Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
A Polymorphic Lambda-Calculus with Sized Higher-Order Types
 

Summary: A Polymorphic Lambda-Calculus
with Sized Higher-Order Types
Andreas Abel
June 19, 2006
2
Contents
1 Introduction 7
1.1 Why Termination? . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Approaches to Termination . . . . . . . . . . . . . . . . . . . . . 9
1.3 Why Type-Based Termination Matters . . . . . . . . . . . . . . . 10
1.4 Informal Account of Type-Based Termination . . . . . . . . . . . 12
1.4.1 A Semantical Account of Type-Based Termination . . . . 12
1.4.2 From Semantics to Syntax . . . . . . . . . . . . . . . . . . 14
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Sized Higher-Order Subtyping 19
2.1 Constructors and Polarized Kinds . . . . . . . . . . . . . . . . . 19
2.1.1 Polarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Kinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

  

Source: Abel, Andreas - Theoretische Informatik, Ludwig-Maximilians-Universit√§t M√ľnchen

 

Collections: Computer Technologies and Information Sciences