Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network

  Advanced Search  

Physica A 295 (2001) 128131 www.elsevier.com/locate/physa

Summary: Physica A 295 (2001) 128­131
Directed percolation, fractal roots and the
Lee­Yang theorem
P.F. Arndta
, S.R. Dahmenb;
, H. Hinrichsenc
aInstitute for Theoretical Physics, Universitat zu Koln, Zulpicher Stra e 77, D-50937 Cologne, Germany
bInstituto de FĆsica, Universidade Federal do Rio Grande do Sul, C. P. 15051, 91501-970 Porto Alegre,
RS, Brazil
cPhysics Department, Universitat Duisburg, Lotharstra e 1, D-47048 Duisburg, Germany
In the directed percolation model we consider the probability p of having an open bond as a
complex parameter. We show that the roots of the survival probability PN (p) for a square lattice
of N rows distribute themselves in a fractal manner in the complex p-plane. These roots have
an accumulation point on the real axis which coincides with the critical probability pc = 0:6447.
c 2001 Elsevier Science B.V. All rights reserved.
PACS: 05.70.Fh; 64.60.Ak; 02.30.Dk
Keywords: Phase transitions; Percolation model; Complex Analysis
Spreading phenomena abound in nature in such diverse situations as forest ˙res,


Source: Arndt, Peter - Max-Planck-Institut für molekulare Genetik
Spang, Rainer - Computational Molecular Biology Group, Max-Planck-Institut für molekulare Genetik


Collections: Biology and Medicine; Biotechnology; Computer Technologies and Information Sciences; Physics