Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 36 (2003) 23472370 PII: S0305-4470(03)56727-0
 

Summary: INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL
J. Phys. A: Math. Gen. 36 (2003) 23472370 PII: S0305-4470(03)56727-0
Wigner rotations, Bargmann invariants and geometric
phases
N Mukunda1,2
, P K Aravind3
and R Simon4
1 Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India
2 Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
3 Physics Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
4 The Institute of Mathematical Sciences, CIT Campus, Tharamani, Chennai 600 113, India
E-mail: nmukunda@cts.iisc.ernet.in, paravind@wpi.edu and simon@imsc.ernet.in
Received 25 November 2002
Published 19 February 2003
Online at stacks.iop.org/JPhysA/36/2347
Abstract
The concept of the `Wigner rotation', familiar from the composition law of
(pure) Lorentz transformations, is described in the general setting of Lie group
coset spaces and the properties of coset representatives. Examples of Abelian
and non-Abelian Wigner rotations are given. The Lorentz group Wigner

  

Source: Aravind, Padmanabhan K. - Department of Physics, Worcester Polytechnic Institute

 

Collections: Physics