Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
The in nite Brownian loop on a symmetric space Jean{Philippe Anker z
 

Summary: The in nite Brownian loop on a symmetric space
Jean{Philippe Anker z
Universite Nancy 1
Philippe Bougerol x
Universite Paris 6
Thierry Jeulin {
Universite Paris 7
To appear in Rev. Mat. Iberoamericana 18 (2002), 41{97
Abstract
The in nite Brownian loop fB 0
t
; t  0g on a Riemannian manifold M is
the limit in distribution of the Brownian bridge of length T around a xed
origin 0, when T ! +1. It has no spectral gap. When M has nonnega-
tive Ricci curvature, B 0 is the Brownian motion itself. When M = G=K
is a noncompact symmetric space, B 0 is the relativized  0 {process of the
Brownian motion, where  0 denotes the basic spherical function of Harish{
Chandra, i.e. the K{invariant ground state of the Laplacian. In this case,
we consider the polar decomposition B 0
t = (K t ; X t ), where K t 2 K=M and

  

Source: Anker, Jean-Philippe - Laboratoire de Mathématiques et Applications, Physique Mathématique, Université d'Orléans

 

Collections: Mathematics