department of Information and Computer Science, University of Hawai'i at Manoa

 

Collections: Computer Technologies and Information Sciences