Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Dr P.M.E. ALTHAM, 2010 Retired Director of Studies for the M.Phil. in Statistical Science, Statistical Labo-
 

Summary: Dr P.M.E. ALTHAM, 2010
Retired Director of Studies for the M.Phil. in Statistical Science, Statistical Labo-
ratory, University of Cambridge.
1. Exact Bayesian analysis of a 22 contingency table and Fisher's `exact' significance
test. J. Roy. Statist. Soc. B 31, (1969), 261269.
2. The measurement of association of rows and columns for an rs contingency table.
J. Roy. Statist. Soc. B 32, (1970), 6373.
3. The measurement of association in a contingency table: three extensions of the
cross-ratios and metrics methods. J. Roy. Statist. Soc. B 32, (1970), 395407.
4. The estimation of I(x = 1 : 2; y). Appendix to Robson, B. and Pain, R.H. Analysis
of the code relating sequence to conformation in proteins: possible implications for
the mechanism of formation in helical regions. J. Molecular Biology 58, (1970).
5. The analysis of matched proportions. Biometrika 58, (1971), 561576.
6. Exact Bayesian analysis of an intraclass 22 table. Biometrika 58, (1971), 679680.
(This is actually about the test for Hardy-Weinberg equilibrium, and so complements
my first paper (1969). I would dearly like to know why there is an identity between
the Bayes posterior probability and the classical p-value in the test for independence
in both cases. Someone must surely be able to show that these two are special cases
of a general result, for conditional tests in exponential families?)
7. A non-parametric alternative to d

  

Source: Altham, Pat - Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge

 

Collections: Mathematics