Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Learning with Distance Substitution Kernels Bernard Haasdonk1
 

Summary: Learning with Distance Substitution Kernels
Bernard Haasdonk1
and Claus Bahlmann2
1
Computer Science Department
Albert-Ludwigs-University Freiburg
79110 Freiburg, Germany
haasdonk@informatik.uni-freiburg.de
2
Siemens Corporate Research, Inc.
755 College Road East
Princeton, NJ 08540, USA
claus.bahlmann@scr.siemens.com
Abstract. During recent years much effort has been spent in incorporating prob-
lem specific a-priori knowledge into kernel methods for machine learning. A
common example is a-priori knowledge given by a distance measure between
objects. A simple but effective approach for kernel construction consists of substi-
tuting the Euclidean distance in ordinary kernel functions by the problem specific
distance measure. We formalize this distance substitution procedure and investi-
gate theoretical and empirical effects. In particular we state criteria for definite-

  

Source: Albert-Ludwigs-Universität Freiburg, Institut für Informatik,, Lehrstuhls für Mustererkennung und Bildverarbeitung
Haasdonk, Bernard - Institut für Numerische und Angewandte Mathematik, Universität Münster

 

Collections: Computer Technologies and Information Sciences; Mathematics