Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Published in Proc. of the 16th Int. Conf. on Pattern Recognition (ICPR), Vol. 2, pp. 864868, 2002. 864 Tangent Distance Kernels for Support Vector Machines
 

Summary: Published in Proc. of the 16th Int. Conf. on Pattern Recognition (ICPR), Vol. 2, pp. 864­868, 2002. 864
Tangent Distance Kernels for Support Vector Machines
Bernard Haasdonk
Computer Science Department
Albert-Ludwigs-University Freiburg
79110 Freiburg, Germany
haasdonk@informatik.uni-freiburg.de
Daniel Keysers
Lehrstuhl f¨ur Informatik VI, Computer Science Department
RWTH Aachen ­ University of Technology
52056 Aachen, Germany
keysers@informatik.rwth-aachen.de
Abstract
When dealing with pattern recognition problems one en-
counters different types of a-priori knowledge. It is impor-
tant to incorporate such knowledge into the classification
method at hand. A very common type of a-priori knowl-
edge is transformation invariance of the input data, e.g. ge-
ometric transformations of image-data like shifts, scaling
etc. Distance based classification methods can make use of

  

Source: Albert-Ludwigs-Universität Freiburg, Institut für Informatik,, Lehrstuhls für Mustererkennung und Bildverarbeitung
Haasdonk, Bernard - Institut für Numerische und Angewandte Mathematik, Universität Münster

 

Collections: Computer Technologies and Information Sciences; Mathematics