Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Control Systems Design, SC4026 SC4026 Fall 2011, dr. A. Abate, DCSC, TU Delft
 

Summary: Control Systems Design, SC4026
SC4026 Fall 2011, dr. A. Abate, DCSC, TU Delft
Lecture 2
Hints to nonlinear case and linearization procedure
First-order ordinary differential equations (ODE)
Solution of a linear ODE
SC4026 Fall 2011, dr. A. Abate, DCSC, TU Delft 1
Linear Ordinary Differential Equations (Linear ODE)
Recall dynamical model for spring-damper system:
q(t) =
1
m
(-c( q(t)) - kq(t) + u(t))
It can be formulated as:
x1(t) = x2(t)
x2(t) = 1
m (-c(x2(t)) - kx1(t) + u(t))
Introduce linear approximation of nonlinear term (e.g., arctan):
c(x2(t)) c x2(t)
Consider output equation: y(t) = x1(t)

  

Source: Abate, Alessandro - Faculty of Mechanical, Maritime and Materials Engineering, Technische Universiteit Delft

 

Collections: Engineering