Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
ALBERT-LUDWIGS-UNIVERSIT AT INSTITUT F UR INFORMATIK
 

Summary: ALBERT-LUDWIGS-UNIVERSIT ¨AT
FREIBURG
INSTITUT F ¨UR INFORMATIK
Lehrstuhl f¨ur Mustererkennung und Bildverarbeitung
Fast Support Vector Machine Classification of
very large Datasets
Technical Report 2/07
Karina Zapi´en Arreola1
, Janis Fehr and Hans Burkhardt
March, 2007
1now at INSA de Rouen, LITIS
76801 St Etienne du Rouvray, France
Fast Support Vector Machine Classification of
very largeDatasets
Karina Zapi´en Arreola Janis Fehr Hans Burkhardt
March, 2007
Abstract
In many classification applications, Support Vector Machines (SVMs) have proven to
be high performing and easy to handle classifiers with very good generalization abil-
ities. However, one drawback of the SVM is its rather high classification complexity

  

Source: Albert-Ludwigs-Universität Freiburg, Institut für Informatik,, Lehrstuhls für Mustererkennung und Bildverarbeitung

 

Collections: Computer Technologies and Information Sciences